CINXE.COM

Search results for: microbial lipids

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microbial lipids</title> <meta name="description" content="Search results for: microbial lipids"> <meta name="keywords" content="microbial lipids"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microbial lipids" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microbial lipids"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1199</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microbial lipids</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1199</span> Lipid Extraction from Microbial Cell by Electroporation Technique and Its Influence on Direct Transesterification for Biodiesel Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Yousuf">Abu Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksudur%20Rahman%20Khan"> Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahasanul%20Karim"> Ahasanul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirul%20Islam"> Amirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Minhaj%20Uddin%20Monir"> Minhaj Uddin Monir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmin%20Sultana"> Sharmin Sultana</a>, <a href="https://publications.waset.org/abstracts/search?q=Domenico%20Pirozzi"> Domenico Pirozzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional biodiesel feedstock like edible oils or plant oils, animal fats and cooking waste oil have been replaced by microbial oil in recent research of biodiesel synthesis. The well-known community of microbial oil producers includes microalgae, oleaginous yeast and seaweeds. Conventional transesterification of microbial oil to produce biodiesel is lethargic, energy consuming, cost-ineffective and environmentally unhealthy. This process follows several steps such as microbial biomass drying, cell disruption, oil extraction, solvent recovery, oil separation and transesterification. Therefore, direct transesterification of biodiesel synthesis has been studying for last few years. It combines all the steps in a single reactor and it eliminates the steps of biomass drying, oil extraction and separation from solvent. Apparently, it seems to be cost-effective and faster process but number of difficulties need to be solved to make it large scale applicable. The main challenges are microbial cell disruption in bulk volume and make faster the esterification reaction, because water contents of the medium sluggish the reaction rate. Several methods have been proposed but none of them is up to the level to implement in large scale. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy. Electroporation technique results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. Electroporation is required to alter the size and structure of the cells to increase their porosity as well as to disrupt the microbial cell walls within few seconds to leak out the intracellular lipid to the solution. Therefore, incorporation of electroporation techniques contributed in direct transesterification of microbial lipids by increasing the efficiency of biodiesel production rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=electroporation" title=" electroporation"> electroporation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20lipids" title=" microbial lipids"> microbial lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/58319/lipid-extraction-from-microbial-cell-by-electroporation-technique-and-its-influence-on-direct-transesterification-for-biodiesel-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> Production of Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus through the Biocatalysis of Vegetable Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hak-Ryul%20Kim">Hak-Ryul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Geun%20Lee"> Hyung-Geun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Long"> Qi Long</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching%20Hou"> Ching Hou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural modification of natural lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids leading to formation of oxylipin is one of those modifications. Hydroxy fatty acids, one of those oxylipins have gained important attentions because of their structural and functional properties compared with other non-hydroxy fatty acids. Recently 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from lipid-containing oleic acid by microbial conversion, and the further study confirmed that DOD contained strong antimicrobial activities against a broad range of microorganisms. In this study, we tried to modify DOD molecules by the enzymatic or physical reaction to create new functionality or to enhance the antimicrobial activity of DOD. After modification of DOD molecules by different ways, we confirmed that the antimicrobial activity of DOD was highly enhanced and presented strong antimicrobial activities against multidrug-resistant Staphylococcus aureus, suggesting that DOD and its derivatives can be used as efficient antimicrobial agents for medical and industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title=" antimicrobial agent"> antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug-resistant%20bacteria" title=" multidrug-resistant bacteria"> multidrug-resistant bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/75239/production-of-antimicrobial-agents-against-multidrug-resistant-staphylococcus-aureus-through-the-biocatalysis-of-vegetable-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1197</span> Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20Girish">T. N. Girish</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20E.%20Pradeep"> B. E. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Parkash"> Ravi Parkash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20or%20humidity%20acclimation" title="heat or humidity acclimation">heat or humidity acclimation</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20changes%20in%20body%20lipids%20and%20starvation%20resistance" title=" plastic changes in body lipids and starvation resistance"> plastic changes in body lipids and starvation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20drosophilid" title=" tropical drosophilid"> tropical drosophilid</a>, <a href="https://publications.waset.org/abstracts/search?q=Wet-%20or%20Dry%20seasons" title=" Wet- or Dry seasons"> Wet- or Dry seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaprionus%20indianus" title=" Zaprionus indianus"> Zaprionus indianus</a> </p> <a href="https://publications.waset.org/abstracts/89400/heat-and-humidity-induced-plastic-changes-in-body-lipids-and-starvation-resistance-in-the-tropical-zaprionus-indianus-of-wet-dry-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1196</span> Influence of Culturing Conditions on Biomass Yield, Total Lipid and Fatty Acid Composition of Some Filamentous Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alla%20V.%20Goncharova">Alla V. Goncharova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Karpenyuk"> Tatyana A. Karpenyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yana%20S.%20Tsurkan"> Yana S. Tsurkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20U.%20Beisembaeva"> Rosa U. Beisembaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Togzhan%20D.%20Mukasheva"> Togzhan D. Mukasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20V.%20Ignatova"> Ludmila V. Ignatova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramza%20Z.%20Berzhanova"> Ramza Z. Berzhanova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the effect of culturing conditions of filamentous fungi Penicillium raistrickii, Penicillium anatolicum, Fusarium sp. on biomass yield, the content of total lipids and fatty acids was studied. It has been established that in time the process of lipids accumulation correlated with biomass growth of cultures, reaching maximum values in stationary growth phase. Biomass yield and accumulation of general lipids was increased by adding zinc to the culture medium. The more intensive accumulation of biomass and general lipids was observed at temperature 18°C. Lowering the temperature of culturing has changed the ratio of saturated: Unsaturated fatty acids in the direction of increasing the latter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=culturing%20conditions" title=" culturing conditions"> culturing conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids%20%28FA%29" title=" fatty acids (FA)"> fatty acids (FA)</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20dynamics" title=" growth dynamics"> growth dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a> </p> <a href="https://publications.waset.org/abstracts/10193/influence-of-culturing-conditions-on-biomass-yield-total-lipid-and-fatty-acid-composition-of-some-filamentous-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1195</span> Dietary Magnesium, Lipids, and Hypertension: New Insights and Unsolved Mysteries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Pello">Elena Pello</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Bobak"> Martin Bobak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Nikitin"> Yuri Nikitin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In current issue we evaluated integration of magnesium with lipids; the attractive findings were obtained in men and women; the crucial ties of magnesium with total cholesterol in hypertensive men, with total cholesterol in concordance with low-density lipoprotein cholesterol in hypertensive women were disclosed; unanswered questions were trapped, difficulties were surmounted, and magnesium deficiency perseverance in pathogenesis of cardiovascular disease development was expressed; nutrients as well as risk factors may contribute to cardiovascular complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary" title="dietary">dietary</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a> </p> <a href="https://publications.waset.org/abstracts/29919/dietary-magnesium-lipids-and-hypertension-new-insights-and-unsolved-mysteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1194</span> Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Devi%20Kyatham">Rama Devi Kyatham</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ashok"> D. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20K.%20Rao%20Patnaik"> K. S. K. Rao Patnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Bathula"> Raju Bathula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrazoles" title="pyrazoles">pyrazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20microbial%20strains" title=" resistant microbial strains"> resistant microbial strains</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activities" title=" anti-microbial activities"> anti-microbial activities</a> </p> <a href="https://publications.waset.org/abstracts/123881/synthesis-characterization-validation-of-resistant-microbial-strains-and-anti-microbrial-activity-of-substitted-pyrazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1193</span> Wet Extraction of Lutein and Lipids from Microalga by Quantitative Determination of Polarity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengyue%20Gong">Mengyue Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyi%20Li"> Xinyi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Amarjeet%20Bassi"> Amarjeet Bassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harvesting by-products while recovering biodiesel is considered a potentially valuable approach to increase the market feasibility of microalgae industry. Lutein is a possible by-product from microalgae that promotes eye health. The extraction efficiency and the expensive drying process of wet algae represent the major challenges for the utilization of microalgae biomass as a feedstock for lipids, proteins, and carotenoids. A wet extraction method was developed to extract lipids and lutein from microalga Chlorella vulgaris. To evaluate different solvent (mixtures) for the extraction, a quantitative analysis was established based on the polarity of solvents using Nile Red as the polarity (ETN) indicator. By the choice of binary solvent system then adding proper amount of water to achieve phase separation, lipids and lutein can be extracted simultaneously. Some other parameters for lipids and lutein production were also studied including saponification time, temperature, choice of alkali, and pre-treatment methods. The extraction efficiency with wet algae was compared with dried algae and shown better pigment recovery. The results indicated that the product pattern in each extracted phase was polarity dependent. Lutein and β-carotene were the main carotenoids extracted with ethanol while lipids come out with hexane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20vulgaris" title=" Chlorella vulgaris"> Chlorella vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lutein" title=" lutein"> lutein</a> </p> <a href="https://publications.waset.org/abstracts/56710/wet-extraction-of-lutein-and-lipids-from-microalga-by-quantitative-determination-of-polarity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1192</span> LIFirr with an Indicator of Microbial Activity in Paraffinic Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Casiraghi">M. P. Casiraghi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Quintella"> C. M. Quintella</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Almeida"> P. Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paraffinic oils were submitted to microbial action. The microorganisms consisted of bacteria of the genera Pseudomonas sp and Bacillus lincheniforms. The alterations in interfacial tension were determined using a tensometer and applying the hanging drop technique at room temperature (299 K ±275 K). The alteration in the constitution of the paraffins was evaluated by means of gas chromatography. The microbial activity was observed to reduce interfacial tension by 54 to 78%, as well as consuming the paraffins C19 to C29 and producing paraffins C36 to C44. The LIFirr technique made it possible to determine the microbial action quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraffins" title="paraffins">paraffins</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=LIFirr" title=" LIFirr"> LIFirr</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a> </p> <a href="https://publications.waset.org/abstracts/20489/lifirr-with-an-indicator-of-microbial-activity-in-paraffinic-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1191</span> Comparative Study on Productivity, Chemical Composition and Yield Quality of Some Alternative Crops in Romanian Organic Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Toader">Maria Toader</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Valentin%20Roman"> Gheorghe Valentin Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Alina%20Maria%20Ionescu"> Alina Maria Ionescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crops diversity and maintaining and enhancing the fertility of agricultural lands are basic principles of organic farming. With a wider range of crops in agroecosystem can improve the ability to control weeds, pests and diseases, and the performance of crops rotation and food safety. In this sense, the main objective of the research was to study the productivity and chemical composition of some alternative crops and their adaptability to soil and climatic conditions of the agricultural area in Southern Romania and to cultivation in the organic farming system. The alternative crops were: lentil (7 genotypes); five species of grain legumes (5 genotypes); four species of oil crops (5 genotypes). The seed production was, on average: 1343 kg/ha of lentil; 2500 kg/ha of field beans; 2400 kg/ha of chick peas and blackeyed peas; more than 2000 kg/ha of atzuki beans, over 1250 kg/ha of fenugreek; 2200 kg/ha of safflower; 570 kg/ha of oil pumpkin; 2150 kg/ha of oil flax; 1518 kg/ha of camelina. Regarding chemical composition, lentil seeds contained: 22.18% proteins, 3.03% lipids, 33.29% glucides, 4.00% minerals, and 259.97 kcal energy values. For field beans: 21.50% proteins, 4.40% lipids, 63.90% glucides, 5.85% minerals, 395.36 kcal energetic value. For chick peas: 21.23% proteins, 4.55% lipids, 53.00% glucides, 3.67% minerals, 348.22 kcal energetic value. For blackeyed peas: 23.30% proteins, 2.10% lipids, 68.10% glucides, 3.93% minerals, 350.14 kcal energetic value. For adzuki beans: 21.90% proteins, 2.60% lipids, 69.30% glucides, 4.10% minerals, 402.48 kcal energetic value. For fenugreek: 21.30% proteins, 4.65% lipids, 63.83% glucides, 5.69% minerals, 396.54 kcal energetic value. For safflower: 12.60% proteins, 28.37% lipids, 46.41% glucides, 3.60% minerals, 505.78 kcal energetic value. For camelina: 20.29% proteins, 31.68% lipids, 36.28% glucides, 4.29% minerals, 526.63 kcal energetic value. For oil pumpkin: 29.50% proteins, 36.92% lipids, 18.50% glucides, 5.41% minerals, 540.15 kcal energetic value. For oil flax: 22.56% proteins, 34.10% lipids, 27.73% glucides, 5.25% minerals, 558.45 kcal energetic value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptability" title="adaptability">adaptability</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20crops" title=" alternative crops"> alternative crops</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20farming%20productivity" title=" organic farming productivity"> organic farming productivity</a> </p> <a href="https://publications.waset.org/abstracts/28059/comparative-study-on-productivity-chemical-composition-and-yield-quality-of-some-alternative-crops-in-romanian-organic-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1190</span> Effect of High Pressure Treatment on the Microbial Contamination and on Some Chemical and Physical Properties of Minced Chicken </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddig%20H.