CINXE.COM
Search results for: quinolones
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quinolones</title> <meta name="description" content="Search results for: quinolones"> <meta name="keywords" content="quinolones"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quinolones" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quinolones"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quinolones</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Impact of a Structured Antimicrobial Stewardship Program in a North-East Italian Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Marco%20Miotti">Antonio Marco Miotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonella%20Ruffatto"> Antonella Ruffatto</a>, <a href="https://publications.waset.org/abstracts/search?q=Giampaola%20Basso"> Giampaola Basso</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Madia"> Antonio Madia</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Zavatta"> Giulia Zavatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuela%20Salvatico"> Emanuela Salvatico</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuela%20Zilli"> Emanuela Zilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A National Action Plan to fight antimicrobial resistance was launched in Italy in 2017. In order to reduce inappropriate exposure to antibiotics and infections from multi-drug resistant bacteria, it is essential to set up a structured system of surveillance and monitoring of the implementation of National Action Plan standards, including antimicrobial consumption, with a special focus on quinolones, third generation cephalosporins and carbapenems. A quantitative estimate of antibiotic consumption (defined daily dose - DDD - consumption per 100 days of hospitalization) has been provided by the Pharmaceutical Service to the Hospital of Cittadella, ULSS 6 Euganea – Health Trust (District of Padua) for the years 2019 (before the pandemic), 2020 and 2021 for all classes of antibiotics. Multidisciplinary meetings have been organized monthly by the local Antimicrobial Stewardship Group. Between 2019 and 2021, an increase in the consumption of carbapenems in the Intensive Care Unit (from 12.2 to 18.2 DDD, + 49.2%) and a decrease in Medical wards (from 5.3 to 2.6 DDD, - 50.9%) was reported; a decrease in the consumption of quinolones in Intensive Care Unit (from 17.2 to 10.8 DDD, - 37.2%), Medical wards (from 10.5 to 6.6 DDD, - 37.1%) and Surgical wards (from 10.2 to 9.3 DDD, - 8.8%) was highlighted; an increase in the consumption of third generation cephalosporins in Medical wards (from 18.1 to 22.6 DDD, + 24,1%) was reported. Finally, after an increase in the consumption of macrolides between 2020 and 2019, in 2021, a decrease was reported in the Intensive Care Unit (DDD: 8.0 in 2019, 18.0 in 2020, 6.4 in 2021) and Medical wards (DDD: 9.0 in 2019, 13.7 in 2020, 10.9 in 2021). Constant monitoring of antimicrobial consumption and timely identifying of warning situations that may need a specific intervention are the cornerstone of Antimicrobial Stewardship programs, together with analysing data on bacterial resistance rates and infections from multi-drug resistant bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbapenems" title="carbapenems">carbapenems</a>, <a href="https://publications.waset.org/abstracts/search?q=quinolones" title=" quinolones"> quinolones</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=stewardship" title=" stewardship"> stewardship</a> </p> <a href="https://publications.waset.org/abstracts/155364/impact-of-a-structured-antimicrobial-stewardship-program-in-a-north-east-italian-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Gupta">Varsha Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Datta"> Priya Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Gursimran%20Mohi"> Gursimran Mohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Chander"> Jagdish Chander </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluoroquinolones form the mainstay of therapy for the treatment of infections due to <em>Salmonella enterica</em> subsp. <em>enterica</em>. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in <em>Salmonella </em>ssp<em>.,</em> we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against <em>Salmonella </em>spp<em>.