CINXE.COM
Search results for: agent based modeling and simulation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: agent based modeling and simulation</title> <meta name="description" content="Search results for: agent based modeling and simulation"> <meta name="keywords" content="agent based modeling and simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="agent based modeling and simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="agent based modeling and simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33761</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: agent based modeling and simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33761</span> An Agent-Based Modeling and Simulation of Human Muscle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Saadati">Sina Saadati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Razzazi"> Mohammadreza Razzazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20modeling%20and%20simulation" title="agent-based modeling and simulation">agent-based modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20muscle" title=" human muscle"> human muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20cycle" title=" gait cycle"> gait cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20sickness" title=" motion sickness"> motion sickness</a> </p> <a href="https://publications.waset.org/abstracts/149021/an-agent-based-modeling-and-simulation-of-human-muscle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33760</span> Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Korkmaz%20Tan">Rabia Korkmaz Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eebnem%20Bora"> Şebnem Bora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parameter%20tuning" title="parameter tuning">parameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation" title=" agent based modeling and simulation"> agent based modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20algorithms" title=" metaheuristic algorithms"> metaheuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title=" complex systems"> complex systems</a> </p> <a href="https://publications.waset.org/abstracts/77307/parameter-tuning-of-complex-systems-modeled-in-agent-based-modeling-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33759</span> A Simulation of Land Market through Agent-Based Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zilin%20Zhang">Zilin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agent-based simulation has become a popular method of exploring the behavior of all kinds of urban systems. The city clearly is viewed as such a system. Many urban evolution processes, such as the development or the transaction of a piece of land, can be modeled with a set of rules. Such modeling approaches can be used to gain insight into urban-development and land market transactions in the real world. Our work contributes to such type of research by modeling the transactions of lands in a city and its surrounding suburbs. By replicating the demand and supply needs in the land market, we are able to demonstrate the different transaction patterns in three types of residential areas - downtown, city-suburban, and further suburban areas. In addition, we are also able to compare the vital roles of different activation conditions play in generating the various transaction patterns of the land market at the macro level. We use this simulation to loosely test our hypotheses about the nature of activation regimes by the replication of the Zi traders’ model. In the end, we hope our analytical results can be useful for city planners and policymakers to develop rational city plans and policies for shaping sustainable urban development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=agent-based%20modeling" title=" agent-based modeling"> agent-based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20market" title=" housing market"> housing market</a>, <a href="https://publications.waset.org/abstracts/search?q=city" title=" city"> city</a> </p> <a href="https://publications.waset.org/abstracts/155772/a-simulation-of-land-market-through-agent-based-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33758</span> Agent/Group/Role Organizational Model to Simulate an Industrial Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Seddari">Noureddine Seddari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belaoued"> Mohamed Belaoued</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bougueroua"> Salah Bougueroua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title="complex systems">complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation" title=" modeling and simulation"> modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20control%20system" title=" industrial control system"> industrial control system</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=AALAADIN" title=" AALAADIN"> AALAADIN</a>, <a href="https://publications.waset.org/abstracts/search?q=AGR" title=" AGR"> AGR</a>, <a href="https://publications.waset.org/abstracts/search?q=MAD-KIT" title=" MAD-KIT"> MAD-KIT</a> </p> <a href="https://publications.waset.org/abstracts/77295/agentgrouprole-organizational-model-to-simulate-an-industrial-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33757</span> Tracy: A Java Library to Render a 3D Graphical Human Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Saadati">Sina Saadati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Razzazi"> Mohammadreza Razzazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since Java is an object-oriented language, It can be used to solve a wide range of problems. One of the considerable usages of this language can be found in Agent-based modeling and simulation. Despite the significant power of Java, There is not an easy method to render a 3-dimensional human model. In this article, we are about to develop a library which helps modelers present a 3D human model and control it with Java. The library runs two server programs. The first one is a web page server that can connect to any browser and present an HTML code. The second server connects to the browser and controls the movement of the model. So, the modeler will be able to develop a simulation and display a good-looking human model without any knowledge of any graphical tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20modeling%20and%20simulation" title="agent-based modeling and simulation">agent-based modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20model" title=" human model"> human model</a>, <a href="https://publications.waset.org/abstracts/search?q=graphics" title=" graphics"> graphics</a>, <a href="https://publications.waset.org/abstracts/search?q=Java" title=" Java"> Java</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20systems" title=" distributed systems"> distributed systems</a> </p> <a href="https://publications.waset.org/abstracts/150176/tracy-a-java-library-to-render-a-3d-graphical-human-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33756</span> Agent-Based Simulation for Supply Chain