CINXE.COM
Search results for: flexible pavement design
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flexible pavement design</title> <meta name="description" content="Search results for: flexible pavement design"> <meta name="keywords" content="flexible pavement design"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flexible pavement design" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flexible pavement design"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13491</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flexible pavement design</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13491</span> Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amare%20Setegn%20Enyew">Amare Setegn Enyew</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikila%20Teklu%20Wodajo"> Bikila Teklu Wodajo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design" title="flexible pavement design">flexible pavement design</a>, <a href="https://publications.waset.org/abstracts/search?q=AASHTO%201993" title=" AASHTO 1993"> AASHTO 1993</a>, <a href="https://publications.waset.org/abstracts/search?q=ERA" title=" ERA"> ERA</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=AASHERA" title=" AASHERA"> AASHERA</a> </p> <a href="https://publications.waset.org/abstracts/181112/software-development-for-aashto-and-ethiopian-roads-authority-flexible-pavement-design-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13490</span> Non-Linear Behavior of Granular Materials in Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Tichamakdj">Mounir Tichamakdj</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Sandjak"> Khaled Sandjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20materials" title="granular materials">granular materials</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20equivalent%20model" title=" linear equivalent model"> linear equivalent model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20behavior" title=" non-linear behavior"> non-linear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20design" title=" pavement design"> pavement design</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20volumetric%20strain%20model" title=" shear volumetric strain model"> shear volumetric strain model</a> </p> <a href="https://publications.waset.org/abstracts/95649/non-linear-behavior-of-granular-materials-in-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13489</span> A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh">Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Keramatikerman"> Mahdi Keramatikerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Nikraz"> Hamid Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title="rigid pavement">rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenpave" title=" Kenpave"> Kenpave</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenslab" title=" Kenslab"> Kenslab</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/44103/a-study-on-numerical-modelling-of-rigid-pavement-temperature-and-thickness-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13488</span> Temperature Profile Modelling in Flexible Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Csaba%20T%C3%B3th">Csaba Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20Lakatos"> Éva Lakatos</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Peth%C5%91"> László Pethő</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoyoung%20Cho"> Seoyoung Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title="temperature profile">temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20modeling" title=" flexible pavement modeling"> flexible pavement modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20modeling" title=" temperature modeling"> temperature modeling</a> </p> <a href="https://publications.waset.org/abstracts/123609/temperature-profile-modelling-in-flexible-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13487</span> Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouzieh%20Rouzmehr">Fouzieh Rouzmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mousavi"> Mehdi Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement" title="flexible pavement">flexible pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic" title=" elastic"> elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/145159/comparison-of-elastic-and-viscoelastic-modeling-for-asphalt-concrete-surface-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13486</span> Pavement Failures and Its Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maulik%20L.%20Sisodia">Maulik L. Sisodia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tirth%20K.%20Raval"> Tirth K. Raval</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarsh%20S.%20Mistry"> Aarsh S. Mistry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the ongoing researches about the defects in both flexible and rigid pavement and the maintenance in both flexible and rigid pavements. Various defects in pavements have been identified since the existence of both flexible and rigid pavement. Flexible Pavement failure is defined in terms of decreasing serviceability caused by the development of cracks, ruts, potholes etc. Flexible Pavement structure can be destroyed in a single season due to water penetration. Defects in flexible pavements is a problem of multiple dimensions, phenomenal growth of vehicular traffic (in terms of no. of axle loading of commercial vehicles), the rapid expansion in the road network, non-availability of suitable technology, material, equipment, skilled labor and poor funds allocation have all added complexities to the problem of flexible pavements. In rigid pavements due to different type of destress the failure like joint spalling, faulting, shrinkage cracking, punch out, corner break etc. Application of correction in the existing surface will enhance the life of maintenance works as well as that of strengthening layer. Maintenance of a road network involves a variety of operations, i.e., identification of deficiencies and planning, programming and scheduling for actual implementation in the field and monitoring. The essential objective should be to keep the road surface and appurtenances in good condition and to extend the life of the road assets to its design life. The paper describes lessons