</em> Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant <em>S. typhi</em> due to their high susceptibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salmonella" title="salmonella">salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=pefloxacin" title=" pefloxacin"> pefloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20marker" title=" surrogate marker"> surrogate marker</a>, <a href="https://publications.waset.org/abstracts/search?q=chloramphenicol" title=" chloramphenicol"> chloramphenicol</a> </p> <a href="https://publications.waset.org/abstracts/44669/pefloxacin-as-a-surrogate-marker-for-ciprofloxacin-resistance-in-salmonella-study-from-north-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">988</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Prevalence of Uropathogens in Diabetic Patients with Urinary Tract Infection and Antimicrobial Sensitivity Pattern at Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saifuddin">Mohammad Saifuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahjada%20Selim"> Shahjada Selim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients with diabetes mellitus (DM) are prone to develop infection, especially urinary tract infection (UTI) in comparison with non-diabetics. Due to the emergence of multidrug resistant (MDR) uropathogenic strains, the choice of antimicrobial agent is sometimes difficult. This study is designed to reveal the distribution of uropathogens in Diabetic patients and corresponding sensitivity patterns and to correlate the microbiological results with various clinical parameters. A nine-month retrospective review of 100 urine culture reports of Diabetic patients from January 2015 to September 2015 from semiurbanmultispeciality hospital of Feni, Bangladesh were analyzed. Only Diabetic patients were included in this study who were clinically diagnosed as UTI patients with a corresponding urine culture showing a bacterial count of ˃105cfu/ml.Out of 100 patients with UTI, 39 (39%) were male, and 61 (61%) were female. Organisms grown in urine culture were Escherichia coli (64) followed by Klebsiella (11), Proteus (7), Staph Aureus (4), Pseudomonas (4), Acinetobacter (3), Sreptococcus(3), Enterococcus (2 ) and one each of Enterobacter and Fungi. Overall sensitivity pattern in decreasing order of various commonly used antibiotics was Meropenem (89%), Nitrofurantoin (86%), Amikacin (81%), Ceftriaxone (68%), Cefuroxime (61%), Cefixime (39%), Quinolones (28%), Amoxicillin (16%). The significance of the study lies in the determination of common pathogens in diabetic patients with UTI and the resistance pattern of antibiotics so that physicians and pharmacists get the proper information rationalizing the rational use of antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Diabetes%20Mellitus" title=" Diabetes Mellitus"> Diabetes Mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20tract%20infection" title=" urinary tract infection"> urinary tract infection</a> </p> <a href="https://publications.waset.org/abstracts/58708/prevalence-of-uropathogens-in-diabetic-patients-with-urinary-tract-infection-and-antimicrobial-sensitivity-pattern-at-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Identification of Associated-Virulence Genes in Quinolone-Resistant Escherichia coli Strains Recovered from an Urban Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alouache%20Souhila">Alouache Souhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Messai%20Yamina"> Messai Yamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Torres%20Carmen"> Torres Carmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakour%20Rabah"> Bakour Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: It has often been reported an association between antibiotic resistance and virulence. However, resistance to quinolones seems to be an exception, it tends instead to be associated with an attenuation of virulence, particularly in clinical strains. The purpose of this study was to evaluate the potential virulence of 28 quinolone-resistant E. coli strains recovered from water at the inflow (n=16) and outflow (n=12) of an urban wastewater treatment plant (WWTP). Methods: E. coli isolates were selected on Tergitol-7 agar supplemented with 2µg/ml of ciprofloxacin, they were screened by PCR for 11 virulence genes related to Extraintestinal pathogenic E. coli (ExPEC): papC, papG, afa/draBC, sfa/foc, kpsMTII, iutA, iroN, hlyF, ompT, iss and traT. The phylogenetic groups were determined by PCR and clonal relationship was evaluated by ERIC-PCR. Results: Genotyping by ERIC-PCR showed 7 and 12 DNA profiles among strains of wastewater (inflow) and treated water (outflow), respectively. Strains were assigned to the following phylogenetic groups: B2 (n = 1, 3.5%), D (n = 3, 10.7%), B1 (n = 10, 35.7%.) and A (n = 14, 50%). A total of 8 virulence-associated genes were detected, traT (n=19, 67.8%), iroN (n= 16, 57 .1%), hlyF (n=15, 53 .5%), ompT (n=15, 53 .5%), iss (n=14, 50%), iutA (n=9, 32.1%) , sfa/foc (n=7, 25%) and kpsMTII (n=2, 7.1%). Combination of virulence factors allowed to define 16 virulence profiles. The pathotype APEC was observed in 17.8% (D=1, B1=4) and human ExPEC in 7% (B2=1, D=1) of strains. Conclusion: The study showed that quinolone-resistant E. coli strains isolated from wastewater and treated water in WWTP harbored virulence genes with the presence of APEC and human ExPEC strains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title="E. coli">E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=quinolone-resistance" title=" quinolone-resistance"> quinolone-resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence" title=" virulence"> virulence</a>, <a href="https://publications.waset.org/abstracts/search?q=WWTP" title=" WWTP"> WWTP</a> </p> <a href="https://publications.waset.org/abstracts/27482/identification-of-associated-virulence-genes-in-quinolone-resistant-escherichia-coli-strains-recovered-from-an-urban-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Multidrug Resistance Mechanisms among Gram Negative Clinical Isolates from Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20T.