CINXE.COM
Search results for: seven in absentia homolog
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: seven in absentia homolog</title> <meta name="description" content="Search results for: seven in absentia homolog"> <meta name="keywords" content="seven in absentia homolog"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="seven in absentia homolog" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="seven in absentia homolog"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: seven in absentia homolog</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Analysis of Replication Protein A (RPA): The Role of Homolog Interaction and Recombination during Meiosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hwan%20Joo">Jeong Hwan Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun%20Pil%20Kim"> Keun Pil Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During meiosis, meiotic recombination is initiated by Spo11-mediated DSB formation and exonuclease-mediated DSB resection occurs to expose single stranded DNA formation. RPA is further required to inhibit secondary structure formation of ssDNA that can be formed Watson-Crick pairing. Rad51-Dmc1, RecA homologs in eukaryote and their accessory factors involve in searching homolog templates to mediate strand exchange. In this study, we investigate the recombinational roles of replication protein A (RPA), which is heterotrimeric protein that is composed of RPA1, RPA2, and RPA3. Here, we investigated meiotic recombination using DNA physical analysis at the HIS4LEU2 hot spot. In rfa1-119 (K45E, N316S) cells, crossover (CO) and non-crossover (NCO) products reduced than WT. rfa1-119 delayed in single end invasion-to-double holiday junction (SEI-to-dHJ) transition and exhibits a defect in second-end capture that is also modulated by Rad52. In the further experiment, we observed that in rfa1-119 mutant, RPA could not be released in timely manner. Furthermore, rfa1-119 exhibits failure in the second end capture, implying reduction of COs and NCOs. In this talk, we will discuss more detail how RPA involves in chromatin axis association via formation of axis-bridge and why RPA is required for Rad52-mediated second-end capture progression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homolog%20interaction" title="homolog interaction">homolog interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=meiotic%20recombination" title=" meiotic recombination"> meiotic recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=replication%20protein%20A" title=" replication protein A"> replication protein A</a>, <a href="https://publications.waset.org/abstracts/search?q=RPA1" title=" RPA1"> RPA1</a> </p> <a href="https://publications.waset.org/abstracts/80585/analysis-of-replication-protein-a-rpa-the-role-of-homolog-interaction-and-recombination-during-meiosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Effect of SIAH1 on PINK1 Homeostasis in Parkinson Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Abd%20Elghani">Fatimah Abd Elghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymonde%20Szargel"> Raymonde Szargel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vered%20Shani"> Vered Shani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Safory"> Hazem Safory</a>, <a href="https://publications.waset.org/abstracts/search?q=Haya%20Hamza"> Haya Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mor%20Savyon"> Mor Savyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Rott"> Ruth Rott</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Bandopadhyay"> Rina Bandopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Engelender"> Simone Engelender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson’s disease. Down regulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Although PINK1 has a predicted mitochondrial import sequence, it’s cellular, and submitochondrial localization remains unclear, in part because it is rapidly degraded. In this work, we investigated the mechanisms involved in PINK1 degradation and how this may affect PINK1 stability and function, with implications for mitochondrial function in PD. In addition, pharmacological inhibition of proteasome activity was shown to lead to PINK1 accumulation, indicating that PINK1 degradation depends on the ubiquitin-proteasome system (UPS). Methods: Using co-immunoprecipitation assays, we identified E3 ubiquitin ligase SIAH1 as a PINK1-interacting protein in HEK293 cells as well as on rat brain tissues. In addition, we determined the effect of SIAH 1, SIAH2 and Parkin on PINK1 steady-state levels by Western blot analysis, and checked their possibility to ubiquitinate and mediate PINK1 degradation through the proteasome carried out in vivo ubiquitination experiments. Results: We have obtained results showing that SIAH-1 interacts with and ubiquitinates PINK1. The ubiquitination promoted by SIAH-1 leads to the proteasomal degradation of PINK1. We confirmed these findings by knocking down SIAH-1 and observing important accumulation of PINK1 in cells. Besides, we found that SIAH-1 decreases PINK1 steady-state levels but not the E3 ligase Parkin. We also investigated the interaction of SIAH-1 with PINK1 disease mutants and its ability to promote their ubiquitination and degradation. Although, no clear difference in the ability of SIAH-1 to promote the degradation of PINK1 disease mutants was observed. It is possible that dysfunction of proteasomal activity in the disease may lead to the accumulation and aggregation of ubiquitinated PINK1 in patients with PINK1 mutations, with possible implications to the pathogenesis of PD. Conclusions: Here, we demonstrated that SIAH-1 ubiquitinates and promotes the degradation of PINK1. In addition, SIAH-1 represents now a target that may help the improvement of mitophagy in PD. Further investigations needed to understand