learnt from pavement failures and problems experienced during the last few years on a number of projects in India. Broadly, the activities include identification of defects and the possible cause there off, determination of appropriate remedial measures; implement these in the field and monitoring of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flexible%20Pavements" title="Flexible Pavements">Flexible Pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=Rigid%20Pavements" title=" Rigid Pavements"> Rigid Pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=Defects" title=" Defects"> Defects</a>, <a href="https://publications.waset.org/abstracts/search?q=Maintenance" title=" Maintenance"> Maintenance</a> </p> <a href="https://publications.waset.org/abstracts/120797/pavement-failures-and-its-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13485</span> The Effect of Proper Drainage on the Cost of Building and Repairing Roads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Tabatabaei">Seyed Abbas Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Amini"> Saeid Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Ghafouri"> Hamid Reza Ghafouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors in flexible pavement failure is the lack of proper drainage along the roads. Water on the Paving Systems is one of the main parameters of pavement failure. Though, if water is discharged without delay and prior to discharge in order to prevent damaging the pavement the lifetime of the pavement will be considerably increased. In this study, duration of water stay and materials properties in pavement systems and the effects of aggregate gradation, and hydraulic conductivity of the drainage rate and Effects of subsurface drainage systems, drainage and reduction in the lifetime of the pavement have been studied. The study conducted in accordance with the terms offered can be concluded as under. The more hydraulic conductivity the less drainage time and the use of sub-surface drainage system causes two to three times of the pavement lifetime. In this research it has been tried by study and calculate the drained and undrained pavements lifetime by considering the effectiveness of water and drainage coefficient on flexible materials modulus and by using KENLAYER software to compare the present value cost of these pavements has been paid for a 20 year lifetime design. In this study, 14 pavement sections have been considered, of which 7 sections have been drained and 7 other not. Results show that drained pavements have more initial costs but the failure severity is so little in them and have longer lifetime for a 20 year lifetime design, the drained pavements seem so economic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage" title="drainage">drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20and%20sub-base" title=" base and sub-base"> base and sub-base</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity%20modulus" title=" elasticity modulus"> elasticity modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/1249/the-effect-of-proper-drainage-on-the-cost-of-building-and-repairing-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13484</span> Experimental Assessment of Polypropylene Plastic Aggregates(PPA) for Pavement Construction: Their Mechanical Properties via Marshall Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiullah%20Bhatti">Samiullah Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Safdar%20Abbas%20Zaidi"> Safdar Abbas Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Murtaza%20Ali%20Jafri"> Syed Murtaza Ali Jafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper presents the results of using plastic aggregate in flexible pavement. Plastic aggregates have been prepared with polypropylene (PP) recycled products and have been tested with Marshall apparatus. Grade 60/70 bitumen has been chosen for this research with a total content of 2.5 %, 3 % and 3.5 %. Plastic aggregates are mixed with natural aggregates with different proportions and it ranges from 10 % to 100 % with an increment of 10 %. Therefore, a total of 10 Marshall cakes were prepared with plastic aggregates in addition to a standard pavement sample. In total 33 samples have been tested for Marshall stability, flow and voids in mineral aggregates. The results show an increase in the value when it changes from 2.5 % bitumen to 3 % and after then it goes again toward declination. Thus, 3 % bitumen content has been found as the most optimum value for flexible pavements. Among all the samples, 20 % PP aggregates sample has been found satisfactory with respect to all the standards provided by ASTM. Therefore, it is suggested to use 20 plastic aggregates in flexible pavement construction. A comparison of bearing capacity and skid resistance is also observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marshall%20test" title="marshall test">marshall test</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20plastic" title=" polypropylene plastic"> polypropylene plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20aggregates" title=" plastic aggregates"> plastic aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20alternative" title=" flexible pavement alternative"> flexible pavement alternative</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20of%20plastic%20waste" title=" recycling of plastic waste"> recycling of plastic waste</a> </p> <a href="https://publications.waset.org/abstracts/148528/experimental-assessment-of-polypropylene-plastic-aggregatesppa-for-pavement-construction-their-mechanical-properties-via-marshall-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13483</span> Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulraaof%20H.