CINXE.COM
Search results for: self-powered solar-blind photodetector
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: self-powered solar-blind photodetector</title> <meta name="description" content="Search results for: self-powered solar-blind photodetector"> <meta name="keywords" content="self-powered solar-blind photodetector"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="self-powered solar-blind photodetector" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="self-powered solar-blind photodetector"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 24</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: self-powered solar-blind photodetector</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Photodetector Engineering with Plasmonic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Furkan%20Kurt">Hasan Furkan Kurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Nur%20Atabey"> Tugba Nur Atabey</a>, <a href="https://publications.waset.org/abstracts/search?q=Onat%20Cavit%20Dereli"> Onat Cavit Dereli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Salmanogli"> Ahmad Salmanogli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Selcuk%20Gecim"> H. Selcuk Gecim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20photodetector" title="plasmonic photodetector">plasmonic photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon-plasmon%20interaction" title=" plasmon-plasmon interaction"> plasmon-plasmon interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Gold%20nanoparticle" title=" Gold nanoparticle"> Gold nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/125857/photodetector-engineering-with-plasmonic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Influence of Wavelengths on Photosensitivity of Copper Phthalocyanine Based Photodetectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lekshmi%20Vijayan">Lekshmi Vijayan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shreekrishna%20Kumar"> K. Shreekrishna Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrated an organic field effect transistor based photodetector using phthalocyanine as the active material that exhibited high photosensitivity under varying light wavelengths. The thermally grown SiO₂ layer on silicon wafer act as a substrate. The critical parameters, such as photosensitivity, responsivity and detectivity, are comparatively high and were 3.09, 0.98AW⁻¹ and 4.86 × 10¹⁰ Jones, respectively, under a bias of 5 V and a monochromatic illumination intensity of 4mW cm⁻². The photodetector has a linear I-V curve with a low dark current. On comparing photoresponse of copper phthalocyanine at four different wavelengths, 560 nm shows better photoresponse and the highest value of photosensitivity is also obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodetector" title="photodetector">photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=responsivity" title=" responsivity"> responsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitivity" title=" photosensitivity"> photosensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=detectivity" title=" detectivity"> detectivity</a> </p> <a href="https://publications.waset.org/abstracts/88804/influence-of-wavelengths-on-photosensitivity-of-copper-phthalocyanine-based-photodetectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Solar-Blind Ni-Schottky Photodetector Based on MOCVD Grown ZnGa₂O₄</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taslim%20Khan">Taslim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ray%20Hua%20Horng"> Ray Hua Horng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Singh"> Rajendra Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a comprehensive analysis of the design, fabrication, and performance evaluation of a solar-blind Schottky photodetector based on ZnGa₂O₄ grown via MOCVD, utilizing Ni/Au as the Schottky electrode. ZnGa₂O₄, with its wide bandgap of 5.2 eV, is well-suited for high-performance solar-blind photodetection applications. The photodetector demonstrates an impressive responsivity of 280 A/W, indicating its exceptional sensitivity within the solar-blind ultraviolet band. One of the device's notable attributes is its high rejection ratio of 10⁵, which effectively filters out unwanted background signals, enhancing its reliability in various environments. The photodetector also boasts a photodetector responsivity contrast ratio (PDCR) of 10⁷, showcasing its ability to detect even minor changes in incident UV light. Additionally, the device features an outstanding detective of 10¹⁸ Jones, underscoring its capability to precisely detect faint UV signals. It exhibits a fast response time of 80 ms and an ON/OFF ratio of 10⁵, making it suitable for real-time UV sensing applications. The noise-equivalent power (NEP) of 10^-17 W/Hz further highlights its efficiency in detecting low-intensity UV signals. The photodetector also achieves a high forward-to-backward current rejection ratio of 10⁶, ensuring high selectivity. Furthermore, the device maintains an extremely low dark current of approximately 0.1 pA. These findings position the ZnGa₂O₄-based Schottky photodetector as a leading candidate for solar-blind UV detection applications. It offers a compelling combination of sensitivity, selectivity, and operational efficiency, making it a highly promising tool for environments requiring precise and reliable UV detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wideband%20gap" title="wideband gap">wideband gap</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20blind%20photodetector" title=" solar blind photodetector"> solar blind photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=MOCVD" title=" MOCVD"> MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20gallate" title=" zinc gallate"> zinc gallate</a> </p> <a href="https://publications.waset.org/abstracts/186831/solar-blind-ni-schottky-photodetector-based-on-mocvd-grown-znga2o4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> High Responsivity of Zirconium boride/Chromium Alloy Heterostructure for Deep and Near UV Photodetector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjida%20Akter">Sanjida Akter</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambali%20Alade%20Odebowale"> Ambali Alade Odebowale</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20E.