%20Hamad">Siddig H. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20M.%20Al-Eid"> Salah M. Al-Eid</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20M.%20Al-Jassas"> Fahad M. Al-Jassas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite samples of minced chicken were vacuum-packaged and pressure treated at 300, 400, 450 and 500 MPa in a Stansted 'FOOD-LAB' model S-FL-850-9-W high hydrostatic pressure research apparatus (Stansted Fluid Power Ltd., Stansted, UK). Treated and untreated samples were then stored at 3°C, and microbial content as well as some chemical and physical properties monitored. The microbial load of the untreated samples reached the spoilage level of 107 cfu/g in about one week, resulting in bad smell and dark brown color. The pressure treatments reduced total bacterial counts by about 1.8 to 3.2 log10 cycles and reduced counts of Enterobacteriaceae and Salmonella to non-detectable levels. The color of meat was slightly affected, but pH, moisture content and the oxidation products of lipids were not substantially changed. The treatment killed mainly gram negative bacteria but also caused sub-lethal injury to part of the population resulting in prolonged lag phase. The population not killed by the 350 to 450 MPa treatments grew relatively slowly during storage, and its loads reached spoilage level in 4 to 6 weeks, while the load of the population treated at 500 MPa did not reach this level till the end of a storage period of 9 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken" title="chicken">chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20storage" title=" cold storage"> cold storage</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20spoilage" title=" microbial spoilage"> microbial spoilage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20hydrostatic%20pressure" title=" high hydrostatic pressure "> high hydrostatic pressure </a> </p> <a href="https://publications.waset.org/abstracts/53314/effect-of-high-pressure-treatment-on-the-microbial-contamination-and-on-some-chemical-and-physical-properties-of-minced-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1189</span> Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20A.%20El-Serehy">Hamed A. El-Serehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Al-Rasheid"> Khaled A. Al-Rasheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A%20Al-Misned"> Fahad A Al-Misned</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=meiofauna" title=" meiofauna"> meiofauna</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20sediments" title=" intertidal sediments"> intertidal sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20Sea" title=" Red Sea"> Red Sea</a> </p> <a href="https://publications.waset.org/abstracts/28432/microbial-and-meiofaunal-dynamics-in-the-intertidal-sediments-of-the-northern-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1188</span> Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Haddad">Ahmed M. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20S.%20El-Shaal"> Hadeel S. El-Shaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadallah%20M.%20Abu-Elreesh"> Gadallah M. Abu-Elreesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=oleaginous" title=" oleaginous"> oleaginous</a> </p> <a href="https://publications.waset.org/abstracts/73658/biodiesel-production-and-heavy-metal-removal-by-aspergillus-fumigatus-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1187</span> Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Singh">J. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Dubey"> Swati Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Singh"> R. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS" title=" LC-MS"> LC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/74880/lipidomic-profiling-of-chlorella-sp-and-scenedesmus-abundans-towards-deciphering-phospholipids-and-glycolipids-under-nitrogen-limited-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1186</span> Study of the Composition of Lipids in Different Kinds of Packaged Food Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Taidirt">Zineb Taidirt</a>, <a href="https://publications.waset.org/abstracts/search?q=Fathia%20Sebahi"> Fathia Sebahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Karim%20Guarchani"> Mohamed Karim Guarchani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anissa%20Berkane"> Anissa Berkane</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Smail"> Noureddine Smail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouahiba%20Hadjoudj"> Ouahiba Hadjoudj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular diseases are one of the most important causes of death in Algeria. Several risk factors are responsible for this, including the consumption of foods containing saturated fat and trans fatty acids TFAs. This brief presents