%20Kashef">Mona T. Kashef</a>, <a href="https://publications.waset.org/abstracts/search?q=Omneya%20M.%20Helmy"> Omneya M. Helmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multidrug resistant (MDR) bacteria have become a significant public health threat. The prevalence rates, of Gram negative MDR bacteria, are in continuous increase. However, few data are available about these resistant strains. Since, third generation cephalosporins are one of the most commonly used antimicrobials, we set out to investigate the prevalence, different mechanisms and clonal relatedness of multidrug resistance among third generation resistant Gram negative clinical isolates. A total of 114 Gram negative clinical isolates, previously characterized as being resistant to at least one of 3rd generation cephalosporins, were included in this study. Each isolate was tested, using Kirby Bauer disk diffusion method, against its assigned categories of antimicrobials. The role of efflux pump in resistance development was tested by the efflux pump inhibitor-based microplate assay using chloropromazine as an inhibitor. Detecting different aminoglycosides, β-lactams and quinolones resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using Random Amplification of Polymorphic DNA technique. MDR phenotype was detected in 101 isolates (89%). Efflux pump mediated resistance was detected in 49/101 isolates. Aminoglycosides resistance genes; armA and aac(6)-Ib were detected in one and 53 isolates, respectively. The aac(6)-Ib-cr allele, that also confers resistance to floroquinolones, was detected in 28/53 isolates. β-lactam resistance genes; blaTEM, blaSHV, blaCTX-M group 1 and group 9 were detected in 52, 29, 61 and 35 isolates, respectively. Quinolone resistance genes; qnrA, qnrB and qnrS were detectable in 2, 14, 8 isolates respectively, while qepA was not detectable at all. High diversity was observed among tested MDR isolates. MDR is common among 3rd generation cephalosporins resistant Gram negative bacteria, in Egypt. In most cases, resistance was caused by different mechanisms. Therefore, new treatment strategies should be implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gram%20negative" title="gram negative">gram negative</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD%20typing" title=" RAPD typing"> RAPD typing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20genes" title=" resistance genes"> resistance genes</a> </p> <a href="https://publications.waset.org/abstracts/44611/multidrug-resistance-mechanisms-among-gram-negative-clinical-isolates-from-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterisation of Pasteurella multocida from Asymptomatic Animals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Manhas">Rajeev Manhas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Bhat"> M. A. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Taku"> A. K. Taku</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalip%20Singh"> Dalip Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20Shikha"> Deep Shikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulzar%20Bader"> Gulzar Bader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was aimed to understand the distribution of various serogroups of Pasteurella multocida in bovines, small ruminants, pig, rabbit, and poultry from Jammu, Jammu and Kashmir and to characterize the isolates with respect to LPS synthesizing genes, dermonecrotic toxin gene (toxA) gene and antibiotic resistance. For isolation, the nasopharyngeal swab procedure appeared to be better than nasal swab procedure, particularly in ovine and swine. Out of 200 samples from different animals, isolation of P. multocida could be achieved from pig and sheep (5 each) and from poultry and buffalo (2 each) samples only, which accounted for 14 isolates. Upon molecular serogrouping, 3 isolates from sheep and 2 isolates from poultry were found as serogroup A, 2 isolates from buffalo were confirmed as serogroup B and 5 isolates from pig were found to belong to serogroup D. However, 2 isolates from sheep could not be typed, hence, untypable. All the 14 isolates were subjected