CINXE.COM
{"title":"A Survey of the Applications of Sentiment Analysis","authors":"Pingping Lin, Xudong Luo","volume":166,"journal":"International Journal of Computer and Information Engineering","pagesStart":334,"pagesEnd":347,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10011530","abstract":"Natural language often conveys emotions of speakers.<br \/>\r\nTherefore, sentiment analysis on what people say is prevalent in the<br \/>\r\nfield of natural language process and has great application value<br \/>\r\nin many practical problems. Thus, to help people understand its<br \/>\r\napplication value, in this paper, we survey various applications of<br \/>\r\nsentiment analysis, including the ones in online business and offline<br \/>\r\nbusiness as well as other types of its applications. In particular,<br \/>\r\nwe give some application examples in intelligent customer service<br \/>\r\nsystems in China. Besides, we compare the applications of sentiment<br \/>\r\nanalysis on Twitter, Weibo, Taobao and Facebook, and discuss<br \/>\r\nsome challenges. Finally, we point out the challenges faced in the<br \/>\r\napplications of sentiment analysis and the work that is worth being<br \/>\r\nstudied in the future.","references":"[1] M.M. Ag\u00a8uero-Torales, M.J. Cobo, E. Herrera-Viedma, and A.G.\r\nL\u00b4opez-Herrera. A cloud-based tool for sentiment analysis in reviews\r\nabout restaurants on tripadvisor. Procedia Computer Science, pages\r\n392\u2013399, 2019. [2] Al-Amin, M.A. Islam, S. Halder, M.A. Uddin, and U.K. Acharjee.\r\nAn efficient sentiment mining approach on social media networks. In\r\nProceedings of the 2019 Emerging Technologies in Data Mining and\r\nInformation Security, volume 814, pages 451\u2013461, 2019.\r\n[3] M. Al-Smadi, M. Al-Ayyoub, and Y. Jararweh. Enhancing aspect-based\r\nsentiment analysis of arabic hotels\u2019 reviews using morphological,\r\nsyntactic and semantic features. Information Processing & Management,\r\n56(2):308\u2013319, 2019.\r\n[4] M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, and Y. Jararweh. Deep\r\nrecurrent neural network vs. support vector machine for aspect-based\r\nsentiment analysis of arabic hotels\u2019 reviews. Journal of Computational\r\nScience, 27:386\u2013393, 2018.\r\n[5] M. Alam, F. Abid, G.-P. Cong, and Y.-R. Lv. Social media sentiment\r\nanalysis through parallel dilated convolutional neural network for smart\r\ncity applications. Computer Communications, 154:129\u2013137, 2020.\r\n[6] S. Alashri, S. Kandala, V. Bajaj, R. Ravi, K. Smith, and K. Desouza.\r\nAn analysis of sentiments on facebook during the 2016 U.S. presidential\r\nelection. In Proceedings of the 2016 IEEE\/ACM International\r\nConference on Advances in Social Networks Analysis and Mining, pages\r\n795\u2013802, 2016.\r\n[7] M. Azab, R. Mihalcea, and J. Abernethy. Analysing ratemyprofessors\r\nevaluations across institutions, disciplines, and cultures: The tell-tale\r\nsigns of a good professor. In Proceedings of the 2016 International\r\nConference on Social Informatics, volume 10046, pages 438\u2013453, 2016.\r\n[8] A. Bakharia. Towards cross-domain MOOC forum post classification.\r\nIn Proceedings of the Third ACM Conference Learning, pages 253\u2013256,\r\n2016.