the results of a descriptive study of the lipid composition of 251 food products marketed in Algeria. The objective of the study is to describe the nature and composition of lipids and to verify the compliance of saturated and trans fatty acids intakes with the regulations. The study is based on data from the nutrition labelling of marketed food products. The results showed that the lipids in foodstuffs are diverse in nature and of varying amounts, but their nature is not specified on all products. In addition, the required content of saturated fatty acids is mentioned only in 29.48% of the products; 21.62% of them do not comply with the standard. Hydrogenation of fats, which produced Trans fatty acids, is common: 19.92% of products contain hydrogenated fats, and 74.89% may contain them according to the aspect of the lipid (solid fat). However, the trans fatty acid content is only mentioned in 5.18% of the products. The latter is above the limits set by Algerian regulations in 50% of the butter samples studied. The composition of lipids in mono- and polyunsaturated fatty acids essential for the body is insufficient: only 13.94% of the products inform their contents on their labels. It is necessary to adopt mandatory restriction of trans fatty acids, to ban the use of partially-hydrogenated oils, and to require required mandatory labeling of the TFAs and the other fatty acids on packaged foods, and to conduct more studies in order to appreciate the intake of TFAs and saturated fat and appreciate their effects on the Algerian population and to get more informed about the composition of the lipid in packaged foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20diseases" title="cardiovascular diseases">cardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20labelling" title=" nutrition labelling"> nutrition labelling</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=trans%20fatty%20acids" title=" trans fatty acids"> trans fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/130716/study-of-the-composition-of-lipids-in-different-kinds-of-packaged-food-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1185</span> Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheepshika%20Kodieswaran">Dheepshika Kodieswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20refinery%20sludge" title="petroleum refinery sludge">petroleum refinery sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culturing" title=" co-culturing"> co-culturing</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20hydrocarbons" title=" polycyclic hydrocarbons"> polycyclic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal-bacterial%20consortia" title=" microalgal-bacterial consortia"> microalgal-bacterial consortia</a> </p> <a href="https://publications.waset.org/abstracts/158365/microbial-removal-of-polycyclic-aromatic-hydrocarbons-from-petroleum-refinery-sludge-a-consortial-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1184</span> Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanifa%20Taher">Hanifa Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Al-Zuhair"> Sulaiman Al-Zuhair</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Al-Marzouqi"> Ali H. Al-Marzouqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Haik"> Yousef Haik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Farid"> Mohammed Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae is a promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. The effect of extraction variables (temperature, pressure and solvent flow rate) and reaction variables (enzyme loading, incubation time, methanol to lipids molar ratio and temperature) were considered. Process parameters and their effects were studied using a full factorial analysis of both. Response Surface Methodology (RSM) and was used to determine the optimum conditions for the extraction and reaction steps. For extraction, the optimum conditions were 53 °C and 500 bar, whereas for the reaction the optimum conditions were 35% enzyme loading, 4 h reaction, 9:1 molar ratio and 50 oC. At these optimum conditions, the highest biodiesel production yield was found to be 82 %. The fuel properties of the produced biodiesel, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title=" supercritical CO2"> supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a> </p> <a href="https://publications.waset.org/abstracts/30707/properties-of-biodiesel-produced-by-enzymatic-transesterification-of-lipids-extracted-from-microalgae-in-supercritical-carbon-dioxide-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1183</span> Microbial Contamination of Haemolymph of Honeybee (Apis mellifera intermissa) Parasitized by Varroa Destructor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Messaouda%20Belaid">Messaouda Belaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Kebbouche-Gana"> Salima Kebbouche-Gana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The negative effect of the Varroa bee colony is very important. They cause morphological and physiological changes, causing a decrease in performance of individuals and long-term death of the colony. Indirectly, they weaken the bees become much more sensitive to the different pathogenic organisms naturally present in the colony. This work aims to research secondary infections of microbial origin occurred in the worker bee nurse due to parasitism by Varroa destructor. The feeding behaviour of Varroa may causes damaging host integument. The results show that the microbial contamination enable to be transmitted into honeybee heamocoel are Bacillus sp, Pseudomonas sp, Enterobacter, Aspergillus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeybee" title="honeybee">honeybee</a>, <a