Transport Corridors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamalendu%20Pal">Kamalendu Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supply chains are the spinal cord of trade and commerce. Their logistics use different transport corridors on regular basis for operational purpose. The international supply chain transport corridors include different infrastructure elements (e.g. weighbridge, package handling equipment, border clearance authorities, and so on) in supply chains. This paper presents the use of multi-agent systems (MAS) to model and simulate some aspects of transportation corridors, and in particular the area of weighbridge resource optimization for operational profit generation purpose. An underlying multi-agent model provides a means of modeling the relationships among stakeholders in order to enable coordination in a transport corridor environment. Simulations of the costs of container unloading, reloading, and waiting time for queuing up tracks have been carried out using data sets. Results of the simulation provide the potential guidance in making decisions about optimal service resource allocation in a trade corridor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title="multi-agent systems">multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20corridor" title=" transport corridor"> transport corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=weighbridge" title=" weighbridge"> weighbridge</a> </p> <a href="https://publications.waset.org/abstracts/29221/agent-based-simulation-for-supply-chain-transport-corridors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33755</span> Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assem%20I.%20El-Ansary">Assem I. El-Ansary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20control" title=" railway control"> railway control</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20methodology" title=" modeling methodology"> modeling methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modeling" title=" software modeling"> software modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=event-oriented" title=" event-oriented"> event-oriented</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20pattern" title=" behavioral pattern"> behavioral pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20cases" title=" use cases"> use cases</a> </p> <a href="https://publications.waset.org/abstracts/15785/multi-agent-railway-control-system-requirements-definitions-of-multi-agent-system-using-the-behavioral-patterns-analysis-bpa-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33754</span> Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimi">M. Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Corman"> F. Corman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20simulation" title="agent-based simulation">agent-based simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=disruption%20management" title=" disruption management"> disruption management</a>, <a href="https://publications.waset.org/abstracts/search?q=passengers%E2%80%99%20behavior%20simulation" title=" passengers’ behavior simulation"> passengers’ behavior simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transport" title=" public transport"> public transport</a> </p> <a href="https://publications.waset.org/abstracts/122394/passengers-behavior-analysis-under-the-public-transport-disruption-an-agent-based-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33753</span> Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assem%20El-Ansary">Assem El-Ansary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=TeleRobotics%20control" title=" TeleRobotics control"> TeleRobotics control</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20methodology" title=" modeling methodology"> modeling methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modeling" title=" software modeling"> software modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=event-oriented" title=" event-oriented"> event-oriented</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20pattern" title=" behavioral pattern"> behavioral pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20cases" title=" use cases"> use cases</a> </p> <a href="https://publications.waset.org/abstracts/16227/multi-agent-telerobotic-security-control-system-requirements-definitions-of-multi-agent-system-using-the-behavioral-patterns-analysis-bpa-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33752</span> Artificial Intelligence Methods for Returns Expectations in Financial Markets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yosra%20Mefteh%20Rekik">Yosra Mefteh Rekik</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Boujelbene"> Younes Boujelbene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20methods" title="artificial intelligence methods">artificial intelligence methods</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20stock%20market" title=" artificial stock market"> artificial stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20modeling" title=" behavioral modeling"> behavioral modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20based%20simulation" title=" multi-agent based simulation"> multi-agent based simulation</a> </p> <a href="https://publications.waset.org/abstracts/27421/artificial-intelligence-methods-for-returns-expectations-in-financial-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33751</span> Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assem%20El-Ansary">Assem El-Ansary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20methodology" title=" modeling methodology"> modeling methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modeling" title=" software modeling"> software modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=event-oriented" title=" event-oriented"> event-oriented</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20pattern" title=" behavioral pattern"> behavioral pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20cases" title=" use cases"> use cases</a>, <a href="https://publications.waset.org/abstracts/search?q=Healthcare%20Multi-Agent%20System" title=" Healthcare Multi-Agent System"> Healthcare Multi-Agent System</a> </p> <a href="https://publications.waset.org/abstracts/15854/requirements-definitions-of-real-time-system-using-the-behavioral-patterns-analysis-bpa-approach-the-healthcare-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33750</span> Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assem%20El-Ansary">Assem El-Ansary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20agent" title=" intelligent agent"> intelligent agent</a>, <a href="https://publications.waset.org/abstracts/search?q=reservation%20system" title=" reservation system"> reservation system</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20methodology" title=" modeling methodology"> modeling methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modeling" title=" software modeling"> software modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=event-oriented" title=" event-oriented"> event-oriented</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20pattern" title=" behavioral pattern"> behavioral pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20cases" title=" use cases"> use cases</a> </p> <a href="https://publications.waset.org/abstracts/14391/intelligent-agent-travel-reservation-system-requirements-definitions-using-the-behavioral-patterns-analysis-bpa-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33749</span> Planning of Construction Material Flow Using Hybrid Simulation Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Naraghi">A. M. Naraghi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gonzalez"> V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O%27Sullivan"> M. O'Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Walker"> C. G. Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poshdar"> M. Poshdar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ying"> F. Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmegid"> M. Abdelmegid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20supply-chain%20management" title="construction supply-chain management">construction supply-chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modeling" title=" simulation modeling"> simulation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-support%20tools" title=" decision-support tools"> decision-support tools</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20simulation" title=" hybrid simulation"> hybrid simulation</a> </p> <a href="https://publications.waset.org/abstracts/103280/planning-of-construction-material-flow-using-hybrid-simulation-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33748</span> Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim<sup>®</sup> Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim<sup>®</sup> Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unisim%20design" title=" unisim design"> unisim design</a> </p> <a href="https://publications.waset.org/abstracts/42425/modelling-and-simulation-of-the-freezing-systems-and-heat-pumps-using-unisim-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33747</span> Computational Experiment on Evolution of E-Business Service Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xue%20Xiao">Xue Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Hao"> Sun Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Donghua"> Liu Donghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-commerce%20service%20ecosystem" title="e-commerce service ecosystem">e-commerce service ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system"> complex system</a>, <a href="https://publications.waset.org/abstracts/search?q=agent-based%20modeling" title=" agent-based modeling"> agent-based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20experiment" title=" computational experiment"> computational experiment</a> </p> <a href="https://publications.waset.org/abstracts/24361/computational-experiment-on-evolution-of-e-business-service-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33746</span> Object-Oriented Programming for Modeling and Simulation of Systems in Physiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez%20de%20Canete">J. Fernandez de Canete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20modeling" title="object-oriented modeling">object-oriented modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMSCAPE%20simulation%20language" title=" SIMSCAPE simulation language"> SIMSCAPE simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=MODELICA%20simulation%20language" title=" MODELICA simulation language"> MODELICA simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20system" title=" cardiovascular system"> cardiovascular system</a> </p> <a href="https://publications.waset.org/abstracts/28645/object-oriented-programming-for-modeling-and-simulation-of-systems-in-physiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33745</span> Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yamileth%20P.%20Herrera">Yamileth P. Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20R.%20Gutierrez"> Ronald R. Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos"> Carlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Pacheco-Bustos"> Pacheco-Bustos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20tank" title="contact tank">contact tank</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20models" title=" numerical models"> numerical models</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20modeling" title=" hydrodynamic modeling"> hydrodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/129266/improving-the-residence-time-of-a-rectangular-contact-tank-by-varying-the-geometry-using-numerical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33744</span> Analytical Investigation of Modeling and Simulation of Different Combinations of Sinusoidal Supplied Autotransformer under Linear Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salih%20Taci">M. Salih Taci</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tayebi"> N. Tayebi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bozk%C4%B1r"> I. Bozkır</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the operation of a sinusoidal supplied autotransformer on the different states of magnetic polarity of primary and secondary terminals for four different step-up and step-down analytical conditions. In this paper, a new analytical modeling and equations for dot-marked and polarity-based step-up and step-down autotransformer are presented. These models are validated by the simulation of current and voltage waveforms for each state. PSpice environment was used for simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autotransformer%20modeling" title="autotransformer modeling">autotransformer modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=autotransformer%20simulation" title=" autotransformer simulation"> autotransformer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=step-up%20autotransformer" title=" step-up autotransformer"> step-up autotransformer</a>, <a href="https://publications.waset.org/abstracts/search?q=step-down%20autotransformer" title=" step-down autotransformer"> step-down autotransformer</a>, <a href="https://publications.waset.org/abstracts/search?q=polarity" title=" polarity"> polarity</a> </p> <a href="https://publications.waset.org/abstracts/76475/analytical-investigation-of-modeling-and-simulation-of-different-combinations-of-sinusoidal-supplied-autotransformer-under-linear-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33743</span> Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Qayumi">Karima Qayumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Norta"> Alex Norta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-oriented%20modeling%20%28AOM%29" title="agent-oriented modeling (AOM)">agent-oriented modeling (AOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence%20model%20%28BIM%29" title=" business intelligence model (BIM)"> business intelligence model (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining%20%28DDM%29" title=" distributed data mining (DDM)"> distributed data mining (DDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system%20%28MAS%29" title=" multi-agent system (MAS)"> multi-agent system (MAS)</a> </p> <a href="https://publications.waset.org/abstracts/44164/business-intelligence-mining-of-large-decentralized-multimedia-datasets-with-a-distributed-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33742</span> Travel Behavior Simulation of Bike-Sharing System Users in Kaoshiung City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Yi%20Lin">Hong-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Tyan%20Lin"> Feng-Tyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a Bike-sharing system (BSS), users can easily rent bikes from any station in the city for mid-range or short-range trips. BSS can also be integrated with other types of transport system, especially Green Transportation system, such as rail transport, bus etc. Since BSS records time and place of each pickup and return, the operational data can reflect more authentic and dynamic state of user behaviors. Furthermore, land uses around docking stations are highly associated with origins and destinations for the BSS users. As urban researchers, what concerns us more is to take BSS into consideration during the urban planning process and enhance the quality of urban life. This research focuses on the simulation of travel behavior of BSS users in Kaohsiung. First, rules of users’ behavior were derived by analyzing operational data and land use patterns nearby docking stations. Then, integrating with Monte Carlo method, these rules were embedded into a travel behavior simulation model, which was implemented by NetLogo, an agent-based modeling tool. The simulation model allows us to foresee the rent-return behaviour of BSS in order to choose potential locations of the docking stations. Also, it can provide insights and recommendations about planning and policies for the future BSS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20model" title="agent-based model">agent-based model</a>, <a href="https://publications.waset.org/abstracts/search?q=bike-sharing%20system" title=" bike-sharing system"> bike-sharing system</a>, <a href="https://publications.waset.org/abstracts/search?q=BSS%20operational%20data" title=" BSS operational data"> BSS operational data</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/64209/travel-behavior-simulation-of-bike-sharing-system-users-in-kaoshiung-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33741</span> Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadas%20Sopher">Hadas Sopher</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Schaumann"> Davide Schaumann</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehuda%20E.%20Kalay"> Yehuda E. Kalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple <em>Actors, Spaces, </em>and<em> Activities</em>, to describe dynamically how people use spaces. This approach requires expanding the computational representation of <em>Actors</em> beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling" title="agent based modeling">agent based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20design%20evaluation" title=" architectural design evaluation"> architectural design evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20modeling" title=" event modeling"> event modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20behavior%20simulation" title=" human behavior simulation"> human behavior simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20cognition" title=" spatial cognition"> spatial cognition</a> </p> <a href="https://publications.waset.org/abstracts/62565/simulating-human-behavior-in-unbuilt-environments-using-an-actor-profiling-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33740</span> A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Manuel%20Sanchez-Cartas">Juan Manuel Sanchez-Cartas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Leon"> Gonzalo Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20models" title="agent-based models">agent-based models</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithmic%20game%20theory" title=" algorithmic game theory"> algorithmic game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-sided%20markets" title=" multi-sided markets"> multi-sided markets</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20optimization" title=" price optimization"> price optimization</a> </p> <a href="https://publications.waset.org/abstracts/59770/a-game-theory-based-price-optimization-algorithm-for-the-simulation-of-markets-using-agent-based-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33739</span> Multi Agent Based Pre-Hospital Emergency Management Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaleh%20Shoshtarian%20Malak">Jaleh Shoshtarian Malak</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Mohamadzadeh"> Niloofar Mohamadzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Managing pre-hospital emergency patients requires real-time practices and efficient resource utilization. Since we are facing a distributed Network of healthcare providers, services and applications choosing the right resources and treatment protocol considering patient situation is a critical task. Delivering care to emergency patients at right time and with the suitable treatment settings can save ones live and prevent further complication. In recent years Multi Agent Systems (MAS) introduced great solutions to deal with real-time, distributed and complicated problems. In this paper we propose a multi agent based pre-hospital emergency management architecture in order to manage coordination, collaboration, treatment protocol and healthcare provider selection between different parties in pre-hospital emergency in a self-organizing manner. We used AnyLogic Agent Based Modeling (ABM) tool in order to simulate our proposed architecture. We have analyzed and described the functionality of EMS center, Ambulance, Consultation Center, EHR Repository and Quality of Care Monitoring as main collaborating agents. Future work includes implementation of the proposed architecture and evaluation of its impact on patient quality of care improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi%20agent%20systems" title="multi agent systems">multi agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-hospital%20emergency" title=" pre-hospital emergency"> pre-hospital emergency</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20architecture" title=" software architecture"> software architecture</a> </p> <a href="https://publications.waset.org/abstracts/36272/multi-agent-based-pre-hospital-emergency-management-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33738</span> Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Gallab">Maryam Gallab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Bouloiz"> Hafida Bouloiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Youness%20Chater"> Youness