CINXE.COM

Search results for: comparison between R.C.C and encased composite column structures

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: comparison between R.C.C and encased composite column structures</title> <meta name="description" content="Search results for: comparison between R.C.C and encased composite column structures"> <meta name="keywords" content="comparison between R.C.C and encased composite column structures"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="comparison between R.C.C and encased composite column structures" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="comparison between R.C.C and encased composite column structures"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11138</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: comparison between R.C.C and encased composite column structures</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11138</span> Cost Comparison between R.C.C. Structures and Composite Columns Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assad%20Rashid">Assad Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Umair%20Ahmed"> Umair Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zafar%20Baig"> Zafar Baig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new trend in construction is widely influenced by the use of Steel-Concrete Composite Columns. The rapid growth in Steel-Concrete Composite construction has widely decreased the conventional R.C.C structures. Steel Concrete composite construction has obtained extensive receiving around the globe. It is considering the fact that R.C.C structures construction is most suitable and economical for low-rise construction, so it is used in farming systems in most of the buildings. However, increased dead load, span restriction, less stiffness and risky formwork make R.C.C construction uneconomical and not suitable when it comes to intermediate to high-rise buildings. A Base + Ground +11 storey commercial building was designed on ETABS 2017 and made a comparison between conventional R.C.C and encased composite column structure. After performing Equivalent Static non-linear analysis, it has been found that construction cost is 13.01% more than R.C.C structure but encased composite column building has 7.7% more floor area. This study will help in understanding the behavior of conventional R.C.C structure and Encased Composite column structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20columns%20structure" title="composite columns structure">composite columns structure</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20static%20non-linear%20analysis" title=" equivalent static non-linear analysis"> equivalent static non-linear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures" title=" comparison between R.C.C and encased composite column structures"> comparison between R.C.C and encased composite column structures</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-effective%20structure" title=" cost-effective structure"> cost-effective structure</a> </p> <a href="https://publications.waset.org/abstracts/140964/cost-comparison-between-rcc-structures-and-composite-columns-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11137</span> Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20El%20Kamash">Walid El Kamash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encased%20sand%20column" title="encased sand column">encased sand column</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20mixed%20column" title=" Deep mixed column"> Deep mixed column</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=improving%20soft%20soil" title=" improving soft soil"> improving soft soil</a> </p> <a href="https://publications.waset.org/abstracts/56795/comparison-study-between-deep-mixed-columns-and-encased-sand-column-for-soft-clay-soil-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11136</span> Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossein%20Zade"> M. Hossein Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encased%20stone%20column" title="encased stone column">encased stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=laterally%20load" title=" laterally load"> laterally load</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20stone%20column" title=" ordinary stone column"> ordinary stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/55939/numerical-analysis-of-geosynthetic-encased-stone-columns-under-laterally-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11135</span> Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Soebur%20Rahman">Md. Soebur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbuba%20Begum"> Mahbuba Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquib%20Ahsan"> Raquib Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar&#39;s were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=columns" title=" columns"> columns</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20encased" title=" fully encased"> fully encased</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/47180/comparison-between-experimental-and-numerical-studies-of-fully-encased-composite-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11134</span> Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Ismail">Eman Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Masri"> Adnan Masri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20mechanisms%20steel%20structure" title=" plastic mechanisms steel structure"> plastic mechanisms steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20frame" title=" moment frame"> moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20construction" title=" composite construction"> composite construction</a> </p> <a href="https://publications.waset.org/abstracts/117680/numerical-simulation-of-encased-composite-column-bases-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11133</span> Laboratory Model Tests on Encased Group Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kausar%20Ali">Kausar Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetic" title="geosynthetic">geosynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a> </p> <a href="https://publications.waset.org/abstracts/30321/laboratory-model-tests-on-encased-group-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11132</span> The Behavior of Ordinary and Encased Stone Columns in Soft Clay Soil of Egypt: A Finite Element Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20F.