how mitophagy is regulated by PINK1-SIAH-1 axis to provide targets for future therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PD" title="PD">PD</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson's disease"> Parkinson's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=PINK1" title=" PINK1"> PINK1</a>, <a href="https://publications.waset.org/abstracts/search?q=PTEN-induced%20kinase1" title=" PTEN-induced kinase1"> PTEN-induced kinase1</a>, <a href="https://publications.waset.org/abstracts/search?q=SIAH" title=" SIAH"> SIAH</a>, <a href="https://publications.waset.org/abstracts/search?q=seven%20in%20absentia%20homolog" title=" seven in absentia homolog"> seven in absentia homolog</a>, <a href="https://publications.waset.org/abstracts/search?q=SN" title=" SN"> SN</a>, <a href="https://publications.waset.org/abstracts/search?q=substantia%20nigra" title=" substantia nigra"> substantia nigra</a> </p> <a href="https://publications.waset.org/abstracts/110954/the-effect-of-siah1-on-pink1-homeostasis-in-parkinson-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The World View of Tere Liye in Negeri Para Bedebah an Analysis of Genetic Structuralism Lucien Goldmann</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fadli%20Muslimin">Muhammad Fadli Muslimin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Negeri Para Bedebah is known as one of the works of Tere Liye, an Indonesia author. In the literary works, the fiction as always tries to reflect the reality of the society where the author or the social groups lived in. The essential or nature of society is generally a reality while literary work is fiction and both of them are social fact. Negeri Para Bedebah is a novel fiction which is a social fact and which holds an important role in reality. It is more likely as the representation of social, economy and politic aspects in Indonesia. The purpose of this study is to reveal the world view of Tere Liye throughout novel Negeri Para Bedebah. By analyzing the object using genetic structuralism Lucien Goldmann which chiefly focuses on world view, it is stated that the literary work is an structure and it has homology with the structure in society. The structure of literary work is not chiefly homolog to the structure of society but homolog to the world view which is growing and developing inside the society. The methodological research used in this paper is a dialectic method which focuses on the starting and ending points lied in the literary text by paying attention to the coherent meanings. The result of this study is that Tere Liye shows us his world view about the structure of the society where he is living in, but one is an imaginative form of the world and the homology to the reality itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homology" title="homology">homology</a>, <a href="https://publications.waset.org/abstracts/search?q=literary%20work" title=" literary work"> literary work</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20view" title=" world view"> world view</a> </p> <a href="https://publications.waset.org/abstracts/78926/the-world-view-of-tere-liye-in-negeri-para-bedebah-an-analysis-of-genetic-structuralism-lucien-goldmann" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Loss of Function of Only One of Two CPR5 Paralogs Causes Resistance Against Rice Yellow Mottle Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yugander%20Arra">Yugander Arra</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Auguy"> Florence Auguy</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Stiebner"> Melissa Stiebner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Ch%C3%A9ron"> Sophie Chéron</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20M.%20Wudick"> Michael M. Wudick</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Schepler-Luu"> Van Schepler-Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Cunnac"> Sébastien Cunnac</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolf%20B.%20Frommer"> Wolf B. Frommer</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Albar"> Laurence Albar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice yellow mottle virus (RYMV) is one of the most important diseases affecting rice in Africa. The most promising strategy to reduce yield losses is the use of highly resistant varieties. The resistance gene RYMV2 is homolog of the Arabidopsis constitutive expression of pathogenesis related protein-5 (AtCPR5) nucleoporin gene. Resistance alleles are originating from African cultivated rice Oryza glaberrima, rarely cultivated, and are characterized by frameshifts or early stop codons, leading to a non-functional or truncated protein. Rice possesses two paralogs of CPR5 and function of these genes are unclear. Here, we evaluated the role of the two rice candidate nucleoporin paralogs OsCPR5.1 (pathogenesis-related gene 5; RYMV2) and OsCPR5.2 by CRISPR/Cas9 genome editing. Despite striking sequence and structural similarity, only loss-of-function of OsCPR5.1 led to full resistance, while loss-of-function oscpr5.2 mutants remained susceptible. Short N-terminal deletions in OsCPR5.1 also did not lead to resistance. In contrast to Atcpr5 mutants, neither OsCPR5.1 nor OsCPR5.2 knock out mutants showed substantial growth defects. Taken together, the candidate nucleoporin OsCPR5.1, but not its close homolog OsCPR5.2, plays a specific role for the susceptibility to RYMV, possibly by impairing the import of viral RNA or protein into the nucleus. Whereas gene introgression from O. glaberrima to high yielding O. sativa varieties is impaired by strong sterility barriers and the negative impact of linkage drag, genome editing of OsCPR5.1, while maintaining OsCPR5.2 activity, thus provides a promising strategy to generate O. sativa elite lines that are resistant to RYMV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%20Cas9" title="CRISPR