\r\n[9] J.D. Bodapati, N. Veeranjaneyulu, and S. Shaik. Sentiment analysis from\r\nmovie reviews using LSTM. Ingenierie des Systemes d\u2019Information,\r\n24(1):125\u2013129, 2019.\r\n[10] J. Burstein, B. Beigman-Klebanov, M. Nitin, and A. Faulkner.\r\nAutomated sentiment analysis for essay evaluation. International\r\nJournal of Innovative and Emerging Research in Engineering, 2013.\r\n[11] E. Cambria. Affective computing and sentiment analysis. IEEE\r\nIntelligent Systems, 31(2):102\u2013107, 2016.\r\n[12] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall. Sentiment analysis\r\nis a big suitcase. IEEE Intelligent Systems, 32(6):7480, 2017.\r\n[13] A. Carvalho, A. Levitt, S. Levitt, E. Khaddam, and J. Benamati.\r\nOff-the-shelf artificial intelligence technologies for sentiment and\r\nemotion analysis: A tutorial on using IBM natural language\r\nprocessing. Communications of the Association for Information Systems,\r\n44(43):918\u2013943, 2019.\r\n[14] N. Chambers, Bowen V., and E. Genco. Identifying political sentiment\r\nbetween nation states with social media. In Proceedings of the 2015\r\nConference on Empirical Methods in Natural Language Processing,\r\npages 65\u201375, 2015.\r\n[15] C. Chen, X.-L. Zhang, S. Ju, C.-L. Fu, C.-Z. Tang, J. Zhou, and X.-L.\r\nLi. Antprophet: An intention mining system behind alipay\u2019s intelligent\r\ncustomer service bot. In Proceedings of the Twenty-Eighth International\r\nJoint Conference on Artificial Intelligence, pages 6497\u20136499, 2019.\r\n[16] M.-M. Cheng and X. Jin. What do Airbnb users care about? an\r\nanalysis of online review comments. International Journal of Hospitality\r\nManagement, 76(Part A):58\u201370, 2019.\r\n[17] K.G. Coffman and A.M. Odlyzko. Internet Growth: Is There a \u201cMoore\u2019s\r\nLaw\u201d for Data Traffic?, pages 47\u201393. HandBook of Massive Data Sets,\r\n2002.\r\n[18] F. Colace, M. Santo, and L. Greco. Safe: A sentiment analysis\r\nframework for e-learning. International Journal of Emerging\r\nTechnologies in Learning, 9(6):37\u201341, 2014.\r\n[19] M.Y. Day and Y.-D. Lin. Deep learning for sentiment analysis on google\r\nplay consumer review. In Proceedings of the 2017 IEEE International\r\nConference on Information Reuse and Integration, pages 382\u2013388, 2017.\r\n[20] F.S. Dolianiti, D. Iakovakis, S.B. Dias, S. Hadjileontiadou, J.A. Diniz,\r\nand L. Hadjileontiadis. Sentiment analysis techniques and applications\r\nin education: A survey. In Proceedings of the 2018 International\r\nConference on Technology and Innovation in Learning, Teaching and\r\nEducation, volume 993, pages 412\u2013427, 2018.\r\n[21] D. Gan, J. Shen, and M. Xu. Adaptive learning emotion identification\r\nmethod of short texts for online medical knowledge sharing community.\r\nComputational Intelligence and Neuroscience, 2019:1\u201310, 2019.\r\n[22] Y. Gao and S. Wang. Application & comparison of several sentiment\r\nanalysis platforms with open source review dataset. In Proceedings of\r\nthe 3rd International Conference on Computer Science and Application\r\nEngineering, volume 78, pages 1\u201378, 2019.\r\n[23] X. Guo and J.-H. Zhu. Deep neural network recommendation model\r\nbased on user vectorization representation and attention mechanism.\r\nComputer Science, 46(8):111\u2013115, 2019.