%20Awad-Allah">Mahmoud F. Awad-Allah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Rabeih"> Mohammed Rabeih</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Abdel%20Baseer"> Eman Abdel Baseer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soft to very soft soil deposits are widely speared in some areas of Egypt such as East Port Said, Damietta, Kafr El-Sheik, Alexandria, etc. The construction projects in these areas have faced the challenge of the presence of extended deep layers of soft and very soft clays which reach to depths of 40 to 60 m from the ground level. Stone columns are commonly used to support structures overlying soft ground soils and surcharged by embankment type loading. Therefore, this paper introduces a wide comparison numerical study between the ordinary stone columns (OSC) versus the geosynthetic encased stone columns (ESC) installed in soft clay soil deposit using finite element method (FEM). Parametric study of an embankment on soft soils reinforced with stone columns is performed using commercial computer program based on the finite element technique (PLAXIS 2D). The investigation will present the influence of the following parameters: diameter of stone columns, stiffness of geosynthetic encasement, embedded depth of stone column from ground level, and the length encasement of the stone column on the consolidation time, vertical settlement, and lateral displacement of soft clay soil formations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geosynthetic" title=" geosynthetic"> geosynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20displacement" title=" lateral displacement"> lateral displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/94555/the-behavior-of-ordinary-and-encased-stone-columns-in-soft-clay-soil-of-egypt-a-finite-element-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11131</span> Comparative Study of R.C.C. Steel and Concrete Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Suresh%20Kumawat">Mahesh Suresh Kumawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20column" title=" RCC column"> RCC column</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20beam" title=" RCC beam"> RCC beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connector" title=" shear connector"> shear connector</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%202000%20software" title=" SAP 2000 software"> SAP 2000 software</a> </p> <a href="https://publications.waset.org/abstracts/8085/comparative-study-of-rcc-steel-and-concrete-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11130</span> Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%20Kwang-Won">Jo Kwang-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ho-Jun"> Lee Ho-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20In-Rak"> Choi In-Rak</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Hong-Gun"> Park Hong-Gun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabrication" title=" prefabrication"> prefabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=angle" title=" angle"> angle</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete" title=" precast concrete"> precast concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pratt%20truss" title=" pratt truss"> pratt truss</a> </p> <a href="https://publications.waset.org/abstracts/60429/flexural-behavior-for-prefabricated-angle-truss-composite-beams-using-precast-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11129</span> Structural Behavior of Composite Hollow RC Column under Combined Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qader%20Melhm">Abdul Qader Melhm</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Elrafidi"> Hussein Elrafidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column" title="column">column</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentric" title=" eccentric"> eccentric</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20tube" title=" inner tube"> inner tube</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/141136/structural-behavior-of-composite-hollow-rc-column-under-combined-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11128</span> Investigation on an Innovative Way to Connect RC Beam and Steel Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20El-Masry">Ahmed H. El-Masry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Dabaon"> Mohamed A. Dabaon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20F.%20El-Shafiey"> Tarek F. El-Shafiey</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Hakim%20A.%20Khalil"> Abd El-Hakim A. Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20column" title="composite column">composite column</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20column" title=" steel column"> steel column</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20part" title=" transfer part"> transfer part</a> </p> <a href="https://publications.waset.org/abstracts/27407/investigation-on-an-innovative-way-to-connect-rc-beam-and-steel-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11127</span> Comparison of Steel and Composite Analysis of a Multi-Storey Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%87i%C4%9Fdem%20Avc%C4%B1%20Karata%C5%9F">Çiğdem Avcı Karataş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20analysis" title="composite analysis">composite analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-storey%20building" title=" multi-storey building "> multi-storey building </a> </p> <a href="https://publications.waset.org/abstracts/20662/comparison-of-steel-and-composite-analysis-of-a-multi-storey-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11126</span> Load Carrying Capacity of Soils Reinforced with Encased Stone Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran">S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Govind"> G. Govind</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title="stone columns">stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=encasement" title=" encasement"> encasement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a> </p> <a href="https://publications.waset.org/abstracts/76343/load-carrying-capacity-of-soils-reinforced-with-encased-stone-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11125</span> Collapse Analysis of Planar Composite Frame under Impact Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lian%20Song">Lian Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Bo%20Kang"> Shao-Bo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Yang"> Bo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete filled steel tubular (CFST) structure has been widely used in construction practices due to its superior performances under various loading conditions. However, limited studies are available when this type of structure is subjected to impact or explosive loads. Current methods in relevant design codes are not specific for preventing progressive collapse of CFST structures. Therefore, it is necessary to carry out numerical simulations on CFST structure under impact loads. In this study, finite element analyses are conducted on the mechanical behaviour of composite frames which composed of CFST columns and steel beams subject to impact loading. In the model, CFST columns are simulated using finite element software