Cas9">CRISPR Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20editing" title=" genome editing"> genome editing</a>, <a href="https://publications.waset.org/abstracts/search?q=knock%20out%20mutant" title=" knock out mutant"> knock out mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=recessive%20resistance" title=" recessive resistance"> recessive resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20yellow%20mottle%20virus" title=" rice yellow mottle virus"> rice yellow mottle virus</a> </p> <a href="https://publications.waset.org/abstracts/155739/loss-of-function-of-only-one-of-two-cpr5-paralogs-causes-resistance-against-rice-yellow-mottle-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Tyletc">M. I. Tyletc</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Podgornya"> O. I. Podgornya</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Shaposhnikova"> T. G. Shaposhnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Shabelnikov"> S. V. Shabelnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Mittenberg"> A. G. Mittenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Daugavet"> M. A. Daugavet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ascidian" title="ascidian">ascidian</a>, <a href="https://publications.waset.org/abstracts/search?q=p48" title=" p48"> p48</a>, <a href="https://publications.waset.org/abstracts/search?q=thrombospondin" title=" thrombospondin"> thrombospondin</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase" title=" tyrosinase"> tyrosinase</a>, <a href="https://publications.waset.org/abstracts/search?q=tunic" title=" tunic"> tunic</a>, <a href="https://publications.waset.org/abstracts/search?q=tunning" title=" tunning"> tunning</a> </p> <a href="https://publications.waset.org/abstracts/113974/ascidian-styela-rustica-proteins-structural-domains-predicted-to-participate-in-the-tunic-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> miR-200c as a Biomarker for 5-FU Chemosensitivity in Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezvan%20Najafi">Rezvan Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Korosh%20Heydari"> Korosh Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Massoud%20Saidijam"> Massoud Saidijam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> 5-FU is a chemotherapeutic agent that has been used in colorectal cancer (CRC) treatment. However, it is usually associated with the acquired resistance, which decreases the therapeutic effects of 5-FU. miR-200c is involved in chemotherapeutic drug resistance, but its mechanism is not fully understood. In this study, the effect of inhibition of miR-200c in sensitivity of HCT-116 CRC cells to 5-FU was evaluated. HCT-116 cells were transfected with LNA-anti- miR-200c for 48 h. mRNA expression of miR-200c was evaluated using quantitative real- time PCR. The protein expression of phosphatase and tensin homolog (PTEN) and E-cadherin were analyzed by western blotting. Annexin V and propidium iodide staining assay were applied for <em>apoptosis detection. </em>The caspase-3 activation was evaluated by an enzymatic assay. The results showed LNA-anti-miR-200c inhibited the expression of PTEN and E-cadherin protein, apoptosis and activation of caspase 3 compared with control cells. In conclusion, these results suggest that miR-200c as a prognostic marker can overcome to 5-FU chemoresistance in CRC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=miR-200c" title=" miR-200c"> miR-200c</a>, <a href="https://publications.waset.org/abstracts/search?q=5-FU%20resistance" title=" 5-FU resistance"> 5-FU resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=E-cadherin" title=" E-cadherin"> E-cadherin</a>, <a href="https://publications.waset.org/abstracts/search?q=PTEN" title=" PTEN"> PTEN</a> </p> <a href="https://publications.waset.org/abstracts/83847/mir-200c-as-a-biomarker-for-5-fu-chemosensitivity-in-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Musaweer%20Habib">Abdul Musaweer Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Habibul%20Hasan%20Mazumder"> Habibul Hasan Mazumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Islam"> Saiful Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohel%20Sikder"> Sohel Sikder</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Faruk%20Sikder"> Omar Faruk Sikder </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20target" title=" drug target"> drug target</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusobacterium%20nucleatum" title=" Fusobacterium nucleatum"> Fusobacterium nucleatum</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a> </p> <a href="https://publications.waset.org/abstracts/16273/mining-the-proteome-of-fusobacterium-nucleatum-for-potential-therapeutics-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Role of Glutamine-Rich Region of Candida Albicans Tec1p in Mediating Morphological Transition and Invasive Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Abu%20Rayyan">W. Abu Rayyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Singh"> A. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Al-Jaafreh"> A. M. Al-Jaafreh</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Abu%20Dayyih"> W. Abu Dayyih</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bustami"> M. Bustami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Salem"> S. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Seder"> N. Seder</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Schr%C3%B6ppel"> K. Schröppel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyphal growth and the transcriptional regulation to the host environment are key issues during the pathogenesis of C. albicans. Tec1p is the C. albicans homolog of a TEA transcription factor family, which share a conserved DNA-binding TEA domain in their N-terminal. In order to define a structure-function relationship of the C. albicans Tec1p protein, we constructed several mutations on the N terminal, C terminal or in the TEA binding domain itself by homologous recombination technology. The modifications in the open reading frame of TEC1 were tested for reconstitution of the morphogenetic development of the tec1/tec1 mutant strain CaAS12. Mutation in the TEA consensus sequence did not confer transition to hyphae whereas the reconstitution of the full-length Tec1p has reconstituted hyphal development. A deletion in one of glutamine-rich regions either in the Tec1p N-terminal or the C-terminal in regions of 53-212 or 637–744 aa, respectively, did not restore morphological development in mutant CaAS12 strain. Whereas, the reconstitution with Tec1p mutants other than the glutamate-rich region has restored the morphogenetic switch. Additionally, the deletion of the glutamine-rich region has attenuated the invasive growth and the heat shock resistance of C. albicans. In conclusion, we show that a glutamine-rich region of Tec1p is essential for the hyphal development and mediating adaptation to the host environment of C. albicans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Candida%20albicans" title="Candida albicans">Candida albicans</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenetic%20development" title=" morphogenetic development"> morphogenetic development</a>, <a href="https://publications.waset.org/abstracts/search?q=TEA%20domain" title=" TEA domain"> TEA domain</a>, <a href="https://publications.waset.org/abstracts/search?q=hyphal%20formation" title=" hyphal formation"> hyphal formation</a>, <a href="https://publications.waset.org/abstracts/search?q=TEC1" title=" TEC1"> TEC1</a> </p> <a href="https://publications.waset.org/abstracts/100003/the-role-of-glutamine-rich-region-of-candida-albicans-tec1p-in-mediating-morphological-transition-and-invasive-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Glioblastoma: Prognostic Value of Clinical, Histopathological and Immunohistochemical (p53, EGFR, VEGF, MDM2, Ki67) Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Chaturvedi">Sujata Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishita%20Pant"> Ishita Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar%20Jha"> Deepak Kumar Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Singh%20Gautam"> Vinod Kumar Singh Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Bhushan%20Tripathi"> Chandra Bhushan Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To describe clinical, histopathological and immunohistochemical profile of glioblastoma in patients and to correlate these findings with patient survival. Material and methods: 30 cases of histopathologically diagnosed glioblastomas were included in this study. These cases were analysed in detail for certain clinical and histopathological parameters. Immunohistochemical staining for p53, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), mouse double minute 2 homolog (MDM2) and Ki67 was done and scores were calculated. Results of these findings were correlated with patient survival. Results: A retrospective analysis of the histopathology records and clinical case files was done in 30 cases of glioblastoma (WHO grade IV). The mean age of presentation was 50.6 years with a male predilection. The most common involved site was the frontal lobe. Amongst the clinical parameters, age of the patient and extent of surgical resection showed a significant correlation with the patient survival. Histopathological parameters showed no significant correlation with the patient survival, while amongst the immunohistochemical parameters expression of MDM2 showed a significant correlation with the patient survival. Conclusion: In this study incorporating clinical, histopathological and basic panel of immunohistochemistry, age of the patient, extent of the surgical resection and expression of MDM2 showed significant correlation with the patient survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title="glioblastoma">glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=p53" title=" p53"> p53</a>, <a href="https://publications.waset.org/abstracts/search?q=EGFR" title=" EGFR"> EGFR</a>, <a href="https://publications.waset.org/abstracts/search?q=VEGF" title=" VEGF"> VEGF</a>, <a href="https://publications.waset.org/abstracts/search?q=MDM2" title=" MDM2"> MDM2</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki67" title=" Ki67"> Ki67</a> </p> <a href="https://publications.waset.org/abstracts/79064/glioblastoma-prognostic-value-of-clinical-histopathological-and-immunohistochemical-p53-egfr-vegf-mdm2-ki67-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> SIRT1 Gene Polymorphisms and Its Protein Level in Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olfat%20Shaker">Olfat Shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Wadie"> Miriam Wadie</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20Ali"> Reham Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Yosry"> Ayman Yosry </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer (CRC) is a major cause of mortality and morbidity and accounts for over 9% of cancer incidence worldwide. Silent information regulator 2 homolog 1 (SIRT1) gene is located in the nucleus and exert its effects via modulation of histone and non-histone targets. They function in the cell via histone deacetylase (HDAC) and/or adenosine diphosphate ribosyl transferase (ADPRT) enzymatic activity. The aim of this work was to study the relationship between SIRT1 polymorphism and its protein level in colorectal cancer patients in comparison to control cases. This study includes 2 groups: thirty healthy subjects (control group) & one hundred CRC patients. All subjects were subjected to: SIRT-1 serum level was measured by ELISA and gene polymorphisms of rs12778366, rs375891 and