\r\n[24] S.W. Handani, D.I.S. Saputra, Hasirun, R.M. Arino, and G.F.A.\r\nRamadhan. Sentiment analysis for Go-Jek on Google play store. Journal\r\nof Physics: Conference Series, 1196:12\u201332, 2019.\r\n[25] D. Hazarika, S. Poria, R. Mihalcea, E. Cambria, and R. Zimmermann.\r\nIcon: Interactive conversational memory network for multimodal\r\nemotion detection. In Proceedings of the 2018 Conference on Empirical\r\nMethods in Natural Language Processing, page 25942604, 2018.\r\n[26] D. Hazarika, S. Poria, A. Zadeh, E. Cambria, L.-P. Morency, and\r\nR. Zimmermann. Conversational memory network for emotion\r\nrecognition in dyadic dialogue videos. In Proceedings of the 2018\r\nConference of the North American Chapter of the Association for\r\nComputational Linguistics: Human Language Technologies, volume 1,\r\npage 21222132, 2018.\r\n[27] B. Helversen, K. Abramczuk, W. Kopec, and R. Nielek. Influence of\r\nconsumer reviews on online purchasing decisions in older and younger\r\nadults. Decision Support Systems, 113:1\u201310, 2018.\r\n[28] Y.-Y. Hu, C.-B. Deng, and Z. Zhou. A semantic and sentiment analysis\r\non online neighborhood reviews for understanding the perceptions of\r\npeople toward their living environments. Annals of the American\r\nAssociation of Geographers, 109(4):1052\u20131073, 2019.\r\n[29] M. Hur, P. Kang, and S. Choc. Box-office forecasting based\r\non sentiments of movie reviews and independent subspace method.\r\nInformation Sciences, 372(1):608\u2013624, 2016.\r\n[30] J. Jabbar, I. Urooj, J.-S.Wu, and N. Azeem. Real-time sentiment analysis\r\non e-commerce application. In Proceedings of the 2019 International\r\nConference on Network Security, pages 391\u2013396, 2019.\r\n[31] J. James, L. Tian, and C. Watson. An open source emotional\r\nspeechcorpus for human robot interaction applications. In Proceedings\r\nof 2018 Interspeech, pages 2768\u20132772, 2018.\r\n[32] D. Janssen, C. Tummel, S. Jeschke, and A. Richert. Sentiment\r\nanalysis of social media for evaluating universities. In Proceedings\r\nof Second International Conference on Digital Information Processing,\r\nData Mining, and Wireless Communications, pages 49\u201362, 2015.\r\n[33] E. Kauffmann, D. Gil, J. Peral, A. Ferrandez, and R. Sellers. A step\r\nfurther in sentiment analysis application in marketing decision-making.\r\nIn Proceedings of the 2019 International Research & Innovation Forum,\r\npages 211\u2013221, 2019.\r\n[34] Q.-Q. Kong, C.-S. Yu, T. Iqbal, Y. Xu, W.-W. Wang, and M.D.\r\nPlumbley. Weakly labelled AudioSet tagging with attention neural\r\nnetworks. IEEE\/ACM Transactions on Audio, Speech, and Language\r\nProcessing, 27(11):1791\u20131802, 2019.\r\n[35] B. Liu. Sentiment Analysis and Opinion Mining, volume 5 of Synthesis\r\nLectures on Human Language technologies. 2012.\r\n[36] B. Liu and L. Zhang. A Survey of opinion mining and sentiment analysis,\r\npages 415\u2013463. Mining Text Data, 2012.\r\n[37] Xudong Luo, Nicholas R Jennings, Nigel Shadbolt, Ho-fung Leung,\r\nand Jimmy Ho-man Lee. A fuzzy constraint based model for bilateral,\r\nmulti-issue negotiations in semi-competitive environments. Artificial\r\nIntelligence, 148(1-2):53\u2013102, 2003.\r\n[38] Y.-W. Luo, S.-W. Tian, and L. Yu. Implicit sentiment analysis of\r\nuyghur text in opinion mining. Computer Engineering & Design,\r\n35(9):3295\u20133300, 2014. (In Chinese).