ABAQUS. The model is verified by test results of solid and hollow CFST columns under lateral impacts, and reasonably good agreement is obtained through comparisons. Thereafter, a multi-scale finite element modelling technique is developed to evaluate the behaviour of a five-storey three-span planar composite frame. Alternate path method and direct simulation method are adopted to perform the dynamic response of the frame when a supporting column is removed suddenly. In the former method, the reason for column removal is not considered and only the remaining frame is simulated, whereas in the latter, a specific impact load is applied to the frame to take account of the column failure induced by vehicle impact. Comparisons are made between these two methods in terms of displacement history and internal force redistribution, and design recommendations are provided for the design of CFST structures under impact loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20composite%20frame" title="planar composite frame">planar composite frame</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20analysis" title=" collapse analysis"> collapse analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20loading" title=" impact loading"> impact loading</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20simulation%20method" title=" direct simulation method"> direct simulation method</a>, <a href="https://publications.waset.org/abstracts/search?q=alternate%20path%20method" title=" alternate path method"> alternate path method</a> </p> <a href="https://publications.waset.org/abstracts/66231/collapse-analysis-of-planar-composite-frame-under-impact-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11124</span> Nonlinear Finite Element Modeling of Reinforced Concrete Flat Plate-Inclined Column Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabab%20Allouzi">Rabab Allouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Alkloub"> Amer Alkloub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the complex shaped buildings become a popular trend for architects, this paper is presented to investigate the performance of reinforced concrete flat plate-inclined column connection. The studies on the inclined column and flat plate connections are not sufficient in comparison to those on the conventional structures. The effect of column angle of inclination on the punching shear strength is found significant and studied herein. This paper presents a non-linear finite element based modeling approach to estimate behavior of RC flat plate inclined column connection. Results from simulations of RC flat plate-straight column connection show good agreement with experimental response of specimens tested by other researchers. The model is further used to study the response of inclined columns to punching at various ranges of inclination angles. The inclination angle can be included in the punching shear strength provisions provided by ACI 318-14 to account for the effect of column inclination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title="punching shear">punching shear</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20finite%20element" title=" non-linear finite element"> non-linear finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20columns" title=" inclined columns"> inclined columns</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20connection" title=" reinforced concrete connection"> reinforced concrete connection</a> </p> <a href="https://publications.waset.org/abstracts/77848/nonlinear-finite-element-modeling-of-reinforced-concrete-flat-plate-inclined-column-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11123</span> Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser-Eddine%20Attari">Nasser-Eddine Attari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibrereinforced%20polymers" title="fibrereinforced polymers">fibrereinforced polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=joints" title=" joints"> joints</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20columns" title=" beam columns"> beam columns</a> </p> <a href="https://publications.waset.org/abstracts/18503/strengthening-of-reinforced-concrete-beam-column-joint-by-reversible-mixed-technologies-of-frp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11122</span> Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Gohel">Jay Gohel</a>, <a href="https://publications.waset.org/abstracts/search?q=Anant%20Parghi"> Anant Parghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20column%20damper" title=" tuned liquid column damper"> tuned liquid column damper</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20response%20control" title=" passive response control"> passive response control</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/139053/research-developments-in-vibration-control-of-structure-using-tuned-liquid-column-dampers-a-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11121</span> Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser-Eddine%20Attari">Nasser-Eddine Attari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20polymers" title="fibre reinforced polymers">fibre reinforced polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=joints" title=" joints"> joints</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20columns" title=" beam columns"> beam columns</a> </p> <a href="https://publications.waset.org/abstracts/16721/seismic-strengthening-of-reinforced-concrete-beam-column-joint-by-reversible-mixed-technologies-of-frp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11120</span> Ductility of Slab-Interior Column Connections Transferring Shear and Moment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Ben-Sasi">Omar M. Ben-Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductility of slab-column connections of flat slab structures is a desirable property that should be considered when designing such connections which are susceptible to punching failure around their columns. Tests to failure on six half-scale specimens were conducted for slab-interior column connections transferring shear force and unbalanced moment. The influences on connection ductility of four parameters; namely, the moment to shear force ratio, the ratio of column side length to slab effective depth, the aspect ratio of the column cross section, and the presence of four square openings located next to column corners were investigated. The study revealed marked effects of these parameters on connection ductility. Increasing the first and second parameters, were found to be in favor of increasing connection ductility, while the third and fourth parameters were found to have negative effects on the connection ductility. These findings should, hopefully, help in designing interior connections of flat slab structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20slab" title=" flat slab"> flat slab</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20force" title=" shear force"> shear force</a>, <a href="https://publications.waset.org/abstracts/search?q=moment" title=" moment"> moment</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20moment" title=" unbalanced moment"> unbalanced moment</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20failure" title=" punching failure"> punching failure</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a>, <a href="https://publications.waset.org/abstracts/search?q=interior-column%20connection" title=" interior-column connection"> interior-column connection</a> </p> <a href="https://publications.waset.org/abstracts/8917/ductility-of-slab-interior-column-connections-transferring-shear-and-moment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11119</span> Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20M.