%20Alqaili">Abdulraaof H. Alqaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanistic-empirical%20pavement%20design%20guide%20%28MEPDG%29" title="mechanistic-empirical pavement design guide (MEPDG)">mechanistic-empirical pavement design guide (MEPDG)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20characteristics" title=" traffic characteristics"> traffic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20properties" title=" materials properties"> materials properties</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh" title=" Riyadh"> Riyadh</a> </p> <a href="https://publications.waset.org/abstracts/63089/preparing-data-for-calibration-of-mechanistic-empirical-pavement-design-guide-in-central-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13482</span> Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Kherudkar">Pooja Kherudkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Namdeo%20Hedaoo"> Namdeo Hedaoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distress%20analysis" title="distress analysis">distress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20condition%20rating" title=" pavement condition rating"> pavement condition rating</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance%20treatments" title=" preventive maintenance treatments"> preventive maintenance treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20distress%20measurement" title=" surface distress measurement"> surface distress measurement</a> </p> <a href="https://publications.waset.org/abstracts/97608/causes-of-deteriorations-of-flexible-pavement-its-condition-rating-and-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13481</span> Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Sandjak">Khaled Sandjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine">Boualem Tiliouine </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FWD%20backcalculations" title="FWD backcalculations">FWD backcalculations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulations" title="finite element simulations">finite element simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20resilient%20behaviour" title="Nonlinear resilient behaviour">Nonlinear resilient behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20response%20and%20performance" title="pavement response and performance">pavement response and performance</a>, <a href="https://publications.waset.org/abstracts/search?q=RLT%20test%20results" title="RLT test results">RLT test results</a>, <a href="https://publications.waset.org/abstracts/search?q=unbound%20granular%20materials" title="unbound granular materials">unbound granular materials</a> </p> <a href="https://publications.waset.org/abstracts/32935/effect-of-unbound-granular-materials-nonlinear-resilient-behaviour-on-pavement-response-and-performance-of-low-volume-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13480</span> Structural Evaluation of Cell-Filled Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Roy">Subrat Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-filled%20pavement" title="cell-filled pavement">cell-filled pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WBM" title=" WBM"> WBM</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD" title=" FWD"> FWD</a>, <a href="https://publications.waset.org/abstracts/search?q=Moorum" title=" Moorum"> Moorum</a> </p> <a href="https://publications.waset.org/abstracts/19215/structural-evaluation-of-cell-filled-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13479</span> Height of Highway Embankment for Tolerable Residual Settlement of Loose Cohesionless Subsoil Overlain by Stronger Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharifullah%20Ahmed">Sharifullah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual settlement of cohesionless or non-plastic soil of different strength underlying highway embankment overlain by stronger soil layer highway embankment is studied. A parametric study is carried out for different height of embankment and for different ESAL factor. The sum of elastic settlements of cohesionless subsoil due to axle induced stress and due to self-weight of pavement layers is termed as the residual settlement. The values of residual settlement (Sr) for different heights of road embankment (He) are obtained and presented as design charts for different SPT Value (N60) and ESAL factor. For rigid pavement and flexible pavement in approach to bridge or culvert, the tolerable residual settlement is 0.100m. This limit is taken as 0.200m for flexible pavement in general sections of highway without approach to bridge or culvert. A simplified guideline is developed for design of highway embankment underlain by very loose to loose cohesionless subsoil overlain by a stronger soil layer for limiting value of the residual settlement. In the current research study range of ESAL factor is 1-10 and range of SPT value (N60) is 1-10. That is found that, ground improvement is not required if the overlying stronger layer is minimum 1.5m and 4.0m for general road section of flexible pavement except bridge or culvert approach and for rigid pavement or flexible pavement in bridge or culvert approach. Tables and charts are included in the prepared guideline to obtain minimum allowable height of highway embankment to limit the residual settlement with in mentioned tolerable limit. Allowable values of the embankment height (He) are obtained corresponding to tolerable or limiting level of the residual settlement of loose subsoil for different SPT value, thickness of stronger layer (d) and ESAL factor. The developed guideline is may be issued to be used in assessment of the necessity of ground improvement in case of cohesionless subsoil underlying highway embankment overlain by stronger subsoil layer for limiting residual settlement. The ground improvement is only to be required if the residual settlement of subsoil is more than tolerable limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axle%20pressure" title="axle pressure">axle pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20single%20axle%20load" title=" equivalent single axle load"> equivalent single axle load</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=highway%20embankment" title=" highway embankment"> highway embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerable%20residual%20settlement" title=" tolerable residual settlement"> tolerable residual settlement</a> </p> <a href="https://publications.waset.org/abstracts/155761/height-of-highway-embankment-for-tolerable-residual-settlement-of-loose-cohesionless-subsoil-overlain-by-stronger-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13478</span> Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Altaf%20Wasil">Imran Altaf Wasil</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Ganvir"> Dinesh