%20Miroshnichenko"> Andrey E. Miroshnichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Haroldo%20T.%20Hattori"> Haroldo T. Hattori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photodetectors (PDs) play a pivotal role in optoelectronics and optical devices, serving as fundamental components that convert light signals into electrical signals. As the field progresses, the integration of advanced materials with unique optical properties has become a focal point, paving the way for the innovation of novel PDs. This study delves into the exploration of a cutting-edge photodetector designed for deep and near ultraviolet (UV) applications. The photodetector is constructed with a composite of Zirconium Boride (ZrB2) and Chromium (Cr) alloy, deposited onto a 6H nitrogen-doped silicon carbide substrate. The determination of the optimal alloy thickness is achieved through Finite-Difference Time-Domain (FDTD) simulation, and the synthesis of the alloy is accomplished using radio frequency (RF) sputtering. Remarkably, the resulting photodetector exhibits an exceptional responsivity of 3.5 A/W under an applied voltage of -2 V, at wavelengths of 405 nm and 280 nm. This heterostructure not only exemplifies high performance but also provides a versatile platform for the development of near UV photodetectors capable of operating effectively in challenging conditions, such as environments characterized by high power and elevated temperatures. This study contributes to the expanding landscape of photodetector technology, offering a promising avenue for the advancement of optoelectronic devices in demanding applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=responsivity" title="responsivity">responsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20photodetector" title=" ultraviolet photodetector"> ultraviolet photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium%20boride" title=" zirconium boride"> zirconium boride</a> </p> <a href="https://publications.waset.org/abstracts/182866/high-responsivity-of-zirconium-boridechromium-alloy-heterostructure-for-deep-and-near-uv-photodetector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wannakorn%20Sangthongngam">Wannakorn Sangthongngam</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Huerta"> Melissa Huerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewoo%20Kim"> Jaewoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Doyeon%20Kim"> Doyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20glucose%20monitoring" title="continuous glucose monitoring">continuous glucose monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20continuous%20glucose%20monitoring" title=" non-invasive continuous glucose monitoring"> non-invasive continuous glucose monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=NIR" title=" NIR"> NIR</a>, <a href="https://publications.waset.org/abstracts/search?q=photon-assisted%20tunneling%20photodetector" title=" photon-assisted tunneling photodetector"> photon-assisted tunneling photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=QMOS%E2%84%A2" title=" QMOS™"> QMOS™</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title=" wearable device"> wearable device</a> </p> <a href="https://publications.waset.org/abstracts/174019/noninvasive-continuous-glucose-monitoring-device-using-a-photon-assisted-tunneling-photodetector-based-on-a-quantum-metal-oxide-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Ulaganathan">Rajesh Kumar Ulaganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ying%20Lu"> Yi-Ying Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jung%20Kuo"> Chia-Jung Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Tamalampudi"> Srinivasa Reddy Tamalampudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20Sankar"> Raman Sankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Cheng%20Chou"> Fang Cheng Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yit-Tsong%20Chen"> Yit-Tsong Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the optoelectronic properties of multi-layered GeS nanosheets (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 AW-1 under illumination of 1.5 µW/cm2 at = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 AW-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the two-dimensional (2D) realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 AW-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104 %) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability with a response time of ~7 ms over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, fast response, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germanium%20sulfide" title="germanium sulfide">germanium sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=photoresponsivity" title=" photoresponsivity"> photoresponsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20quantum%20efficiency" title=" external quantum efficiency"> external quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20detectivity" title=" specific detectivity "> specific detectivity </a> </p> <a href="https://publications.waset.org/abstracts/39141/high-photosensitivity-and-broad-spectral-response-of-multi-layered-germanium-sulfide-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20H.