rs3740051 were detected by real time PCR. For CRC patients clinical data were collected (size, site of tumor as well as its grading, obesity) CRC patients showed high significant increase in the mean level of serum SIRT-1 compared to control group (P<0.001). Mean serum level of SIRT-1 showed high significant increase in patients with tumor size ≥5 compared to the size < 5 cm (P<0.05). In CRC patients, percentage of T allele of rs12778366 was significantly lower than controls, CC genotype and C allele C of rs 375891 were significantly higher than control group. In CRC patients, the CC genotype of rs12778366, was 75% in rectosigmoid and 25% in cecum & ascending colon. According to tumor size, the percentage of CC genotype was 87.5% in tumor size ≥5 cm. Conclusion: serum level of SIRT-1 and T allele, C allele of rs12778366 and rs 375891 respectively can be used as diagnostic markers for CRC patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRC" title="CRC">CRC</a>, <a href="https://publications.waset.org/abstracts/search?q=SIRT1" title=" SIRT1"> SIRT1</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphisms" title=" polymorphisms"> polymorphisms</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a> </p> <a href="https://publications.waset.org/abstracts/53267/sirt1-gene-polymorphisms-and-its-protein-level-in-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Allele Mining for Rice Sheath Blight Resistance by Whole-Genome Association Mapping in a Tail-End Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Yamamoto">Naoki Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidenobu%20Ozaki"> Hidenobu Ozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiichiro%20Ookawa"> Taiichiro Ookawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Youming%20Liu"> Youming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazunori%20Okada"> Kazunori Okada</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiping%20Zheng"> Aiping Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice sheath blight is one of the destructive fungal diseases in rice. We have thought that rice sheath blight resistance is a polygenic trait. Host-pathogen interactions and secondary metabolites such as lignin and phytoalexins are likely to be involved in defense against R. solani. However, to our knowledge, it is still unknown how sheath blight resistance can be enhanced in rice breeding. To seek for an alternative genetic factor that contribute to sheath blight resistance, we mined relevant allelic variations from rice core collections created in Japan. Based on disease lesion length on detached leaf sheath, we selected 30 varieties of the top tail-end and the bottom tail-end, respectively, from the core collections to perform genome-wide association mapping. Re-sequencing reads for these varieties were used for calling single nucleotide polymorphisms among the 60 varieties to create a SNP panel, which contained 1,137,131 homozygous variant sites after filitering. Association mapping highlighted a locus on the long arm of chromosome 11, which is co-localized with three sheath blight QTLs, qShB11-2-TX, qShB11, and qSBR-11-2. Based on the localization of the trait-associated alleles, we identified an ankyryn repeat-containing protein gene (ANK-M) as an uncharacterized candidate factor for rice sheath blight resistance. Allelic distributions for ANK-M in the whole rice population supported the reliability of trait-allele associations. Gene expression characteristics were checked to evaluiate the functionality of ANK-M. Since an ANK-M homolog (OsPIANK1) in rice seems a basal defense regulator against rice blast and bacterial leaf blight, ANK-M may also play a role in the rice immune system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allele%20mining" title="allele mining">allele mining</a>, <a href="https://publications.waset.org/abstracts/search?q=GWAS" title=" GWAS"> GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=QTL" title=" QTL"> QTL</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20sheath%20blight" title=" rice sheath blight"> rice sheath blight</a> </p> <a href="https://publications.waset.org/abstracts/163885/allele-mining-for-rice-sheath-blight-resistance-by-whole-genome-association-mapping-in-a-tail-end-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enjie%20Xu">Enjie Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Huang"> Zhen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunpeng%20Zhu"> Kunpeng Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianping%20Hu"> Jianping Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Ma"> Xiaolong Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjie%20Wang"> Yongjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazhuang%20Zhu"> Jiazhuang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunlin%20Zhang"> Chunlin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteosarcoma" title="osteosarcoma">osteosarcoma</a>, <a href="https://publications.waset.org/abstracts/search?q=dedifferentiation" title=" dedifferentiation"> dedifferentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytoskeleton%20rearrangement" title=" cytoskeleton rearrangement"> cytoskeleton rearrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=PDGFRB" title=" PDGFRB"> PDGFRB</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title=" hypoxia"> hypoxia</a> </p> <a href="https://publications.waset.org/abstracts/184648/research-on-the-role-of-platelet-derived-growth-factor-receptor-beta-in-promoting-dedifferentiation-and-pulmonary-metastasis-of-osteosarcoma-under-hypoxic-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Subcellular Localisation of EhRRP6 and Its Involvement in Pre-Ribosomal RNA Processing in Growth-Stressed Entamoeba histolytica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Singh">S. S. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhattacharya"> A. Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharya"> S. Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The eukaryotic exosome complex plays a pivotal role in RNA biogenesis, maturation, surveillance and differential expression of various RNAs in response to varying environmental signals. The exosome is composed of evolutionary conserved nine core subunits and the associated exonucleases Rrp6 and Rrp44. Rrp6p is crucial for the processing of rRNAs, other non-coding RNAs, regulation of polyA tail length and termination of transcription. Rrp6p, a 3’-5’ exonuclease is required for degradation of 5’-external transcribed spacer (ETS) released from the rRNA precursors during the early steps of pre-rRNA processing. In the parasitic protist Entamoeba histolytica in response to growth stress, there occurs the accumulation of unprocessed pre-rRNA and 5’ ETS sub fragment. To understand the processes leading to this accumulation, we looked for Rrp6 and the exosome subunits in E. histolytica, by in silico approaches. Of the nine core exosomal subunits, seven had high percentage of sequence similarity with the yeast and human. The EhRrp6 homolog contained exoribonuclease and HRDC domains like yeast but its N- terminus lacked the PMC2NT domain. EhRrp6 complemented the temperature sensitive phenotype of yeast rrp6Δ cells suggesting conservation of biological activity. We showed 3’-5’ exoribonuclease activity of EhRrp6p with in vitro-synthesized appropriate RNAs substrates. Like the yeast enzyme, EhRrp6p degraded unstructured RNA, but could degrade the stem-loops slowly. Furthermore, immunolocalization revealed that EhRrp6 was nuclear-localized in normal cells but was diminished from nucleus during serum starvation, which could explain the accumulation of 5’ETS during stress. Our study shows functional conservation of EhRrp6p in E.histolytica, an early-branching eukaryote, and will help to understand the evolution of exosomal components and their regulatory function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entamoeba%20histolytica" title="entamoeba histolytica">entamoeba histolytica</a>, <a href="https://publications.waset.org/abstracts/search?q=exosome%20complex" title=" exosome complex"> exosome complex</a>, <a href="https://publications.waset.org/abstracts/search?q=rRNA%20processing" title=" rRNA processing"> rRNA processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Rrp6" title=" Rrp6"> Rrp6</a> </p> <a href="https://publications.waset.org/abstracts/55711/the-subcellular-localisation-of-ehrrp6-and-its-involvement-in-pre-ribosomal-rna-processing-in-growth-stressed-entamoeba-histolytica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Reshma%20Reghu">S. Reshma Reghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiburaj%20Sugathan"> Shiburaj Sugathan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Nandu"> T. G. Nandu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Ramesh%20Kumar"> K. B. Ramesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Dan"> Mathew Dan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=FtsZ" title=" FtsZ"> FtsZ</a>, <a href="https://publications.waset.org/abstracts/search?q=zingiberaceae" title=" zingiberaceae"> zingiberaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/22546/zingiberaceous-plants-as-a-source-of-anti-bacterial-activity-targeting-bacterial-cell-division-protein-ftsz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Germline Mutations of Mitogen-Activated Protein Kinases Pathway Signaling Pathway Genes in Children </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouha%20Bouayed%20Abdelmoula">Nouha Bouayed Abdelmoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Rim%20Louati"> Rim Louati</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawel%20Abdellaoui"> Nawel Abdellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Balkiss%20Abdelmoula"> Balkiss Abdelmoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Oldez%20Kaabi"> Oldez Kaabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Smaoui"> Walid Smaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Aloulou"> Samir Aloulou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: Cardiofaciocutaneous syndrome (CFC) is an autosomal dominant disorder with the vast majority of cases arising by a new mutation of BRAF, MEK1, MEK2, or rarely, KRAS genes. Here, we report a rare Tunisian case of CFC syndrome for whom we identify SOS1 mutation. Methods: Genomic DNA was obtained from peripheral blood collected in an EDTA tube and extracted from leukocytes using the phenol/chloroform method according to standard protocols. High resolution melting (HRM) analysis for screening of mutations in the entire coding sequence of PTPN11 was conducted first. Then, HRM assays to look for hot spot mutations coding regions of the other genes of the RAS-MAPK pathway (RAt Sarcoma viral oncogene homolog Mitogen-Activated Protein Kinases Pathway): SOS1, SHOC2, KRAS, RAF1, KRAS, NRAS, CBL, BRAF, MEK1, MEK2, HRAS, and RIT1, were applied. Results: Heterozygous SOS1 point mutation clustered in exon 10, which encodes for the PH domain of SOS1, was identified: c.1655 G > A. The patient was a 9-year-old female born from a consanguineous couple. She exhibited pulmonic valvular stenosis as congenital heart disease. She had facial features and other malformations of Noonan syndrome, including macrocephaly, hypertelorism, ptosis, downslanting palpebral fissures, sparse eyebrows, a short and broad nose with upturned tip, low-set ears, high forehead commonly associated with bitemporal narrowing and prominent supraorbital ridges, short and/or webbed neck and short stature. However, the phenotype is also suggestive of CFC syndrome with the presence of more severe ectodermal abnormalities, including curly hair, keloid scars, hyperkeratotic skin, deep plantar