Ganvir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement" title="reclaimed asphalt pavement">reclaimed asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20quality%20concrete" title=" pavement quality concrete"> pavement quality concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20granulated%20blast%20furnace%20slag" title=" glass granulated blast furnace slag"> glass granulated blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20durability%20properties" title=" mechanical and durability properties"> mechanical and durability properties</a> </p> <a href="https://publications.waset.org/abstracts/150742/experimental-investigation-of-the-effect-of-glass-granulated-blast-furnace-slag-on-pavement-quality-concrete-pavement-made-of-recycled-asphalt-pavement-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13477</span> GIS Pavement Maintenance Selection Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekdelawit%20Teferi%20Alamirew">Mekdelawit Teferi Alamirew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pavement" title="pavement">pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=index" title=" index"> index</a> </p> <a href="https://publications.waset.org/abstracts/182371/gis-pavement-maintenance-selection-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13476</span> Anlaytical Studies on Subgrade Soil Using Jute Geotextile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Vinod%20Kumar">A. Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sunny%20Deol"> G. Sunny Deol</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar"> Rakesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chandra"> B. Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBR" title="CBR">CBR</a>, <a href="https://publications.waset.org/abstracts/search?q=jute%20geotextile" title=" jute geotextile"> jute geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20volume%20road" title=" low volume road"> low volume road</a>, <a href="https://publications.waset.org/abstracts/search?q=weaker%20soil" title=" weaker soil"> weaker soil</a> </p> <a href="https://publications.waset.org/abstracts/29186/anlaytical-studies-on-subgrade-soil-using-jute-geotextile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13475</span> Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makara%20Rith">Makara Rith</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Kyu%20Kim"> Young Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Woo%20Lee"> Seung Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20pavement" title="composite pavement">composite pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=ports" title=" ports"> ports</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting" title=" rutting"> rutting</a> </p> <a href="https://publications.waset.org/abstracts/85660/mechanistic-study-of-composite-pavement-behavior-in-heavy-duty-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13474</span> Analytical Studies on Subgrade Soil Using Jute Geotextiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Vinod%20Kumar">A. Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sunny%20Deol"> G. Sunny Deol</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar"> Rakesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chandra"> B. Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBR" title="CBR">CBR</a>, <a href="https://publications.waset.org/abstracts/search?q=Jute%20geotextile" title=" Jute geotextile"> Jute geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20volume%20road" title=" low volume road"> low volume road</a>, <a href="https://publications.waset.org/abstracts/search?q=weaker%20soil" title=" weaker soil"> weaker soil</a> </p> <a href="https://publications.waset.org/abstracts/30184/analytical-studies-on-subgrade-soil-using-jute-geotextiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13473</span> Design of Roller Compacting Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Zarrin">O. Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramezan%20Shirazi"> M. Ramezan Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a> </p> <a href="https://publications.waset.org/abstracts/23282/design-of-roller-compacting-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13472</span> Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Fakhri">Mansour Fakhri</a>, <a href="https://publications.waset.org/abstracts/search?q=Monire%20Zokaei"> Monire Zokaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20cost%20analysis" title=" lifecycle cost analysis"> lifecycle cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic%20empirical" title=" mechanistic empirical"> mechanistic empirical</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20pavement" title=" perpetual pavement"> perpetual pavement</a> </p> <a href="https://publications.waset.org/abstracts/33524/cost-effectiveness-and-performance-study-of-perpetual-pavement-using-abaqus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13471</span> Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Bhuyan">Mohammad R. Bhuyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20J.%20Khattak"> Mohammad J. Khattak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20treated%20base" title="cement treated base">cement treated base</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20stabilized%20base" title=" cement stabilized base"> cement stabilized base</a>, <a href="https://publications.waset.org/abstracts/search?q=reflective%20cracking" title=" reflective cracking "> reflective cracking </a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement" title=" flexible pavement "> flexible pavement </a> </p> <a href="https://publications.waset.org/abstracts/114017/field-performance-of-cement-treated-bases-as-a-reflective-crack-mitigation-technique-for-flexible-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13470</span> A Study on FWD Deflection Bowl Parameters for Condition Assessment of Flexible Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjval%20J.%20Solanki">Ujjval J. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Prof.%28Dr.%29%20P.J.%20Gundaliya">Prof.(Dr.) P.J. Gundaliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prof.M.D.