href="https://publications.waset.org/abstracts/search?q=Apis%20mellifera%20intermissa" title=" Apis mellifera intermissa"> Apis mellifera intermissa</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contamination" title=" microbial contamination"> microbial contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Varroa%20destructor" title=" Varroa destructor "> Varroa destructor </a> </p> <a href="https://publications.waset.org/abstracts/13183/microbial-contamination-of-haemolymph-of-honeybee-apis-mellifera-intermissa-parasitized-by-varroa-destructor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1182</span> Study of the Formation Mechanism of Dipalmitoylphosphatidylcholine Liposomes and Calcium Ion Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mdzinarashvili">T. Mdzinarashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khvedelidze"> M. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Shekiladze"> E. Shekiladze</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chinchaladze"> S. Chinchaladze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mdzinarashvili"> M. Mdzinarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the possible interaction between calcium ions and lipids is of great importance for the studies of complexes of calcium drug-carrying nanoparticles. We prepared calcium-containing complex liposomes from Dipalmitoylphosphatidylcholine (DPPC) lipids and studied their thermodynamic properties. In calorimetric studies, we determined that the phase transition temperature of these complexes is close to 420 C. It was shown that both hydrophobic and hydrophilic connections take part in the formation of calcium nanoparticles. We were interested in hydrophilic bonds represented by hydrogen bonds. We have shown that these hydrogen bonds are formed between the phospholipid heads, and the main contributor is the oxygen atoms in the phosphoric acid residues. In addition, based on the amount of heat absorbed during the breaking of hydrogen bonds formed between calcium-containing nanoparticle complexes, it can be concluded that the hydrogen atoms in the head of DPPC lipids form hydrogen bonds between P=O and P-O groups of phosphate. The energy of heat absorption measured by the calorimeter is of the order obtained by breaking the hydrogen bonds we have specified. Thus, we conclude that our approach to the model of liposome formation from lipids is correct. As for calcium atoms - due to the fact that it is present in the form of positive ions in the liposome, they will connect only with negatively charged phosphorus ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPPC" title="DPPC">DPPC</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20nanoparticles" title=" complex nanoparticles"> complex nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/154573/study-of-the-formation-mechanism-of-dipalmitoylphosphatidylcholine-liposomes-and-calcium-ion-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1181</span> Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Babalola">O. A. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Adekunle"> A. F Adekunle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Oladeji"> F. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Osungbade"> A. T. Osungbade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Akinlaja"> O. A. Akinlaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activities" title=" microbial activities"> microbial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contribution" title=" microbial contribution"> microbial contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth%20and%20yield" title=" tomato growth and yield"> tomato growth and yield</a> </p> <a href="https://publications.waset.org/abstracts/81437/contributions-of-microbial-activities-to-tomato-growth-and-yield-under-an-organic-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1180</span> Impact of Environmental Stressors on Microbial Community Dynamics and Ecosystem Functioning: Implications for Bioremediation and Restoration Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Nikanmajd">Nazanin Nikanmajd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms are essential for influencing environmental processes, such as nutrient cycling, pollutant breakdown, and ecosystem well-being. Recent developments in high-throughput sequencing technologies and metagenomic methods have given us fresh understandings about the range and capabilities of microorganisms in different settings. This research examines how environmental stressors like climate change, pollution, and habitat degradation affect the composition and roles of microbial communities in soil and water ecosystems. We show that human-caused disruptions change the makeup of microbial communities, causing changes in important metabolic pathways for biogeochemical processes. More precisely, we pinpoint important microbial groups that show resistance or susceptibility to certain stress factors, emphasizing their possible uses in bioremediation and ecosystem rehabilitation. The results highlight the importance of adopting a holistic approach to comprehend microbial changes in evolving environments, impacting sustainable environmental conservation and management strategies. This research helps develop new solutions to reduce the impacts of environmental degradation on microbial ecosystem services by understanding the intricate relationships between microorganisms and their surroundings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20microbiology" title="environmental microbiology">environmental microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20restoration" title=" ecosystem restoration"> ecosystem restoration</a> </p> <a href="https://publications.waset.org/abstracts/195037/impact-of-environmental-stressors-on-microbial-community-dynamics-and-ecosystem-functioning-implications-for-bioremediation-and-restoration-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1179</span> Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Karpenyuk">Tatyana A. Karpenyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Saltanat%20B.