creases, and delayed permanent dentition with agenesis of the right maxillary first molar. Moreover, the familial history of the patient revealed recurrent brain malignancies in the paternal family and epileptic disease in the maternal family. Conclusions: This case report of an overlapping RASopathy associated with SOS1 mutation and familial history of brain tumorigenesis is exceptional. The evidence suggests that RASopathies are truly cancer-prone syndromes, but the magnitude of the cancer risk and the types of cancer partially overlap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiofaciocutaneous%20syndrome" title="cardiofaciocutaneous syndrome">cardiofaciocutaneous syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=CFC" title=" CFC"> CFC</a>, <a href="https://publications.waset.org/abstracts/search?q=SOS1" title=" SOS1"> SOS1</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20cancer" title=" brain cancer"> brain cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=germline%20mutation" title=" germline mutation"> germline mutation</a> </p> <a href="https://publications.waset.org/abstracts/130469/germline-mutations-of-mitogen-activated-protein-kinases-pathway-signaling-pathway-genes-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahaba%20Marima">Rahaba Marima</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20Penny"> Clement Penny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-cycle" title="cell-cycle">cell-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title=" DNA damage response"> DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=Efavirenz" title=" Efavirenz"> Efavirenz</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer "> lung cancer </a> </p> <a href="https://publications.waset.org/abstracts/106125/profiling-of-the-cell-cycle-related-genes-in-response-to-efavirenz-a-non-nucleoside-reverse-transcriptase-inhibitor-in-human-lung-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Farasat">Iman Farasat</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20M.%20Salis"> Howard M. Salis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title="transcription factor">transcription factor</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20biology" title=" synthetic biology"> synthetic biology</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20circuit" title=" genetic circuit"> genetic circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysical%20model" title=" biophysical model"> biophysical model</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20energy%20measurement" title=" binding energy measurement"> binding energy measurement</a> </p> <a href="https://publications.waset.org/abstracts/13748/single-pass-design-of-genetic-circuits-using-absolute-binding-free-energy-measurements-and-dimensionless-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Non-Mammalian Pattern Recognition Receptor from Rock Bream (Oplegnathus fasciatus): Genomic Characterization and Transcriptional Profile upon Bacterial and Viral Inductions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanthrige%20Thiunuwan%20Priyathilaka">Thanthrige Thiunuwan Priyathilaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Anushka%20Sandaruwan%20Elvitigala"> Don Anushka Sandaruwan Elvitigala</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Soo%20Lim"> Bong-Soo Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Bok%20Jeong"> Hyung-Bok Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehee%20Lee"> Jehee Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toll like receptors (TLRs) are a phylogeneticaly conserved family of pattern recognition receptors, which participates in the host immune responses against various pathogens and pathogen derived mitogen. TLR21, a non-mammalian type, is almost restricted to the fish species even though those can be identified rarely in avians and amphibians. Herein, this study was carried out to identify and characterize TLR21 from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at transcriptional and genomic level. In this study, the full length cDNA and genomic sequence of RbTLR21 was identified using previously constructed cDNA sequence database and BAC library, respectively. Identified RbTLR21 sequence was characterized using several bioinformatics tools. The quantitative real time PCR (qPCR) experiment was conducted to determine tissue specific expressional distribution of RbTLR21. Further, transcriptional modulation of RbTLR21 upon the stimulation with Streptococcus iniae (S. iniae), rock bream iridovirus (RBIV) and Edwardsiella tarda (E. tarda) was analyzed in spleen tissues. The complete coding sequence of RbTLR21 was 2919 bp in length which can encode a protein consisting of 973 amino acid residues with molecular mass of 112 kDa and theoretical isoelectric point of 8.6. The anticipated protein sequence resembled a typical TLR domain architecture including C-terminal ectodomain with 16 leucine rich repeats, a transmembrane domain, cytoplasmic TIR domain and signal peptide with 23 amino acid residues. Moreover, protein folding pattern prediction of RbTLR21 exhibited well-structured and folded ectodomain, transmembrane domain and cytoplasmc TIR domain. According to the pair wise sequence analysis data, RbTLR21 showed closest homology with orange-spotted grouper (Epinephelus coioides) TLR21with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 shows a close evolutionary relationship with its ortholog from Danio rerio. Genomic structure of RbTLR21 consisted of single exon similar to its ortholog of zebra fish. Sevaral putative transcription factor binding sites were also identified in 5ʹ flanking region of RbTLR21. The RBTLR 21 was ubiquitously expressed in all the tissues we tested. Relatively, high expression levels were found in spleen, liver and blood tissues. Upon induction with rock bream