CINXE.COM

Search results for: non equilibrium processes on the sphere

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non equilibrium processes on the sphere</title> <meta name="description" content="Search results for: non equilibrium processes on the sphere"> <meta name="keywords" content="non equilibrium processes on the sphere"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non equilibrium processes on the sphere" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non equilibrium processes on the sphere"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6743</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non equilibrium processes on the sphere</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6743</span> A Geometrical Method for the Smoluchowski Equation on the Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Valdes-Gomez">Adriano Valdes-Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Javier%20Sevilla"> Francisco Javier Sevilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We devise a numerical algorithm to simulate the diffusion of a Brownian particle restricted to the surface of a three-dimensional sphere when the particle is under the effects of an external potential that is coupled linearly. It is obtained using elementary geometry, yet, it converges, in the weak sense, to the solutions to the Smoluchowski equation. Rotations on the sphere, which are the analogs of linear displacements in euclidean spaces, are calculated using algebraic operations and then by a proper scaling, which makes the algorithm efficient and quite simple, especially to what may be the short-time propagator approach. Our findings prove that the global effects of curvature are taken into account in both dynamic and stationary processes, and it is not restricted to work in configuration space, neither restricted to the overdamped limit. We have generalized it successfully to simulate the Kramers or the Ornstein-Uhlenbeck process, where it is necessary to work directly in phase space, and it may be adapted to other two dimensional surfaces with non-constant curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20on%20the%20sphere" title="diffusion on the sphere">diffusion on the sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=Fokker-Planck%20equation%20on%20the%20sphere" title=" Fokker-Planck equation on the sphere"> Fokker-Planck equation on the sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere" title=" non equilibrium processes on the sphere"> non equilibrium processes on the sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods%20for%20diffusion%20on%20the%20sphere" title=" numerical methods for diffusion on the sphere"> numerical methods for diffusion on the sphere</a> </p> <a href="https://publications.waset.org/abstracts/126691/a-geometrical-method-for-the-smoluchowski-equation-on-the-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6742</span> Self in Networks: Public Sphere in the Era of Globalisation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghamitra%20Sadhu">Sanghamitra Sadhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A paradigm shift from capitalism to information technology is discerned in the era globalisation. The idea of public sphere, which was theorized in terms of its decline in the wake of the rise of commercial mass media has now emerged as a transnational or global sphere with the discourse being dominated by the ‘network society’. In other words, the dynamic of globalisation has brought about ‘a spatial turn’ in the social and political sciences which is also manifested in the public sphere, Especially the global public sphere. The paper revisits the Habermasian concept of the public sphere and focuses on the various social networking sites with their plausibility to create a virtual global public sphere. Situating Habermas’s notion of the bourgeois public sphere in the present context of global public sphere, it considers the changing dimensions of the public sphere across time and examines the concept of the ‘public’ with its shifting transformation from the concrete collective to the fluid ‘imagined’ category. The paper addresses the problematic of multimodal self-portraiture in the social networking sites as well as various online diaries/journals with an attempt to explore the nuances of the networked self. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=globalisation" title="globalisation">globalisation</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20society" title=" network society"> network society</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20sphere" title=" public sphere"> public sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=self-fashioning" title=" self-fashioning"> self-fashioning</a>, <a href="https://publications.waset.org/abstracts/search?q=identity" title=" identity"> identity</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomy" title=" autonomy"> autonomy</a> </p> <a href="https://publications.waset.org/abstracts/28132/self-in-networks-public-sphere-in-the-era-of-globalisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6741</span> Rethinking the Public Sphere: Group Polarization on Social Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianji%20Jiang">Tianji Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Habermas' definition of public sphere is a classical and well-regarded theory of the formation of public opinions, laying the foundation for many researches on public opinions and public media. In recent decades, public media have been changing rapidly as social media are gaining increasing importance. However, the occurrence of group polarization on social media, which is a hot issue today, is challenging Habermas' theory of the public sphere. This article reviews the public sphere theory and studies group polarization and social media. It proposes ideas on how to understand group polarization within the public sphere and comes up with some suggestions and ideas to reduce polarization on social media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20sphere" title="public sphere">public sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20polarization" title=" group polarization"> group polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20chamber" title=" echo chamber"> echo chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20opinion" title=" public opinion"> public opinion</a> </p> <a href="https://publications.waset.org/abstracts/158010/rethinking-the-public-sphere-group-polarization-on-social-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6740</span> Controversies and Contradiction in (IR) Reversibility and the Equilibrium of Reactive Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20Teotonio%20Manzi">Joao Teotonio Manzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reversibility, irreversibility, equilibrium and steady-state that play a central role in the thermodynamic analysis of processes arising in