\r\n[39] N. Majumder, S. Poria, D. Hazarika, R. Mihalcea, and et al.\r\nDialoguernn: An attentive rnn for emotion detection in conversations.\r\nIn Proceedings of the Thirty-Third AAAI Conference on Artificial\r\nIntelligence, pages 6818\u20136825, 2019.\r\n[40] P.S. Maria del, M. Jose, J.A. Paul, L. Katty, A.P. Mario, and V. Rafael.\r\nSentiment analysis and trend detection in twitter. In Proceedings of the\r\n2016 International Conference on Technologies and Innovation, pages\r\n63\u201376, 2016.\r\n[41] R. Martins, P.R. Henriques, and P. Novais. Determining emotional profile\r\nbased on microblogging analysis. In Proceedings of the 19th Portuguese\r\nConference on Artificial Intelligence, pages 159\u2013171, 2019.\r\n[42] M. Mcpherson and S. L. M. Cook. Birds of a feather: Homophily in\r\nsocial networks. Annual Review of Sociology, 27:415\u2013444, 2001.\r\n[43] M. Mertiya and A. Singh. Combining naive bayes and adjective\r\nanalysis for sentiment detection on twitter. In Proceedings of the 2016\r\nInternational Conference on Inventive Computation Technologies, pages\r\n1\u20136, 2016.\r\n[44] N. Mohebollah and J. Maktoubian. Business improvement approach\r\nbased on sentiment twitter analysis: Case study. EAI Endorsed\r\nTransactions on Cloud Systems, 5(14):1\u20137, 2019.\r\n[45] A.M. Mohsen, A. Idrees, and H.A. Hassan. Emotion analysis for\r\nopinion mining from text: A comparative study. International Journal\r\nof E-Collaboration, 15:38\u201358, 2019.\r\n[46] L. Mostafa. Machine learning-based sentiment analysis for analyzing\r\nthe travelers reviews on egyptian hotels. In Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Vision,\r\npages 405\u2013413, 2020.\r\n[47] M. Nakayama and Y. Wan. The cultural impact on social commerce:\r\nA sentiment analysis on yelp ethnic restaurant reviews. Information &\r\nManagement, 56(2):271\u2013279, 2019.\r\n[48] T. Nasukawa and J. Yi. Sentiment analysis: Capturing favorability using\r\nnatural language processing. In Proceedings of the 2nd International\r\nConference on Knowledge Capture, pages 70\u201377, 2003.\r\n[49] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations\r\nand Trends in Information Retrieval, 2(1-2):1\u2013135, 2008.\r\n[50] T. Patel, J. Undavia, and A. Patel. Sentiment analysis of parents\r\nfeedback for educational institutes. International Journal of Innovative\r\nand Emerging Research in Engineering, 2(3):75\u201378, 2015.\r\n[51] S. Poria, N. Majumder, R. Mihalcea, and E. Hovy. Emotion recognition\r\nin conversation: Research challenges, datasets, and recent advances. In\r\nProceedings of IEEE Access, volume 7, pages 100943\u2013100953, 2019.\r\n[52] I. Prabha M and G. Umarani Srikanth. Survey of sentiment\r\nanalysis using deep learning techniques. In Proceedings of the\r\n1st International Conference on Innovations in Information and\r\nCommunication Technology, pages 1\u20139, 2019.\r\n[53] Anwar Ur Rehman, Ahmad Kamran Malik, Basit Raza, and Waqar\r\nAli. A hybrid CNN-LSTM model for improving accuracy of movie\r\nreviews sentiment analysis. Multimedia Tools and Applications,\r\n78(18):26597\u201326613, 2019.\r\n[54] R. Ren, D.-S. Dash Wu, and T.