%20Abud">Saleh H. Abud</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Hassan"> Z. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20K.%20Yam"> F. K. Yam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20InGaN" title="porous InGaN">porous InGaN</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SMS%20photodetector" title=" SMS photodetector"> SMS photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a> </p> <a href="https://publications.waset.org/abstracts/4022/metal-semiconductor-metal-photodetector-based-on-porous-in008ga092n" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Study the effect of bulk traps on Solar Blind Photodetector Based on an IZTO/β Ga2O3/ITO Schottky Diode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laboratory%20of%20Semiconducting">Laboratory of Semiconducting</a>, <a href="https://publications.waset.org/abstracts/search?q=Metallic%20Materials%20%28LMSM%29%20Biskra%20Algeria">Metallic Materials (LMSM) Biskra Algeria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> InZnSnO2 (IZTO)/β-Ga2O3 Schottky solar barrier photodetector (PhD) exposed to 255 nm was simulated and compared to the measurement. Numerical simulations successfully reproduced the photocurrent at reverse bias and response by taking into account several factors, such as conduction mechanisms and material parameters. By adopting reducing the density of the trap as an improvement. The effect of reducing the bulk trap densities on the photocurrent, response, and time-dependent (continuous conductivity) was studied. As the trap density decreased, the photocurrent increased. The response was 0.04 A/W for the low Ga2O3 trap density. The estimated decay time for the lowest intensity ET (0.74, 1.04 eV) is 0.05 s and is shorter at ∼0.015 s for ET (0.55 eV). This indicates that the shallow traps had the dominant effect (ET = 0.55 eV) on the continuous photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IZTO%2F%CE%B2-Ga2O3" title="IZTO/β-Ga2O3">IZTO/β-Ga2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=self-powered%20solar-blind%20photodetector" title=" self-powered solar-blind photodetector"> self-powered solar-blind photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20traps" title=" bulk traps"> bulk traps</a> </p> <a href="https://publications.waset.org/abstracts/167378/study-the-effect-of-bulk-traps-on-solar-blind-photodetector-based-on-an-iztov-ga2o3ito-schottky-diode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huang%20Haoxin">Huang Haoxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large dark current at room temperature has long been the major bottleneck that impedes the development of high-performance infrared photodetectors towards miniaturization and integration. Although infrared photodetectors based on layered 2D narrow bandgap semiconductors have shown admirable advantages compared with those based on conventional compounds, which typically suffer from expensive cryogenic operations, it is still urgent to develop a simple but effective strategy to further reduce the dark current. Herein, a tellurium (Te) based infrared photodetector is reported with a specifically designed asymmetric electrical contact area. The deliberately introduced asymmetric electrical contact raises the electric field intensity difference in the Te channel near the drain and the source electrodes, resulting in spontaneous asymmetric carrier diffusion under global infrared light illumination under zero bias. Specifically, the Te-based photodetector presents promising detector performance at room temperature, including a low dark current of≈1 nA, an ultrahigh photocurrent/dark current ratio of 1.57×10⁴, a high specific detectivity (D*) of 3.24×10⁹ Jones, and relatively fast response speed of ≈720 μs at zero bias. The results prove that the simple design of asymmetric electrical contact areas can provide a promising solution to high-performance 2D semiconductor-based infrared photodetectors working at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetrical%20contact" title="asymmetrical contact">asymmetrical contact</a>, <a href="https://publications.waset.org/abstracts/search?q=tellurium" title=" tellurium"> tellurium</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20current" title=" dark current"> dark current</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20photodetector" title=" infrared photodetector"> infrared photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/185792/asymmetrically-contacted-tellurium-short-wave-infrared-photodetector-with-low-dark-current-and-high-sensitivity-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Laser Irradiated GeSn Photodetector for Improved Infrared Photodetection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Scajev">Patrik Scajev</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavels%20Onufrijevs"> Pavels Onufrijevs</a>, <a href="https://publications.waset.org/abstracts/search?q=Algirdas%20Mekys"> Algirdas Mekys</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadas%20Malinauskas"> Tadas Malinauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominykas%20Augulis"> Dominykas Augulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Liudvikas%20Subacius"> Liudvikas Subacius</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Chih%20Lee"> Kuo-Chih Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jevgenijs%20Kaupuzs"> Jevgenijs Kaupuzs</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturs%20Medvids"> Arturs Medvids</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Hsiang%20Cheng"> Hung Hsiang Cheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we focused on the optoelectronic properties of the photodiodes prepared by using 200 nm thick Ge₀.₉₅Sn₀.