Chater</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Tkiouat"> Mohamed Tkiouat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance" title="maintenance">maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title=" multi-agent systems"> multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=AnyLogic%20platform" title=" AnyLogic platform"> AnyLogic platform</a> </p> <a href="https://publications.waset.org/abstracts/48344/towards-a-simulation-model-to-ensure-the-availability-of-machines-in-maintenance-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33737</span> Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjal%20Gavande">Sanjal Gavande</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Mazzuchi"> Thomas Mazzuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Sarkani"> Shahram Sarkani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20model" title="agent-based model">agent-based model</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20human-machine%20system" title=" complex human-machine system"> complex human-machine system</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20decision-making%20model" title=" human decision-making model"> human decision-making model</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20reliability%20assessment" title=" system reliability assessment"> system reliability assessment</a> </p> <a href="https://publications.waset.org/abstracts/167003/reliability-assessment-and-failure-detection-in-a-complex-human-machine-system-using-agent-based-and-human-decision-making-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33736</span> Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Afaghi">Ali Afaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehraneh%20Ghaemi"> Sehraneh Ghaemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional-order%20multi-agent%20systems" title="fractional-order multi-agent systems">fractional-order multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=leader-following%20consensus" title=" leader-following consensus"> leader-following consensus</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=directed%20graphs" title=" directed graphs"> directed graphs</a> </p> <a href="https://publications.waset.org/abstracts/67272/observer-based-leader-following-consensus-of-nonlinear-fractional-order-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33735</span> Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Neururer">Sabrina Neururer</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Schweitzer"> Marco Schweitzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Werner%20Hackl"> Werner Hackl</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Tilg"> Bernhard Tilg</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Raudaschl"> Patrick Raudaschl</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Huber"> Andreas Huber</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Pfeifer"> Bernhard Pfeifer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=agent-based" title=" agent-based"> agent-based</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-Cov-2" title=" SARS-Cov-2"> SARS-Cov-2</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a> </p> <a href="https://publications.waset.org/abstracts/151552/surviral-an-agent-based-simulation-framework-for-sars-cov-2-outcome-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33734</span> Electricity Demand Modeling and Forecasting in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xian%20Li">Xian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing-Guo%20Wang"> Qing-Guo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangshuai%20Huang"> Jiangshuai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jidong%20Liu"> Jidong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yu"> Ming Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kok%20Poh"> Tan Kok Poh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20industry" title="power industry">power industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand" title=" electricity demand"> electricity demand</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/13471/electricity-demand-modeling-and-forecasting-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33733</span> Agent-Based Modeling to Simulate the Dynamics of Health Insurance Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haripriya%20Chakraborty">Haripriya Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The healthcare system in the United States is considered to be one of the most inefficient and expensive systems when compared to other developed countries. Consequently, there are persistent concerns regarding the overall functioning of this system. For instance, the large number of uninsured individuals and high premiums are pressing issues that are shown to have a negative effect on health outcomes with possible life-threatening consequences. The Affordable Care Act (ACA), which was signed into law in 2010, was aimed at improving some of these inefficiencies. This paper aims at providing a computational mechanism to examine some of these inefficiencies and the effects that policy proposals may have on reducing these inefficiencies. Agent-based modeling is an invaluable tool that provides a flexible framework to model complex systems. It can provide an important perspective into the nature of some interactions that occur and how the benefits of these interactions are allocated. In this paper, we propose a novel and versatile agent-based model with realistic assumptions to simulate the dynamics of a health insurance marketplace that contains a mixture of private and public insurers and individuals. We use this model to analyze the characteristics, motivations, payoffs, and strategies of these agents. In addition, we examine the effects of certain policies, including some of the provisions of the ACA, aimed at reducing the uninsured rate and the cost of premiums to move closer to a system that is more equitable and improves health outcomes for the general population. Our test results confirm the usefulness of our agent-based model in studying this complicated issue and suggest some implications for public policies aimed at healthcare reform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20modeling" title="agent-based modeling">agent-based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20reform" title=" healthcare reform"> healthcare reform</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20markets" title=" insurance markets"> insurance markets</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20policy" title=" public policy"> public policy</a> </p> <a href="https://publications.waset.org/abstracts/113072/agent-based-modeling-to-simulate-the-dynamics-of-health-insurance-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33732</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=1125">1125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=1126">1126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling%20and%20simulation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>