-X. Liu. Forecasting stock market\r\nmovement direction using sentiment analysis and support vector\r\nmachine. IEEE Systems Journal, 13(1):760\u2013770, 2019.\r\n[55] K. Sailunaz and R. Alhajj. Emotion and sentiment analysis from twitter\r\ntext. Journal of Computational Science, 36:1\u201318, 2019.\r\n[56] D. Sasikala and S. Sukumaran. A survey on lexicon and\r\nmachine learning based classification methods for sentimental\r\nanalysis. International Journal of Research and Analytical Reviews,\r\n6(2):256\u2013259, 2019.\r\n[57] C.-L. Shen, L. Zhang, L.-Q. Wu, and S.-S. Li. Sentiment classification\r\ntowards question-answering based on bidirectional attention mechanism.\r\nComputer Science, 46(7):151\u2013156, 2019. (In Chinese).\r\n[58] M. Soleymani, D. Garcia, B. Jou, B. Schuller, S.-F. Chang, and\r\nM. Pantic. A survey of multimodal sentiment analysis. Image and\r\nVision Computing, 65:3\u201314, 2017.\r\n[59] K.-S. Song, W. Gao, S. Feng, D.-L. Wang, and et al. Recommendation\r\nvs sentiment analysis: A text-driven latent factor model for rating\r\nprediction with cold-start awareness. In Proceedings of the\r\nTwenty-Sixth International Joint Conference on Artificial Intelligence,\r\npages 2744\u20132750, 2017.\r\n[60] K.-S. Song, W. Gao, L.-J. Zhao, C.-L. Sun, and X.-Z. Liu. Cold-start\r\naware deep memory network for multi-entity aspect-based sentiment\r\nanalysis. In Proceedings of the Twenty-Eighth International Joint\r\nConference on Artificial Intelligence, pages 5179\u20135203, 2019.\r\n[61] S.-Y. Song, C. Wang, C.-L. Chen, W. Zhou, and H.-Q. Chen. Sentiment\r\nanalysis for intelligent customer service chatbots. Journal of Chinese\r\nInformation Processing, 34(2):80\u201395, 2020. (In Chinese).\r\n[62] L.-H. Sun, J.-P. Guo, and Y.-L. Zhu. Applying uncertainty theory into the\r\nrestaurant recommender system based on sentiment analysis of online\r\nchinese reviews. World Wide Web, 22(1):83\u2013100, 2019.\r\n[63] L.-H. Sun and X.-F. Zhang. Improved collaborative filtering\r\nrecommendation algorithm based on sentiment analysis of online review.\r\nComputer Science, 45(6A):402\u2013405, 2018. (In Chinese).\r\n[64] F. Tan, L. Li, Z.-Y. Zhang, and Y.-L. Guo. Latent co-interests\u2019\r\nrelationship prediction. Tsinghua Science and Technology,\r\n18(4):379\u2013386, 2013. (In Chinese).\r\n[65] D.-Y. Tang, B. Qin, and T. Liu. Aspect level sentiment classification\r\nwith deep memory network. In Proceedings of the 2016 Conference on\r\nEmpirical Methods in Natural Language Processing, pages 214\u2013224,\r\n2016.\r\n[66] Y. Tay, L-A. Tuan, and S-C. Hui. Learning to attend via word-aspect\r\nassociative fusion for aspect-based sentiment analysis. In Proceedings\r\nof the Thirty-Second AAAI Conference on Artificial Intelligence,\r\nvolume 18, pages 5956\u20135963, 2018.\r\n[67] S. Tedmori and A. Awajan. Sentiment analysis main tasks and\r\napplications: A survey. Journal of Information Processing Systems,\r\n15(3):500\u2013519, 2019.\r\n[68] L. Tussyadiah and F. Zach. Identifying salient attributes of peer-to-peer\r\naccommodation experience. Journal of Travel & Tourism Marketing,\r\npages 1\u201317, 2016.\r\n[69] R.-H. Wang, X.-M. Cui, W. Zhou, C.-L. Wang, and Y.-J. Li. Research of\r\ntext sentiment classification based on improved semantic comprehension.