₀₅ epitaxial layers on Ge/n-Si substrate with aluminum contacts. Photodiodes were formed on non-irradiated and Nd: YAG laser irradiated Ge₀.₉₅Sn₀.₀₅ layers. The samples were irradiated by pulsed Nd: YAG laser with 136.7-462.6 MW/cm² intensity. The photodiodes were characterized by using short laser pulses with the wavelength in the 2.0-2.6 μm range. The laser-irradiated diode was found more sensitive in the long-wavelength range due to laser-induced Sn atoms redistribution providing formation of graded bandgap structure. Sub-millisecond photocurrent relaxation in the diodes revealed their suitability for image sensors. Our findings open the perspective for improving the photo-sensitivity of GeSn alloys in the mid-infrared by pulsed laser processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GeSn" title="GeSn">GeSn</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20processing" title=" laser processing"> laser processing</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a> </p> <a href="https://publications.waset.org/abstracts/131848/laser-irradiated-gesn-photodetector-for-improved-infrared-photodetection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitralekha%20Ngangbam">Chitralekha Ngangbam</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Mondal"> Aniruddha Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Naorem%20Khelchand%20Singh"> Naorem Khelchand Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glancing%20angle%20deposition" title="glancing angle deposition">glancing angle deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocolumn" title=" nanocolumn"> nanocolumn</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=indium%20oxide" title=" indium oxide"> indium oxide</a> </p> <a href="https://publications.waset.org/abstracts/83178/effect-of-al-on-glancing-angle-deposition-synthesized-in2o3-nanocolumn-for-photodetector-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Yang">Hao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Chen"> Lei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Mei"> Ting Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbang%20Zheng"> Jianbang Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20PbSe" title="polycrystalline PbSe">polycrystalline PbSe</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitization" title=" sensitization"> sensitization</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=stoichiometry" title=" stoichiometry"> stoichiometry</a> </p> <a href="https://publications.waset.org/abstracts/38546/recent-progress-in-the-uncooled-mid-infrared-lead-selenide-polycrystalline-photodetector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Joshna">P. Joshna</a>, <a href="https://publications.waset.org/abstracts/search?q=Souvik%20Kundu"> Souvik Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20synthesis" title="chemical synthesis">chemical synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides" title=" oxides"> oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetectors" title=" photodetectors"> photodetectors</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating" title=" spin coating"> spin coating</a> </p> <a href="https://publications.waset.org/abstracts/109531/highly-responsive-p-nion-rgo-heterojunction-based-self-powered-uv-photodetectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zongmin%20Ma">Zongmin Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaowen%20Zhang"> Shaowen Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueping%20Fu"> Yueping Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Tang"> Jun Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunbo%20Shi"> Yunbo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Liu"> Jun Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen-vacancy%20%28NV%29%20centers" title="nitrogen-vacancy (NV) centers">nitrogen-vacancy (NV) centers</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-modulated%20microwaves" title=" frequency-modulated microwaves"> frequency-modulated microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20sensitivity" title=" magnetic field sensitivity"> magnetic field sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20density" title=" noise density"> noise density</a> </p> <a href="https://publications.waset.org/abstracts/74495/the-high-precision-of-magnetic-detection-with-microwave-modulation-in-solid-spin-assembly-of-nv-centres-in-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haifeng%20Zhou">Haifeng Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsungyang%20Liow"> Tsungyang Liow</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoguang%20Tu"> Xiaoguang Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Eujin%20Lim"> Eujin Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Li"> Chao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Junfeng%20Song"> Junfeng Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianshu%20Luo"> Xianshu Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Huang"> Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianxi%20Jia"> Lianxi Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianwee%20Luo"> Lianwee Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Dowon"> Kim Dowon</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Fang"> Qing Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingbin%20Yu"> Mingbin Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqiang%20Lo"> Guoqiang Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20optical%20devices" title="integrated optical devices">integrated optical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20photonics" title=" silicon photonics"> silicon photonics</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-resonator" title=" micro-resonator"> micro-resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetectors" title=" photodetectors"> photodetectors</a> </p> <a href="https://publications.waset.org/abstracts/37517/miniaturization-of-germanium-photo-detectors-by-using-micro-disk-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Force Sensor for Robotic Graspers in Minimally Invasive Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naghmeh%20M.