to mPCR genotyping. A total of 10 isolates, 5 each from pig and sheep, generated an amplicon specific to genotype L6 and L6 indicates Heddleston serovars 10, 11, 12 and 15. Similarly, 2 isolates from bovines generated an amplicon of genotype L2 which indicates Heddleston serovar 2/5. However, 2 isolates from poultry generated specific amplicon with L1 signifying Heddleston serovar 1, but these isolates also produced multiple bands with primer L5. Only, one isolate of capsular type A from sheep possessed the structural gene, toxA for dermonecrotoxin. There was variability in the antimicrobial susceptibility pattern in sheep isolates, but overall the rate of tetracycline resistance was relatively high (64.28%) in our strains while all the isolates were sensitive to streptomycin. Except for the swine isolates and one toxigenic sheep isolate, the P. multocida isolates from this study were sensitive to quinolones. Although the level of resistance to commercial antibiotics was generally low, the use of tetracycline and erythromycin was not recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiogram" title="antibiogram">antibiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=genotyping" title=" genotyping"> genotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasteurella%20multocida" title=" Pasteurella multocida"> Pasteurella multocida</a>, <a href="https://publications.waset.org/abstracts/search?q=serogrouping" title=" serogrouping"> serogrouping</a>, <a href="https://publications.waset.org/abstracts/search?q=toxA" title=" toxA"> toxA</a> </p> <a href="https://publications.waset.org/abstracts/87663/characterisation-of-pasteurella-multocida-from-asymptomatic-animals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Oral Antibiotics in Trans-Rectal Prostate Biopsy and Its Efficacy to Reduce Infectious Complications: Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohand%20Yaghi">Mohand Yaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kehinde"> O. Kehinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: For the diagnosis of prostate cancer Trans-rectal prostate biopsy (TRPB) is used commonly, the procedure is associated with infective complications. There is evidence that antibiotics (ABx) decrease infective events after TRPB, but different regimens are used. Aim: To systematically review different regimens of prophylactic oral antibiotics in TRPB. Design: Medline, Embase, Clinical trials site, and Cochrane library were searched, experts were consulted about relevant studies. Randomized clinical trials (RCT) conducted in the last twenty years, which investigated different oral antibiotic regimens in TRPB, and compared their efficacy to reduce infectious complications were analyzed. Measurements: Primary outcomes were bacteriuria, urinary tract infection (UTI), fever, bacteremia, sepsis. Secondary outcomes were hospitalization rate, and the prevalence of ABx-resistant bacteria. Results: Nine trials were eligible with 3012 patients. Antibiotics prevented bacteriuria (3.5% vs. 9.88%), UTI (4.46% vs. 9.75%), and hospitalization (0.21% vs. 2.13%) significantly in comparison with placebo or no treatment. No significant difference was found in all outcomes of the review between the single dose regimen and the 3 days. The single dose regimen was as effective as the multiple dose except in Bacteriuria (6.75% vs. 3.25%), and the prevalence of ABx-resistant bacteria (1.57% vs. 0.27%). Quinolones reduced only UTI significantly in comparison with other antibiotics. Lastly, Ciprofloxacin is the best Quinolone to prevent UTI, and hospitalization. Conclusion: it is essential to prescribe prophylactic Antibiotics in TRPB. No conclusive evidence could be claimed about the superiority of the multiple or the 3 days regimens to the single dose regimen. Unexpectedly, ABx-resistant bacteria was identified more often in the single dose cohorts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infection" title="infection">infection</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=sepsis" title=" sepsis"> sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=TRPB" title=" TRPB"> TRPB</a> </p> <a href="https://publications.waset.org/abstracts/34146/oral-antibiotics-in-trans-rectal-prostate-biopsy-and-its-efficacy-to-reduce-infectious-complications-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Antibiotic Prescribing in the Acute Care in Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ola%20A.%20Nassr">Ola A. Nassr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Abd%20Alridha"> Ali M. Abd Alridha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rua%20A.%20Naser"> Rua A. Naser</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20S.%20Abbas"> Rasha S. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acute%20care" title="Acute care">Acute care</a>, <a href="https://publications.waset.org/abstracts/search?q=Antibiotic%20misuse" title=" Antibiotic misuse"> Antibiotic misuse</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=Prescribing" title=" Prescribing"> Prescribing</a> </p> <a href="https://publications.waset.org/abstracts/96243/antibiotic-prescribing-in-the-acute-care-in-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satwik%20Majumder">Satwik Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongyun%20Jung"> Dongyun Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Ronholm"> Jennifer Ronholm</a>, <a href="https://publications.waset.org/abstracts/search?q=Saji%20George"> Saji George</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=bovine%20mastitis" title=" bovine mastitis"> bovine mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title=" heavy-metals"> heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=efflux%20pump" title=" efflux pump"> efflux pump</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9F-lactamase%20enzyme" title=" ß-lactamase enzyme"> ß-lactamase enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-genome%20sequencing" title=" whole-genome sequencing"> whole-genome sequencing</a> </p> <a href="https://publications.waset.org/abstracts/139889/prevalence-and-mechanisms-of-antibiotic-resistance-in-escherichia-coli-isolated-from-mastitic-dairy-cattle-in-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Emergence of Fluoroquinolone Resistance in Pigs, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igbakura%20I.%20Luga">Igbakura I. Luga</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Adikwu"> Alex A. Adikwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing <em>Escherichia coli</em>O157:H7 from cattle and <em>mecA</em> and <em>nuc</em> genes harbouring <em>Staphylococcus aureus</em> from pigs. The isolates were separately tested in the first and current decades of the 21<sup>st</sup> century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the <em>E. coli </em>O157:H7 and 9 of <em>mecA</em> and <em>nuc</em> genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex <em>E. coli </em>O157:H7 test. Shiga toxin-production screening in the <em>E. coli </em>O157:H7 using the verotoxin <em>E. coli</em> reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the <em>mecA</em> and <em>nuc</em> genes in <em>S. aureus</em>. Detection of the <em>mecA</em> and <em>nuc</em> genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers <em>mecA</em>-1:5'-GGGATCATAGCGTCATTATTC-3', <em>mecA</em>-2: 5'-AACGATTGTGACACGATAGCC-3', <em>nuc</em>-1: 5'-TCAGCAAATGCATCACAAACAG-3', <em>nuc</em>-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the <em>mecA</em> and <em>nuc</em> genes, respectively. The <em>nuc</em> genes confirm the <em>S. aureus</em> isolates and the <em>mecA</em> genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the <em>E. coli </em>O157:H7 isolates and ciprofloxacin (5 µg) in the <em>S. aureus </em>isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of <em>E. coli </em>O157:H7 from cattle. However, 44% (4/9) of the <em>S. aureus</em> were resistant to ciprofloxacin. Resistance of up to 44% in isolates of <em>mecA</em> and <em>nuc</em> genes harbouring <em>S. aureus</em> is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fluoroquinolone" title="Fluoroquinolone">Fluoroquinolone</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/80778/emergence-of-fluoroquinolone-resistance-in-pigs-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morello%20Sara">Morello Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Pederiva%20Sabina"> Pederiva Sabina</a>, <a href="https://publications.waset.org/abstracts/search?q=Bianchi%20Manila"> Bianchi Manila</a>, <a href="https://publications.waset.org/abstracts/search?q=Martucci%20Francesca"> Martucci Francesca</a>, <a href="https://publications.waset.org/abstracts/search?q=Marchis%20Daniela"> Marchis Daniela</a>, <a href="https://publications.waset.org/abstracts/search?q=Decastelli%20Lucia"> Decastelli Lucia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant-based%20products" title="plant-based products">plant-based products</a>, <a href="https://publications.waset.org/abstracts/search?q=ARG" title=" ARG"> ARG</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20residues" title=" antibiotic residues"> antibiotic residues</a> </p> <a href="https://publications.waset.org/abstracts/166028/detection-of-antibiotic-resistance-genes-and-antibiotic-residues-in-plant-based-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Banu%20Pradheepa%20Kamarajan">Banu Pradheepa Kamarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthusamy%20Ananthasubramanian"> Muthusamy Ananthasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopillars" title=" nanopillars"> nanopillars</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20rate" title=" survival rate"> survival