\r\nComputer Science, 44(S2):92\u201397, 2017. (In Chinese).\r\n[70] R.-W. Wang and W.-H. Zhang. Implicit evaluation object recognition\r\nmethod based on deep learning. Computer Engineering, 45(8):315\u2013320,\r\n2019. (In Chinese).\r\n[71] Y.-Q. Wang, M.-L. Huang, X.-Y. Zhu, and Z. Li. Attention-based lstm\r\nfor aspect-level sentiment classification. In Conference on Empirical\r\nMethods in Natural Language Processing, pages 606\u2013615, 2017.\r\n[72] R. Xia and Z.-X. Ding. Emotion-cause pair extraction: A new task to\r\nemotion analysis in texts. In Proceedings of the 57th Annual Meeting of\r\nthe Association for Computational Linguistics, pages 1003\u20131012, 2019.\r\n[73] G.-U. Xin. Design and implementation of customer service robot on\r\nwechat public platform. Information Technology, (5):166\u2013169, 2017.\r\n(In Chinese).\r\n[74] J.-C. Xu, D.-L. Chen, X.-P. Qiu, and X.-J. Huang. Cached long\r\nshort-term memory neural networks for document-level sentiment\r\nclassification. In Proceedings of the 2016 Conference on Empirical\r\nMethods in Natural Language Processing, pages 1660\u20131669, 2016.\r\n[75] H.-B. Yan, M.H. Ang Jr, and A. N. Poo. A survey on perception methods\r\nfor humanrobot interaction in social robots. International Journal of\r\nSocial Robotics, 6(1):85\u2013119, 2014. (In Chinese).\r\n[76] S.-L. Yeh, Y.-S. Lin, and C.-C. Lee. An interaction-aware attention\r\nnetwork for speech emotion recognition in spoken dialogs. In\r\nProceedings of the 2019 IEEE International Conference on Acoustics,\r\nSpeech and Signal Processing, page 66856689, 2019.\r\n[77] C.-M. Yu. Mining opinions from product review: Principles and\r\nalgorithm analysis. Information Studies: Theory & Application,\r\n32(7):124\u2013128, 2009. (In Chinese).\r\n[78] Jieyu Zhan, Xudong Luo, Cong Feng, and Minghua He. A multi-demand\r\nnegotiation model based on fuzzy rules elicited via psychological\r\nexperiments. Applied Soft Computing, 67:840\u2013864, 2018.\r\n[79] L. Zhang, S. Wang, and B. Liu. Deep learning for sentiment analysis:\r\nA survey. Data Mining and Knowledge Discovery, 8(4):1\u201325, 2018.\r\n[80] M.-C. Zhang, R.-J. Zheng, J. Chen, and et al. Emotional component\r\nanalysis and forecast public opinion on micro-blog posts based on\r\nmaximum entropy model. Cluster Computing, 22(3):6295\u20136304, 2019.\r\n[81] Y.-F. Zhang, G.-K. Lai, M. Zhang, Y. Zhang, Y.-Q. Liu, and S.-P.\r\nMa. Explicit factor models for explainable recommendation based on\r\nphrase-level sentiment analysis. In Proceedings of the 37th International\r\nACM Sigir Conference on Research & Development in Information\r\nRetrieval, pages 83\u201392, 2014.\r\n[82] X. Zhao, C. Huang, and H. Pan. Online comments of multi-category\r\ncommodities based on emotional tendency analysis. Cluster Computing,\r\n22(3):6345\u20136357, 2019.\r\n[83] B.-Q. Zheng, H.-X. Zou, and X.-J. Hu. Research on public\r\nopinion prediction based on inflection point. Computer Science,\r\n45(11A):539\u2013541, 2018. (In Chinese).\r\n[84] Q.-Y. Zhou, Z. Xu, and N.Y. Yen. User sentiment analysis\r\nbased on social network information and its application in consumer\r\nreconstruction intention. Computers in Human Behavior, 100:177\u2013183,\r\n2019.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 166, 2020"}