%20Orazova"> Saltanat B. Orazova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yana%20S.%20Tzurkan"> Yana S. Tzurkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alla%20V.%20Goncharova"> Alla V. Goncharova</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakytzhan%20K.%20Kairat"> Bakytzhan K. Kairat</a>, <a href="https://publications.waset.org/abstracts/search?q=Togzhan%20D.%20Mukasheva"> Togzhan D. Mukasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20V.%20Ignatova"> Ludmila V. Ignatova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramza%20Z.%20Berzhanova"> Ramza Z. Berzhanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=culture%20conditions" title=" culture conditions"> culture conditions</a> </p> <a href="https://publications.waset.org/abstracts/10149/influence-of-culture-conditions-on-the-growth-and-fatty-acid-composition-of-green-microalgae-oocystis-rhomboideus-scenedesmus-obliquus-dictyochlorella-globosa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1178</span> High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Szydlowski">Lukasz Szydlowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Ehlich"> Jiri Ehlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Goryanin"> Igor Goryanin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioengineering" title="bioengineering">bioengineering</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=electromicrobiology" title=" electromicrobiology"> electromicrobiology</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/110593/high-throughput-screening-and-selection-of-electrogenic-microbial-communities-using-single-chamber-microbial-fuel-cells-based-on-96-well-plate-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1177</span> An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20R.%20Zuthi">M. F. R. Zuthi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Ngo"> H. H. Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Guo"> W. S. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Chen"> S. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Nguyen"> N. C. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Deng"> L. J. Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20C%20Tran">T. D. C Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20products" title="microbial products">microbial products</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20oxygen%20uptake%20rate" title=" specific oxygen uptake rate"> specific oxygen uptake rate</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/4403/an-assessment-of-the-effects-of-microbial-products-on-the-specific-oxygen-uptake-in-submerged-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1176</span> Biocompatible Chitosan Nanoparticles as an Efficient Delivery Vehicle for Mycobacterium Tuberculosis Lipids to Induce Potent Cytokines and Antibody Response through Activation of γδ T-Cells in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishani%20Das">Ishani Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Padhi"> Avinash Padhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitabja%20Mukherjee"> Sitabja Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kar"> Santosh Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Sonawane"> Avinash Sonawane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activation of cell mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) are critical for protection. Herein, we show that mice immunized with Mtb lipid bound chitosan nanoparticles(NPs) induce secretion of prominent Th1 and Th2 cytokines in lymph node and spleen cells, and also induced significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice measured by ELISA. Furthermore, significantly enhanced γδ-T cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid coated chitosan-NPs as compared to mice immunized with chitosan-NPs alone or Mtb lipid liposomes through flow cytometric analysis. Also, it was observed that in comparison to CD8+ cells, significantly higher CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid coated chitosan NP. In conclusion, this study represents a promising new strategy for efficient delivery of Mtb lipids using chitosan NPs to trigger enhanced cell mediated and antibody response against Mtb lipids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20response" title="antibody response">antibody response</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%20nanoparticles" title=" chitosan nanoparticles"> chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis%20lipids" title=" mycobacterium tuberculosis lipids"> mycobacterium tuberculosis lipids</a> </p> <a href="https://publications.waset.org/abstracts/55795/biocompatible-chitosan-nanoparticles-as-an-efficient-delivery-vehicle-for-mycobacterium-tuberculosis-lipids-to-induce-potent-cytokines-and-antibody-response-through-activation-of-ghd-t-cells-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1175</span> Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alkarri">Saleh Alkarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Sharma"> Dimple Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20M.