%20Bandari">Naghmeh M. Bandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Dargahi"> Javad Dargahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20sensor" title="force sensor">force sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=minimally%20invasive%20surgery" title=" minimally invasive surgery"> minimally invasive surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20sensor" title=" optical sensor"> optical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20surgery" title=" robotic surgery"> robotic surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20sensor" title=" tactile sensor"> tactile sensor</a> </p> <a href="https://publications.waset.org/abstracts/83179/force-sensor-for-robotic-graspers-in-minimally-invasive-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Prototype for Measuring Blue Light Protection in Sunglasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Loureiro">A. D. Loureiro</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ventura"> L. Ventura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure to high-energy blue light has been strongly linked to the development of some eye diseases, such as age-related macular degeneration. Over the past few years, people have become more and more concerned about eye damage from blue light and how it can be prevented. We developed a prototype that allows users to self-check the blue light protection of their sunglasses and determines if the protection is adequate. Weighting functions approximating those defined in ISO 12312-1 were used to measure the luminous transmittance and blue light transmittance of sunglasses. The blue light transmittance value must be less than 1.2 times the luminous transmittance to be considered adequate. The prototype consists of a Golden Dragon Ultra White LED from OSRAM and a TCS3472 photodetector from AMS TAOS. Together, they provide four transmittance values weighted with different functions. These four transmittance values were then linearly combined to produce transmittance values with weighting functions close to those defined in ISO 12312-1 for luminous transmittance and for blue light transmittance. To evaluate our prototype, we used a VARIAN Cary 5000 spectrophotometer, a gold standard in the field, to measure the luminous transmittance and the blue light transmittance of 60 sunglasses lenses. (and Bland-Altman analysis was performed) Bland-Altman analysis was performed and showed non-significant bias and narrow 95% limits of agreement within predefined tolerances for both luminous transmittance and blue light transmittance. The results show that the prototype is a viable means of providing blue light protection information to the general public and a quick and easy way for industry and retailers to test their products. In addition, our prototype plays an important role in educating the public about a feature to look for in sunglasses before purchasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title="blue light">blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=sunglasses" title=" sunglasses"> sunglasses</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20protective%20devices" title=" eye protective devices"> eye protective devices</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance%20measurement" title=" transmittance measurement"> transmittance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2012312-1" title=" ISO 12312-1"> ISO 12312-1</a> </p> <a href="https://publications.waset.org/abstracts/163500/prototype-for-measuring-blue-light-protection-in-sunglasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> From Synthesis to Application of Photovoltaic Perovskite Nanowires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Forr%C3%B3">László Forró</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The organolead halide perovskite CH3NH3PbI3 and its derivatives are known to be very efficient light harvesters revolutionizing the field of solid-state solar cells. The major research area in this field is photovoltaic device engineering although other applications are being explored, as well. Recently, we have shown that nanowires of this photovoltaic perovskite can be synthesized which in association with carbon nanostructures (carbon nanotubes and graphene) make outstanding composites with rapid and strong photo-response. They can serve as conducting electrodes, or as central components of detectors. The performance of several miniature devices based on these composite structures will be demonstrated. Our latest findings on the guided growth of perovskite nanowires by solvatomorph graphoepitaxy will be presented. This method turned out to be a fairly simple approach to overcome the spatially random surface nucleation. The process allows the synthesis of extremely long (centimeters) and thin (a few nanometers) nanowires with a morphology defined by the shape of nanostructured open fluidic channels. This low-temperature solution-growth method could open up an entirely new spectrum of architectural designs of organometallic-halide-perovskite-based heterojunctions and tandem solar cells, LEDs and other optoelectronic devices. Acknowledgment: This work is done in collaboration with Endre Horvath, Massimo Spina, Alla Arakcheeva, Balint Nafradi, Eric Bonvin1, Andrzej Sienkievicz, Zsolt Szekrenyes, Hajnalka Tohati, Katalin Kamaras, Eduard Tutis, Laszlo Mihaly and Karoly Holczer The research is supported by the ERC Advanced Grant (PICOPROP670918). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title="photovoltaics">photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a> </p> <a href="https://publications.waset.org/abstracts/59998/from-synthesis-to-application-of-photovoltaic-perovskite-nanowires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Jelev">V. Jelev</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Petkov"> P. Petkov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shindov"> P. Shindov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20film" title="metal oxide film">metal oxide film</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO2%20film" title=" SnO2 film"> SnO2 film</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20sensitive%20photodetectors%20%28PSD%29" title=" position sensitive photodetectors (PSD)"> position sensitive photodetectors (PSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20photovoltaic%20effect" title=" lateral photovoltaic effect"> lateral photovoltaic effect</a> </p> <a href="https://publications.waset.org/abstracts/44966/preparation-and-characterization-of-transparent-and-conductive-sno2-thin-films-by-spray-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Infrared Photodetectors Based on Nanowire Arrays: Towards Far Infrared Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Karimi">Mohammad Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20Heurlin"> Magnus Heurlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Samuelson"> Lars Samuelson</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20Borgstrom"> Magnus Borgstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Pettersson"> Hakan Pettersson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operate in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using metal organic vapor phase epitaxy (MOVPE). The NWs are contacted in vertical direction by atomic layer deposition (ALD) deposition of 50 nm SiO2 as an insulating layer followed by sputtering of indium tin oxide (ITO) and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that the proposed detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intersubband%20photodetector" title="intersubband photodetector">intersubband photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20disc" title=" quantum disc"> quantum disc</a> </p> <a href="https://publications.waset.org/abstracts/69512/infrared-photodetectors-based-on-nanowire-arrays-towards-far-infrared-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Mei%20Zhang">Xiao-Mei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sian-Hong%20Tseng"> Sian-Hong Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Yen%20Lu"> Ming-Yen Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodetection" title="photodetection">photodetection</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20doping" title=" p-type doping"> p-type doping</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayers" title=" multilayers"> multilayers</a>, <a href="https://publications.waset.org/abstracts/search?q=MoS%E2%82%82" title=" MoS₂"> MoS₂</a> </p> <a href="https://publications.waset.org/abstracts/109648/p-type-multilayer-mos2-enabled-by-plasma-doping-for-ultraviolet-photodetectors-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20A.%20Savchenko">Ekaterina A. Savchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Velichko"> Elena N. Velichko</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenii%20T.%20Aksenov"> Evgenii T. Aksenov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title="light scattering">light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoretic%20light%20scattering" title=" electrophoretic light scattering"> electrophoretic light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20internal%20reflection" title=" total internal reflection"> total internal reflection</a> </p> <a href="https://publications.waset.org/abstracts/80754/electrophoretic-light-scattering-based-on-total-internal-reflection-as-a-promising-diagnostic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20X.%20Dong">David X. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingming%20Zhang"> Qingming Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Lu"> Meng Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20sensor" title="optical sensor">optical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrites" title=" nitrites"> nitrites</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/162692/low-cost-portable-optical-sensor-with-regression-algorithm-models-for-accurate-monitoring-of-nitrites-in-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Sung%20Lee">Ching-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chou%20Hsu"> Wei-Chou Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Yin%20Liu"> Han-Yin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Hsi%20Huang"> Hung-Hsi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-Fu%20Chen"> Si-Fu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Jung%20Yang"> Yun-Jung Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Chun%20Chiang"> Bo-Chun Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chuang%20Chen"> Yu-Chuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen-Tin%20Yang"> Shen-Tin Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOS-HEMT" title="MOS-HEMT">MOS-HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20mode" title=" enhancement mode"> enhancement mode</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20water%20oxidation" title=" ozone water oxidation"> ozone water oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20leakage" title=" gate leakage"> gate leakage</a> </p> <a href="https://publications.waset.org/abstracts/45567/al2o3-dielectric-algangan-enhancement-mode-mos-hemts-by-using-ozone-water-oxidization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>