rate</a> </p> <a href="https://publications.waset.org/abstracts/102030/differential-survival-rates-of-pseudomonas-aeruginosa-strains-on-the-wings-of-pantala-flavescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Prevalence of Antibiotic-Resistant Bacteria Isolated from Fresh Vegetables Retailed in Eastern Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Garc%C3%ADa-Ferr%C3%BAs">Miguel García-Ferrús</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolanda%20Dom%C3%ADnguez"> Yolanda Domínguez</a>, <a href="https://publications.waset.org/abstracts/search?q=M%20Angeles%20Castillo"> M Angeles Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=M%20Antonia%20Ferr%C3%BAs"> M Antonia Ferrús</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Jim%C3%A9nez-Belenguer"> Ana Jiménez-Belenguer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic resistance is a growing public health concern worldwide, and it is now regarded as a critical issue within the "One Health" approach that affects human and animal health, agriculture, and environmental waste management. This concept focuses on the interconnected nature of human, animal and environmental health, and WHO highlights zoonotic diseases, food safety, and antimicrobial resistance as three particularly relevant areas for this framework. Fresh vegetables are garnering attention in the food chain due to the presence of pathogens and because they can act as a reservoir for Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG). These fresh products are frequently consumed raw, thereby contributing to the spread and transmission of antibiotic resistance. Therefore, the aim of this research was to study the microbiological quality, the prevalence of ARB, and their role in the dissemination of ARG in fresh vegetables intended for human consumption. For this purpose, 102 samples of fresh vegetables (30 lettuce, 30 cabbage, 18 strawberries and 24 spinach) from different retail establishments in Valencia (Spain) have been analyzed to determine their microbiological quality and their role in spreading ARB and ARG. The samples were collected and examined according to standardized methods for total viable bacteria, coliforms, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes and Salmonella spp. Isolation was made in culture media supplemented with antibiotics (cefotaxime and meropenem). A total of 239 strains resistant to beta-lactam antibiotics (Third-Generation Cephalosporins and Carbapenems) were isolated. Thirty Gram-negative isolates were selected and biochemically identified or partial sequencing of 16S rDNA. Their sensitivity to 12 antibiotic discs was determined using the Kirby-Bauer disc diffusion technique to different therapeutic groups. To determine the presence of ARG, PCR assays for the direct sample and selected isolate DNA were performed for main expanded spectrum beta-lactamase (ESBL)-, carbapenemase-encoding genes and plasmid-mediated quinolone resistance genes. From the total samples, 68% (24/24 spinach, 28/30 lettuce and 17/30 cabbage) showed total viable bacteria levels over the accepted standard 10(2)-10(5) cfu/g range; and 48% (24/24 spinach, 19/30 lettuce and 6/30) showed coliforms levels over the accepted standard 10(2)-10(4) cfu/g range. In 9 samples (3/24 spinach, 3/30 lettuce, 3/30 cabbage; 9/102 (9%)) E. coli levels were higher than the standard 10(3) cfu/g limit. Listeria monocytogenes, Salmonella and STEC have not been detected. Six different bacteria species were isolated from samples. Stenotrophomonas maltophilia (64%) was the prevalent species, followed by Acinetobacter pitii (14%) and Burkholderia cepacia (7%). All the isolates were resistant to at least one tested antibiotic, including meropenem (85%) and ceftazidime (46%). Of the total isolates, 86% were multidrug-resistant and 68% were ESBL productors. Results of PCR showed the presence of resistance genes to beta-lactams blaTEM (4%) and blaCMY-2 (4%), to carbapenemes blaOXA-48 (25%), blaVIM (7%), blaIMP (21%) and blaKPC (32%), and to quinolones QnrA (7%), QnrB (11%) and QnrS (18%). Thus, fresh vegetables harboring ARB and ARG constitute a potential risk to consumers. Further studies must be done to detect ARG and how they propagate in non-medical environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESBL" title="ESBL">ESBL</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-lactams" title=" β-lactams"> β-lactams</a>, <a href="https://publications.waset.org/abstracts/search?q=resistances" title=" resistances"> resistances</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20vegetables." title=" fresh vegetables."> fresh vegetables.</a> </p> <a href="https://publications.waset.org/abstracts/179266/prevalence-of-antibiotic-resistant-bacteria-isolated-from-fresh-vegetables-retailed-in-eastern-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>