iridovirus, RbTLR21 expression was upregulated at the early phase of post induction period even though RbTLR21 expression level was fluctuated at the latter phase of post induction period. Post Edwardsiella tarda injection, RbTLR transcripts were upregulated throughout the experiment. Similarly, Streptococcus iniae induction exhibited significant upregulations of RbTLR21 mRNA expression in the spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed a homolog of TLR21 family members and RbTLR21 may be involved in host immune responses against bacterial and DNA viral infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20bream" title="rock bream">rock bream</a>, <a href="https://publications.waset.org/abstracts/search?q=toll%20like%20receptor%2021%20%28TLR21%29" title=" toll like receptor 21 (TLR21)"> toll like receptor 21 (TLR21)</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition%20receptor" title=" pattern recognition receptor"> pattern recognition receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20characterization" title=" genomic characterization"> genomic characterization</a> </p> <a href="https://publications.waset.org/abstracts/8470/non-mammalian-pattern-recognition-receptor-from-rock-bream-oplegnathus-fasciatus-genomic-characterization-and-transcriptional-profile-upon-bacterial-and-viral-inductions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Efficacy of Solanum anguivi Lam Fruits (African Bitter Berry) in Lowering Glucose Levels in Diabetes Mellitus and Increasing Survival</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Musaazi%20Sebunya%20Nakitto">Aisha Musaazi Sebunya Nakitto</a>, <a href="https://publications.waset.org/abstracts/search?q=Anika%20E.%20Wagner"> Anika E. Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20B.%20Byaruhanga"> Yusuf B. Byaruhanga</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20H.%20Muyonga"> John H. Muyonga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prevalence and burden of diabetes are rapidly increasing globally, stemming from changes in lifestyle and dietary habits. Although several drugs are available to treat type 2 diabetes mellitus (T2DM), many are accompanied by several side effects and are often costly. Solanum anguivi Lam. fruits (SALF) are bitter berries that commonly grow in the wild and are traditionally cultivated by many globally as a remedy for T2DM. This effect is likely attributable to the presence of bioactive compounds such as phenolics, flavonoids, saponins, alkaloids, and vitamin C in SALF. In this study, we investigated the morphological characteristics of different SALF accessions and the effect of ripeness stages and thermal treatments on the bioactive compounds contents (BCC) and antioxidant activity (AA) of SALF accessions. Using the fruit fly Drosophila melanogaster (D. melanogaster) model, we explored the potential impact of dietary SALF in preventing and treating T2DM phenotypes. Morphological characterization was conducted based on descriptors of Solanum species. The BCC and AA of SALF at different ripeness stages (unripe, yellow, orange, and red) and after thermal treatments were determined using spectrophotometry, HPLC, and gravimetry. Male and female fruit flies were fed a high-sugar diet (HSD) to induce a T2DM-like phenotype, while control flies were fed on SY10 medium for up to 24 days. Experimental flies were exposed to HSD supplemented with 5 or 10 mg/ml SALF. The therapeutic and prevention effect of SALF in T2DM-like phenotype was investigated on weight, climbing activity, glucose and triglyceride contents, survival, and gene expression of PPARγ co-activator 1α fly homolog Srl and Drosophila insulin-like peptides. Methods in fly studies included Gustatory assay, Climbing assay, Glucose GOD-PAP assay, Triglyceride GPO-PAP assay, Roti-Quant®, and Real Time-PCR analysis. The ripeness stage significantly influenced SALF BCC and AA, and this was dependent on the accession. The unripe stage had the highest AA and total phenolics and flavonoids; the orange stage was rich in saponins, while the red stage had the highest alkaloid contents. Boiling and steaming increased the total phenolics and AA up to 4-fold and 3-fold, respectively. Drying at low temperatures resulted in higher phenolics and AA than the control. In the therapeutic model, the HSD-fed female flies exhibited elevated glucose levels, which exhibited a dose-dependent reduction upon exposure to a SALF-supplemented diet. Female flies fed on a SALF+ HSD exhibited a significant increase in survival compared to HSD-fed and control diet-fed flies. SALF supplementation did not alter the weights, fitness, and triglyceride levels of female flies in comparison with HSD-only-fed flies. The mRNA levels of Srl decreased in HSD-fed flies compared to the control-fed, with no effect observed in females exposed to HSD+SALF. Similarly, in the preventative model, the SALF diet resulted in higher survival of supplemented flies compared to controls. Consumption of boiled unripe SALF may result in the highest health benefits due to the high phenolic contents and antioxidant activity observed. Dietary intake of SALF significantly lowered glucose levels and increased survival of the D. melanogaster model. Additional studies in higher organisms are needed to explore the preventative and therapeutic potential of SALF in T2DM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20berries" title=" bitter berries"> bitter berries</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20anguivi" title=" Solanum anguivi"> Solanum anguivi</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a> </p> <a href="https://publications.waset.org/abstracts/190336/efficacy-of-solanum-anguivi-lam-fruits-african-bitter-berry-in-lowering-glucose-levels-in-diabetes-mellitus-and-increasing-survival" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>