%20Mohd%20Saleh">S. J. M. Mohd Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Guo"> S. Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20design" title="aircraft design">aircraft design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20structures" title=" aircraft structures"> aircraft structures</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20lamination%20theory" title=" classical lamination theory"> classical lamination theory</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20structures" title=" composite structures"> composite structures</a>, <a href="https://publications.waset.org/abstracts/search?q=laminate%20theory" title=" laminate theory"> laminate theory</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20beam%20theory" title=" thin-walled beam theory"> thin-walled beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20box%20design" title=" wing box design "> wing box design </a> </p> <a href="https://publications.waset.org/abstracts/80552/composite-laminate-and-thin-walled-beam-correlations-for-aircraft-wing-box-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11118</span> A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hakim%20Chikho">Abdul Hakim Chikho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20ultimate%20load" title="column ultimate load">column ultimate load</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20rigid%20connections" title=" semi rigid connections"> semi rigid connections</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20%20column" title=" steel column"> steel column</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20panel" title=" infill panel"> infill panel</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/140264/a-simple-design-procedure-for-calculating-the-column-ultimate-load-of-steel-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11117</span> FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talebi%20Aliasghar">Talebi Aliasghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahimpour%20Komeleh%20Hooman"> Ebrahimpour Komeleh Hooman</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghsoudi%20Ali%20Akbar"> Maghsoudi Ali Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HSC" title="HSC">HSC</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column%20connection" title=" beam-column connection"> beam-column connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiber%20Reinforcement%20Polymer" title=" Fiber Reinforcement Polymer"> Fiber Reinforcement Polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Modeling" title=" Finite Element Modeling"> Finite Element Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/99896/fem-study-of-different-methods-of-fiber-reinforcement-polymer-strengthening-of-a-high-strength-concrete-beam-column-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11116</span> Comparison of Seismic Response for Two RC Curved Bridges with Different Column Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20N.%20Serdar">Nina N. Serdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20R.%20Pejovi%C4%87"> Jelena R. Pejović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents seismic risk assessment of two bridge structure, based on the probabilistic performance-based seismic assessment methodology. Both investigated bridges are tree span continuous RC curved bridges with the difference in column shapes. First bridge (type A) has a wall-type pier and second (type B) has a two-column bent with circular columns. Bridges are designed according to European standards: EN 1991-2, EN1992-1-1 and EN 1998-2. Aim of the performed analysis is to compare seismic behavior of these two structures and to detect the influence of column shapes on the seismic response. Seismic risk assessment is carried out by obtaining demand fragility curves. Non-linear model was constructed and time-history analysis was performed using thirty five pairs of horizontal ground motions selected to match site specific hazard. In performance based analysis, peak column drift ratio (CDR) was selected as engineering demand parameter (EDP). For seismic intensity measure (IM) spectral displacement was selected. Demand fragility curves that give probability of exceedance of certain value for chosen EDP were constructed and based on them conclusions were made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20curved%20bridge" title="RC curved bridge">RC curved bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20fragility%20curve" title=" demand fragility curve"> demand fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20type%20column" title=" wall type column"> wall type column</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20time-history%20analysis" title=" nonlinear time-history analysis"> nonlinear time-history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20column" title=" circular column"> circular column</a> </p> <a href="https://publications.waset.org/abstracts/48878/comparison-of-seismic-response-for-two-rc-curved-bridges-with-different-column-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11115</span> Evaluation of Stone Column Behavior Strengthened Circular Raft Footing under Static Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mohammadi-Haji"> B. Mohammadi-Haji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns have been widely employing to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20raft%20footing" title="circular raft footing">circular raft footing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertically%20encased%20stone%20column" title=" vertically encased stone column"> vertically encased stone column</a> </p> <a href="https://publications.waset.org/abstracts/48311/evaluation-of-stone-column-behavior-strengthened-circular-raft-footing-under-static-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11114</span> Effectiveness of Column Geometry in High-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Man%20Singh%20Meena">Man