%20Bergholz"> Teresa M. Bergholz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rabnawaz"> Muhammad Rabnawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20K-12%20MG1655" title=" E. coli K-12 MG1655"> E. coli K-12 MG1655</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20%28II%29%20chloride%20dihydrate" title=" copper (II) chloride dihydrate"> copper (II) chloride dihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20hydroxide" title=" magnesium hydroxide"> magnesium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leachable" title=" leachable"> leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=non-leachable" title=" non-leachable"> non-leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20embossing" title=" thermal embossing"> thermal embossing</a> </p> <a href="https://publications.waset.org/abstracts/165971/fabrication-methodologies-for-anti-microbial-polypropylene-surfaces-with-leachable-and-non-leachable-anti-microbial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1174</span> Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alkarri">Saleh Alkarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Sharma"> Dimple Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20M.%20Bergholz"> Teresa M. Bergholz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rabnawa"> Muhammad Rabnawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20K-12%20MG1655" title=" E. coli K-12 MG1655"> E. coli K-12 MG1655</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20%28II%29%20chloride%20dihydrate" title=" copper (II) chloride dihydrate"> copper (II) chloride dihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20hydroxide" title=" magnesium hydroxide"> magnesium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leachable" title=" leachable"> leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=non-leachable" title=" non-leachable"> non-leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20embossing" title=" thermal embossing"> thermal embossing</a> </p> <a href="https://publications.waset.org/abstracts/166090/fabrication-methodologies-for-anti-microbial-polypropylene-surfaces-with-leachable-and-non-leachable-anti-microbial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1173</span> Optimizing the Nanoliposome of Nisin Produced by Sonication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Moslemi%20S.%20A.">Seyed Moslemi S. A. </a>, <a href="https://publications.waset.org/abstracts/search?q=Hesari%20J."> Hesari J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Valizadeh%20H."> Valizadeh H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezaiee-Mokaram%20R."> Rezaiee-Mokaram R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology and nanoscience and related fields in this area, will impact on daily human life in the not too distant future. The basic materials of liposomes are lipids. Lipids that can be used to build liposomes can be provided from variety of sources. In this research, lecithin and cholesterol were used to prepare liposomes. Probe sonicator was used to minimize the particles of liposome and make nanoliposomes. Encapsulation efficiency were analyzed with pyrogallol red indicator and autoanalizer equipment. The smallest particle size was 220 nanometer( 100 mg lecithin, 50 mg cholestrol, 12 min and amplitude of 90%). The highest encapsulation efficiency was 13.5%( 120 mg lecithin,45 mg cholestrol, 12 min and ampilitude of 92%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimizing" title="optimizing">optimizing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoliposome" title=" nanoliposome"> nanoliposome</a>, <a href="https://publications.waset.org/abstracts/search?q=nisin" title=" nisin"> nisin</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese" title=" cheese"> cheese</a> </p> <a href="https://publications.waset.org/abstracts/31462/optimizing-the-nanoliposome-of-nisin-produced-by-sonication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiushi%20Ning">Qiushi Ning</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidification%20and%20C%20limitation" title="acidification and C limitation">acidification and C limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20deposition" title=" N deposition"> N deposition</a> </p> <a href="https://publications.waset.org/abstracts/54487/microbial-activity-and-greenhouse-gas-ghg-emissions-in-recovery-process-in-a-grassland-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Li">Zhichao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20heterocyclic%20aromatic%20hydrocarbons" title=" nitrogen heterocyclic aromatic hydrocarbons"> nitrogen heterocyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol-degrading%20bacteria" title=" phenol-degrading bacteria"> phenol-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment%20technology" title=" biological treatment technology"> biological treatment technology</a> </p> <a href="https://publications.waset.org/abstracts/78438/study-on-the-treatment-of-waste-water-containing-nitrogen-heterocyclic-aromatic-hydrocarbons-by-phenol-induced-microbial-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kessara%20Seneesrisakul">Kessara Seneesrisakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Gulari"> Erdogan Gulari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U•g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corncob" title="corncob">corncob</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20pretreatment" title=" microbial pretreatment"> microbial pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/12998/study-on-microbial-pretreatment-for-enhancing-enzymatic-hydrolysis-of-corncob" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20lipids&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10