%20Barasara"> Prof.M.D. Barasara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of Falling Weight Deflectometer is to evaluate structural performance of the flexible pavement. The exercise of back calculation is required to know the modulus of elasticity of existing in-service pavement. The process of back calculation needs in-depth field experience for the input of range of modulus of elasticity of bituminous, granular and subgrade layer, and its required number of trial to find such matching moduli with the observed FWD deflection on the field. The study carried out at Barnala-Mansa State Highway Punjab-India using FWD before and after overlay; the deflections obtained at 0 on the load cell, 300, 600, 900,1200, 1500 and 1800 mm interval from the load cell these seven deflection results used to calculate Surface Curvature Index (SCI), Base damage Index (BDI), Base curvature index (BCI). This SCI, BCI and BDI indices are useful to predict the structural performance of in-service pavement and also useful to identify homogeneous section for condition assessment. The SCI, BCI and BDI range are determined for before and after overlay the range of SCI 520 to 51 BDI 294 to 63 BCI 83 to 0.27 for old pavement and SCI 272 to 23 BDI 228 to 28, BCI 25.85 to 4.60 for new pavement. It also shows good correlation with back calculated modulus of elasticity of all the three layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20calculation" title="back calculation">back calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20damage%20index" title=" base damage index"> base damage index</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20curvature%20index" title=" base curvature index"> base curvature index</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD%20%28Falling%20Weight%20Deflectometer%29" title=" FWD (Falling Weight Deflectometer)"> FWD (Falling Weight Deflectometer)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20curvature%20index" title=" surface curvature index"> surface curvature index</a> </p> <a href="https://publications.waset.org/abstracts/45963/a-study-on-fwd-deflection-bowl-parameters-for-condition-assessment-of-flexible-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13469</span> Moisture Variations in Unbound Layers in an Instrumented Pavement Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiqul%20A.%20Tarefder"> Rafiqul A. Tarefder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the moisture variations of unbound layers from April 2012 to January 2014 in the Interstate 40 (I-40) pavement section in New Mexico. Three moisture probes were installed at different layers inside the pavement which measure the continuous moisture variations of the pavement. Data show that the moisture contents of unbound layers are typically constant throughout the day and month unless there is rainfall. Moisture contents of all unbound layers change with rainfall. Change in ground water table may affect the moisture content of unbound layers which has not investigated in this study. In addition, the Level 3 predictions of moisture contents using the Pavement Mechanistic-Empirical (ME) Design software are compared and found quite reasonable. However, results presented in the current study may not be applicable for pavement in other regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20probes" title=" moisture probes"> moisture probes</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20modulus" title=" resilient modulus"> resilient modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20model" title=" climate model "> climate model </a> </p> <a href="https://publications.waset.org/abstracts/21090/moisture-variations-in-unbound-layers-in-an-instrumented-pavement-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13468</span> Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingwei%20Yi">Mingwei Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Liujie%20Guo"> Liujie Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongjun%20Pan"> Zongjun Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Lin"> Xiang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoming%20Yi"> Xiaoming Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title="structural integrity">structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=highways" title=" highways"> highways</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20evaluation" title=" pavement evaluation"> pavement evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete%20pavement" title=" asphalt concrete pavement"> asphalt concrete pavement</a> </p> <a href="https://publications.waset.org/abstracts/181500/study-on-the-pavement-structural-performance-of-highways-in-the-north-china-region-based-on-pavement-distress-and-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13467</span> Stresses Induced in Saturated Asphalt Pavement by Moving Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Meijie%20Xue"> Meijie Xue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saturated%20asphalt%20pavements" title="saturated asphalt pavements">saturated asphalt pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20loads" title=" moving loads"> moving loads</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20fluid%20pressure" title=" excess pore fluid pressure"> excess pore fluid pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20of%20pavement" title=" stress of pavement"> stress of pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=biot%20theory" title=" biot theory"> biot theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20and%20strain%20of%20pavement" title=" stress and strain of pavement"> stress and strain of pavement</a> </p> <a href="https://publications.waset.org/abstracts/48170/stresses-induced-in-saturated-asphalt-pavement-by-moving-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13466</span> Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20R.