Singh Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building" title="high-rise building">high-rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20geometry" title=" column geometry"> column geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20modelling" title=" building modelling"> building modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ETABS%20analysis" title=" ETABS analysis"> ETABS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20design" title=" building design"> building design</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/177789/effectiveness-of-column-geometry-in-high-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11113</span> Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rilwan%20Kayode%20Apalowo">Rilwan Kayode Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Chronopoulos"> Dimitrios Chronopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20identification" title="structural identification">structural identification</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20evaluation" title=" non-destructive evaluation"> non-destructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20structures" title=" layered structures"> layered structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/109615/structural-identification-for-layered-composite-structures-through-a-wave-and-finite-element-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11112</span> Effective Slab Width for Beam-End Flexural Strength of Composite Frames with Circular-Section Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jizhi%20Zhao">Jizhi Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiliang%20Zhou"> Qiliang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Muxuan%20Tao"> Muxuan Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculation of the ultimate loading capacity of composite frame beams is an important step in the design of composite frame structural systems. Currently, the plastic limit theory is mainly used for this calculation in the codes adopted by many countries; however, the effective slab width recommended in most codes is based on the elastic theory, which does not accurately reflect the complex stress mechanism at the beam-column joints in the ultimate loading state. Therefore, the authors’ research group put forward the Compression-on-Column-Face mechanism and Tension-on-Transverse-Beam mechanism to explain the mechanism in the ultimate loading state. Formulae are derived for calculating the effective slab width in composite frames with rectangular/square-section columns under ultimate lateral loading. Moreover, this paper discusses the calculation method of the effective slab width for the beam-end flexural strength of composite frames with circular-section columns. The proposed design formula is suitable for exterior and interior joints. Finally, this paper compares the proposed formulae with available formulae in other literature, current design codes, and experimental results, providing the most accurate results to predict the effective slab width and ultimate loading capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20frame%20structure" title="composite frame structure">composite frame structure</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20slab%20width" title=" effective slab width"> effective slab width</a>, <a href="https://publications.waset.org/abstracts/search?q=circular-section%20column" title=" circular-section column"> circular-section column</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20formulae" title=" design formulae"> design formulae</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20loading%20capacity" title=" ultimate loading capacity"> ultimate loading capacity</a> </p> <a href="https://publications.waset.org/abstracts/125731/effective-slab-width-for-beam-end-flexural-strength-of-composite-frames-with-circular-section-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11111</span> Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ucar">H. Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Aridogan"> U. Aridogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP%20composite" title="FRP composite">FRP composite</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20challenges" title=" operational challenges"> operational challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20transducers" title=" piezoelectric transducers"> piezoelectric transducers</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20modeling" title=" FE modeling"> FE modeling</a> </p> <a href="https://publications.waset.org/abstracts/134034/operational-challenges-of-marine-fiber-reinforced-polymer-composite-structures-coupled-with-piezoelectric-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11110</span> Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Sun">Xuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingbo%20Tong"> Mingbo Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stiffened" title="stiffened">stiffened</a>, <a href="https://publications.waset.org/abstracts/search?q=low-velocity%20impact" title=" low-velocity impact"> low-velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title=" Abaqus"> Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20energy" title=" impact energy"> impact energy</a> </p> <a href="https://publications.waset.org/abstracts/11275/finite-element-analysis-of-low-velocity-impact-damage-on-stiffened-composite-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11109</span> Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khalil">Muhammad Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abuelfoutouh"> Nader Abuelfoutouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gasser%20Abdelal"> Gasser Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Murphy"> Adrian Murphy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20structures" title="composite structures">composite structures</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20multiphysics" title=" lightning multiphysics"> lightning multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29" title=" magnetohydrodynamic (MHD)"> magnetohydrodynamic (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20thermal-electrical%20analysis" title=" coupled thermal-electrical analysis"> coupled thermal-electrical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20plasmas." title=" thermal plasmas."> thermal plasmas.</a> </p> <a href="https://publications.waset.org/abstracts/81848/numerical-simulation-of-lightning-strike-direct-effects-on-aircraft-skin-composite-laminate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=371">371</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=372">372</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=comparison%20between%20R.C.C%20and%20encased%20composite%20column%20structures&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10