CINXE.COM
Materials Science Forum Vol. 1107 | Scientific.Net
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This special issue is dedicated to the analysis of the latest research results in the field of applied and functional materials and will be helpful to many researchers and engineers whose activity is related to materials science." /> <link rel="canonical" href="https://www.scientific.net/MSF.1107" /> <meta property="og:title" content="Materials Science Forum Vol. 1107 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/MSF.1107" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Materials Science Forum Vol. 1107 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FMSF.1107" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FMSF.1107" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/MSF.1113" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1113</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1112" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1112</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1111" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1111</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1110" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1110</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1109" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1109</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1108" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1108</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1107" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1107</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1106" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1106</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1105" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1105</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1104" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1104</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1103" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1103</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1102" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1102</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/MSF.1101" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Materials Science Forum <br /> <span class="paper-volume-number">Vol. 1101</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/MSF">Materials Science Forum</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Materials Science Forum Vol. 1107</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Materials Science Forum Vol. 1107</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-VsI97K">https://doi.org/10.4028/v-VsI97K</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/MSF.1107/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/MSF.1107_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/MSF.1107/2">2</a></li><li><a href="/MSF.1107/3">3</a></li><li class="PagedList-skipToNext"><a href="/MSF.1107/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.3">Hybrid Carbon Fiber Reinforced Laminates with Interlaminar Nanofibers</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Leandro Iorio, Fabrizio Quadrini, Denise Bellisario, Alice Proietti, Nicola Gallo, Loredana Santo </div> </div> <div id="abstractTextBlock601682" class="volume-info volume-info-text volume-info-description"> Abstract: Polyamide (PA) nanofibers (NFs) interleaves have been inserted as a continuous non-woven mat between prepreg plies of a carbon fiber reinforced (CFR) laminate during lamination. Hybridization has been made by mixing two different material scales, being the micro-scale and the nanoscale of the CFs and the NFs respectively and two different polymer types being thermosetting the matrix and thermoplastic the NFs. Final composite laminates have been produced by vacuum bagging and autoclave molding according to the consolidated industrial procedure of aeronautic parts. Traditional square CFR laminates with 20 plies have been also manufactured using the same unidirectional (UD) CFR prepreg tape with 0/90 stacking sequence for comparison. Rectangular specimens were finally extracted from the manufactured plates. Dynamic mechanical analysis (DMA) and three-point bending tests were carried out. The reduction of the glass transition temperature T<sub>g</sub> revealed the achieved interaction among PANFs and the resin matrix. Moreover, bending strength increased up to 9% for hybrid laminates revealing that nanostructures can add functionalities to traditional composite laminates without affecting their mechanical performances. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601682', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.9">Additive Layer Manufacturing of Carbon Fiber/PEKK Composites for Aeronautic Application</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Fabrizio Quadrini, Denise Bellisario, Leandro Iorio, Alice Proietti, Loredana Santo </div> </div> <div id="abstractTextBlock601578" class="volume-info volume-info-text volume-info-description"> Abstract: A 3d printer has been prototyped for additive manufacturing of carbon fiber (CF) poly-ether-ketone-ketone (PEKK) composites. The machine consisted of a SCARA robot, equipped with an extrusion device. The nozzle was designed to allow the deposition of thin unidirectional (UD) tapes without affecting the fiber continuity. An elastic connection between the robot end-effector and the extruder was used for allowing tape agglomeration during manufacturing. Deposition tests were carried out at the extrusion temperature of 400掳C and the rate of 130 mm/min, for a maximum number of 3 layers on a CF-epoxy laminate as substrate. The good agglomeration of the 3d printed parts and their adhesion on the composite substrate are shown by the resulted final thickness, and the ability to machine them by end milling. Results show the feasibility of using this technology for the manufacturing of composite shims in the aeronautic sector. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601578', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 9 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.15">Graphite- and Graphene-Based Polymer Nanocomposites for Flexible Sensors and Actuators in Health Care and Soft Robotics Applications</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Silvia Schintke, Badil Mujovi, Darja Loiko, Stefan del Rossi </div> </div> <div id="abstractTextBlock601835" class="volume-info volume-info-text volume-info-description"> Abstract: Flexible sensors and actuators have broad applications in the fields of wearable electronics for health, sports, functional textiles, robotics and cobot applications. Graphene-or graphite-based polymer nanocomposites are promising materials for the development of soft sensors and actuators. This study investigates strain sensing properties of silicon rubber with various graphene filler concentrations (8wt%-12wt%). Current-voltage characteristics have been measured under various strains. We obtain that the sensor鈥檚 electrical resistance, for a given voltage, can be approximated by a linear fit of the logarithmic resistance as function of the extension ratio of the sensor. The obtained mechanically induced logarithmic resistor behavior of the polymer nanocomposite is highly promising for the development of electronic sensing and control. Furthermore, thin film graphite layers were investigated on highly stretchable silicone membranes. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601835', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 15 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.21">Preparation, Microstructure, and Mechanical Properties of Aluminum Matrix Composite by Accumulating Roll Bonding Method</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Gen Sasaki, Wen Chuang Liu, Kenjiro Sugio </div> </div> <div id="abstractTextBlock601998" class="volume-info volume-info-text volume-info-description"> Abstract: The ARB (Accumulative Roll Bonding) method is greatly watched as a new severe plastic deformation process that uses only a conventional general rolling machine. The ARB method is a preparation method of ultra-fine-grained, high-strength thin metal and alloy sheets by repeated rolling. The purpose of this study was to clarify the effectiveness of the ARB method as a metal matrix composite manufacturing process. At first, alumina particles and short carbon fibers were used as dispersoids, and pure aluminum was used as the thin plate. Then, the dispersoids were deposited on a pure aluminum plate to 2 vol.% dispersoids. Six of these aluminum sheets were stacked to form a multi-layer composite sheet, which was then cold rolled at a rolling reduction of 67%. After rolling, the sheet composites were cut in half, overlapped, and rolled again. The composites were obtained by repeating this process. When the repetition exceeded 6 times, the dispersoids tended to disperse in the aluminum matrix. In addition, uniform dispersion progressed through further repeat rolling. By repeated rolling, the tensile strength of the composite sheets was greatly improved. In addition, the tensile strength of the composites was higher than that of the ARB-processed monolithic aluminum sheet. The improvement in strength was caused by the refinement of aluminum grains rather than the particle dispersion. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601998', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 21 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.27">Relation between Process Parameters and Pressure during Friction Stir Forming in the Development of a Superplastic Composite Steel Sheets</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Hamed Mofidi Tabatabaei, Takahiro Ohashi, Tadashi Nishihara </div> </div> <div id="abstractTextBlock602866" class="volume-info volume-info-text volume-info-description"> Abstract: In previous research conducted by the authors, a new vibration-damping steel sheet was developed using a new method employing friction stir forming (FSF) to create a laminated composite sheet in which steel sheets and superplastic alloys are laminated in layers. However, the details of the bonding mechanism have not yet been clarified. The present study investigates the relationship between the pressure during the process and the weld interface in the creation of the mentioned superplastic composite sheet. More specifically, a 0.5mm thick perforated steel plate is inserted between two Zn-22Al superplastic alloys and the FSF is applied to the top layer of Zn-22Al. The probe of the FSF tool passes directly above the perforated steel plate, the material stirred by the probe plastically flows into the hole and is joined to the underlying Zn-22Al interface by superplastic diffusion bonding (SPF/DB). It was revealed that the process parameters (rotational speed and tool feed rate) must be perfectly adequate to produce adequate heat input and pressure leading to a proper plastic flow of the material and the occurrence of superplasticity in Zn-22Al. In this study, as a first step to clarify the detailed joining mechanism, the amount of pressure applied to the specimen during the process is measured. While changing the process parameters, the pressure was measured at three points, under the probe of the friction stir process tool and, on the advancing, and retreating sides, to investigate the relationship between the parameters and the pressure at the joint interface. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602866', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 27 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.33">Influence of Green Plantain Peel Ash and Alumina Reinforcement on the Physio-Mechanical Properties of Aluminium Matrix Hybrid Composites</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Festus Ben, Funke Roseline Amodu, Peter Apata Olubambi </div> </div> <div id="abstractTextBlock603713" class="volume-info volume-info-text volume-info-description"> Abstract: Hybrid composites are gaining increasing interest in the development of aluminium metal matrix (AMCs) for various industrial applications owing to their ability to integrate multiple functionalities within a single material matrix with enhanced physio-mechanical properties as opposed to single-fibre reinforced composites. Green plantain peel ash (GPPA) is an agricultural waste with potential for reinforcement purposes. However, no study has investigated GPPA natural filler as a reinforcement for AMCs. This study, therefore, aims at assessing the influence of variations in GPPA particles and alumina as reinforcements in the fabrication of hybrid composites using Al-Mg-Si alloy as a matrix. This study also reassessed the chemical composition of the GPPA particles and investigated their mechanical properties. However, enhanced mechanical properties, including hardness, tensile strength, and ductility, were observed at varying weight ratios. Results obtained in this study suggest a promising potential application of GPPA particulates as complementing reinforcements in the production of lightweight, strong, and high-performance AMCs well-suited for engineering, aerospace, construction, and packaging applications. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603713', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 33 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.49">A Unique Hall-Petch Relation of Harmonic Structure Designed Pure Ni</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Daichi Matsuzaka, Kentaro Nagano, Taiki Kambara, Mie Kawabata, Tomoko Kuno, Hiroshi Fujiwara, Kei Ameyama </div> </div> <div id="abstractTextBlock601787" class="volume-info volume-info-text volume-info-description"> Abstract: Harmonic structure has a heterogeneous microstructure consisting of bimodal grain size together with a controlled and specific topological 3D distribution of fine and coarse grains. These microstructural features of the harmonic structure materials lead to unique mechanical properties. In this study, harmonic structure was designed using the severe plastic deformation powder metallurgy process at room and cryogenic temperatures on pure nickel. There is no difference in appearance between mechanically milled (MM) powder at room and cryogenic temperatures. The compacts of the MM powder show the harmonic structure with a network fine grained area and the dispersed coarse grain area. The MM at cryogenic temperature affects the compact of the MM powder milled for 86.4 ks and its effects include an increase in shell fraction and a decrease in core grain size. Moreover, the harmonic structure materials show a synergy extra hardening in Hall-Petch relation. It is noteworthy that the harmonic structure materials exhibit a higher Hall-Petch coefficient than the homogeneous compacts despite of the same material. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601787', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 49 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.55">High Temperature Deformation Behavior and Microstructure Evolution of Harmonic Structure Composites with WC-Co and High Speed Steel</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Akiyoshi Koiso, Tomoko Kuno, Mie Kawabata, Kei Ameyama, Hiroshi Fujiwara </div> </div> <div id="abstractTextBlock601783" class="volume-info volume-info-text volume-info-description"> Abstract: The high-temperature deformation behavior and microstructural changes of harmonic structure composites with WC-Co alloys and high-speed steel (HSS) were investigated in detail. A harmonic structure composite was fabricated by consolidating the mechanically milled powder having WC-Co and HSS powder. The harmonic structure composite demonstrates the microstructure composed of network area (WC-Co) and dispersed area (HSS). The harmonic structure composite shows a sufficient compressive strength in the compression tests at 773 K, but the compression strength decreases at temperatures of above 873 K. The 0.2% proof stress at high temperature almost unchanged even if the network area fraction changed. Furthermore, the network area plays an important role in the high temperature deformation of harmonic structure composites. These results suggest that the formation of voids for WC-Co boundary sliding and poor sintering is an important factor in stress reduction in the high-temperature compression of harmonic structure composites. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601783', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 55 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/MSF.1107.61">Misorientation of Grains in Fatigue of Harmonic Structured Steel Observed by Diffraction Contrast Tomography Using Ultrabright Synchrotron Radiation</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Yoshikazu Nakai, Daiki Shiozawa, Shoichi Kikuchi, Ichiro Mishima, Mie Kawabata, Kei Ameyama </div> </div> <div id="abstractTextBlock597923" class="volume-info volume-info-text volume-info-description"> Abstract: Diffraction contrast tomography using ultrabright synchrotron radiation X-rays was performed on an austenitic stainless steel with a bimodal harmonic structure in which a network structure of fine grains (Shell) surrounds a coarse grain structure (Core). Then, not only were the shape and position of each grain reconstructed, but the change in excess dislocation density during the fatigue process, 螖蟻, was also measured. The results show that 螖蟻 depends on the diffraction plane, Schmidt factor, and grain size, and that the change in 螖蟻 during the fatigue process of a harmonic structured material is less than that of a conventional material. This result indicates that the network of fine grains in the harmonic structure supports microdeformation and suppresses the deformation of coarse grains. Furthermore, it was found that 螖蟻 of grains unrelated to crack initiation increased continuously with the number of cycles, whereas that around the crack initiation site decreased with crack initiation. </div> <div> <a data-readmore="{ block: '#abstractTextBlock597923', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 61 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 22 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/MSF.1107/2">2</a></li><li><a href="/MSF.1107/3">3</a></li><li class="PagedList-skipToNext"><a href="/MSF.1107/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read & Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=MSF&volumeBegin=1107&volumeEnd=1107', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>