%20Menon">Anjana R. Menon</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Bhasi"> Anjana Bhasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geocell" title="Geocell">Geocell</a>, <a href="https://publications.waset.org/abstracts/search?q=Geogrid" title=" Geogrid"> Geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexible%20Pavement" title=" Flexible Pavement"> Flexible Pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=Repetitive%20Wheel%20Load" title=" Repetitive Wheel Load"> Repetitive Wheel Load</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20Analysis" title=" Numerical Analysis"> Numerical Analysis</a> </p> <a href="https://publications.waset.org/abstracts/164654/comparative-assessment-of-geocell-and-geogrid-reinforcement-for-flexible-pavement-numerical-parametric-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13465</span> Developing Pavement Structural Deterioration Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gregory%20Kelly">Gregory Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Chai"> Gary Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittampalam%20Manoharan"> Sittampalam Manoharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Delaney"> Deborah Delaney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual" title="conceptual">conceptual</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20structural%20number" title=" pavement structural number"> pavement structural number</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20structural%20deterioration%20curve" title=" pavement structural deterioration curve"> pavement structural deterioration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management%20system" title=" pavement management system"> pavement management system</a> </p> <a href="https://publications.waset.org/abstracts/83307/developing-pavement-structural-deterioration-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13464</span> Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brody%20R.%20Clark">Brody R. Clark</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaminda%20Gallage"> Chaminda Gallage</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Yeaman"> John Yeaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20stiffness" title=" flexural stiffness"> flexural stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20bending" title=" four point bending"> four point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=multigrade%20bitumen" title=" multigrade bitumen"> multigrade bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title=" recycled asphalt pavement"> recycled asphalt pavement</a> </p> <a href="https://publications.waset.org/abstracts/84273/temperature-susceptibility-of-multigrade-bitumen-asphalt-and-an-approach-to-account-for-temperature-variation-through-deep-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13463</span> Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Jayalakshmi">D. Jayalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Bhosale"> S. S. Bhosale </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20thickness" title="base thickness">base thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20approach" title=" design approach"> design approach</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20accelerated%20pavement%20set%20up" title=" full scale accelerated pavement set up"> full scale accelerated pavement set up</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20condition" title=" Indian condition"> Indian condition</a> </p> <a href="https://publications.waset.org/abstracts/134938/geosynthetic-reinforced-unpaved-road-literature-study-and-design-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13462</span> Impact of Using Pyrolytic Carbon Black as Asphalt Modifier on Wearing Course of Flexible Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiya%20Siddique">Samiya Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Taslima%20Akter%20Elma"> Taslima Akter Elma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrina%20Mahzabin"> Shahrina Mahzabin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamanna%20Jerin"> Tamanna Jerin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Russedul%20Islam"> Mohammed Russedul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the maneuver and designing of highway engineering, pavement performance is a principal concern. Quality of construction and materials, traffic volume, climate, etc. are the factors that affect the performance of asphalt concrete. Modified asphalt requires to attain greater strength and stability even at inimical circumstances. In this point of view, pyrolytic carbon black (PCB), which is a by-product of waste tire pyrolysis, holds incomparable properties that individualizes it from other conventional fillers by making it an imminent modifier of bitumen. Optimum asphalt content of 60/70 penetration grade asphalt is determined 5% through the Marshall Stability and Flow test for the wearing course of flexible pavement. 5, 10, and 15 percentages of PCB are then used with neat asphalt for modification. Deviations of physical and rheological properties are investigated on both PCB modified and neat asphalt by going through several laboratory tests such as penetration, softening point, and ductility tests. The obtained results reveal that the performance of paving asphalt can be upgraded by modifying it with PCB. With the increasing percentage of PCB, ductility is gradually decreased, and also penetration grade is gradually reduced from 60/70 to 30/40. Furthermore, asphalt mixtures modified with PCB demonstrate higher stability and lower flow values. The research discloses that the apposite percentage of PCB used in asphalt concrete plays a significant role in the advancement of pavement performances and reutilizing of waste tires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20modification" title="asphalt modification">asphalt modification</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20performances" title=" pavement performances"> pavement performances</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20carbon%20black" title=" pyrolytic carbon black"> pyrolytic carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=marshall%20stability" title=" marshall stability"> marshall stability</a>, <a href="https://publications.waset.org/abstracts/search?q=wearing%20course" title=" wearing course"> wearing course</a> </p> <a href="https://publications.waset.org/abstracts/117985/impact-of-using-pyrolytic-carbon-black-as-asphalt-modifier-on-wearing-course-of-flexible-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=449">449</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=450">450</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20design&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>