the context of reactive systems are discussed in this article. Such concepts have generated substantial doubts, even among the most experienced researchers, and engineers, because from the literature, conclusive or definitive statements cannot be extracted. Concepts such as the time-reversibility of irreversible processes seem paradoxical, requiring further analysis. Equilibrium and reversibility, which appear to be of the same nature, have also been re-examined in the light of maximum entropy. The goal of this paper is to revisit and explore these concepts based on classical thermodynamics in order to have a better understanding them due to their impacts on technological advances, as a result, to generate an optimal procedure for designing, monitoring, and engineering optimization. Furthermore, an effective graphic procedure for dimensioning a Plug Flow Reactor has been provided. Thus, to meet the needs of chemical engineering from a simple conceptual analysis but with significant practical effects, a macroscopic approach is taken so as to integrate the different parts of this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reversibility" title="reversibility">reversibility</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20system" title=" reactive system"> reactive system</a> </p> <a href="https://publications.waset.org/abstracts/144272/controversies-and-contradiction-in-ir-reversibility-and-the-equilibrium-of-reactive-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6739</span> Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Mousavi">Seyed Mohsen Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahjat%20Afshari%20Razani"> Bahjat Afshari Razani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%2FZnO%20hollow%20sphere" title=" Fe/ZnO hollow sphere"> Fe/ZnO hollow sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20sphere%20nanostructures" title=" hollow sphere nanostructures"> hollow sphere nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/56367/green-and-facile-fabrication-and-characterization-of-fezno-hollow-spheres-and-photodegradation-of-azo-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6738</span> The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilute%20gas" title="dilute gas">dilute gas</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title=" radiation field"> radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20non-equilibrium%20distribution%20functions" title=" unsteady non-equilibrium distribution functions"> unsteady non-equilibrium distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/10132/the-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6737</span> A Game Theory Analysis of The Enuma Elish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Kampmann%20Walther">Bo Kampmann Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This essay provides an in-depth interpretation of the ancient Babylonian origin narrative, The Enuma Elish, through the lens of game theory. It examines the strategic interactions among the deities in the myth as if they were players in a game, focusing on understanding the dynamics of conflict, cooperation, and equilibrium within the narrative. The pivotal game theory concept known as Nash Equilibrium is given prominent consideration, but saddle points and optimal strategies will also be employed to uncover the decision-making processes of the divine figures, particularly in the cosmic battle for supremacy. This analysis demonstrates that the ancient narrative, beyond its mythological content, illustrates timeless principles of strategic behavior in the pursuit of game success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enuma%20Elish" title="Enuma Elish">Enuma Elish</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Nash%20Equilibrium" title=" Nash Equilibrium"> Nash Equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=Babylonian%20mythology" title=" Babylonian mythology"> Babylonian mythology</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20interaction" title=" strategic interaction"> strategic interaction</a> </p> <a href="https://publications.waset.org/abstracts/191404/a-game-theory-analysis-of-the-enuma-elish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6736</span> Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhruvit%20S.%20Berawala">Dhruvit S. Berawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Jann%20R.%20Ursin"> Jann R. Ursin</a>, <a href="https://publications.waset.org/abstracts/search?q=Obrad%20Slijepcevic"> Obrad Slijepcevic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper present<strong>s</strong> a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20flow" title=" non-linear flow"> non-linear flow</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas%20production" title=" shale gas production"> shale gas production</a> </p> <a href="https://publications.waset.org/abstracts/76281/sphere-in-cube-grid-approach-to-modelling-of-shale-gas-production-using-non-linear-flow-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6735</span> MHD Equilibrium Study in Alborz Tokamak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryamosadat%20Ghasemi">Maryamosadat Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Amrollahi"> Reza Amrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title="equilibrium">equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=grad%E2%80%93shafranov" title=" grad–shafranov"> grad–shafranov</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Alborz%20Tokamak" title=" Alborz Tokamak"> Alborz Tokamak</a> </p> <a href="https://publications.waset.org/abstracts/30952/mhd-equilibrium-study-in-alborz-tokamak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6734</span> Transpersonal Model of an Individual&#039;s Creative Experiencef</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anatoliy%20Kharkhurin">Anatoliy Kharkhurin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modifications that the prefix ‘trans-‘ refers to start within a person. This presentation focuses on the transpersonal that goes beyond the individual (trans-personal) to encompass wider aspects of humanities, specifically peak experience as a culminating stage of the creative act. It proposes a model according to which the peak experience results from a harmonious vibration of four spheres, which transcend an individual’s capacities and bring one to a qualitatively different level of experience. Each sphere represents an aspect of creative activity: superconscious, intellectual, emotive and active. Each sphere corresponds to one of four creative functions: authenticity, novelty, aesthetics, and utility, respectively. The creative act starts in the superconscious sphere: the supreme pleasure of Creation is reflected in creative pleasure, which is realized in creative will. These three instances serve as a source of force axes, which penetrate other spheres, and in place of infiltration establish restrictive, expansive, and integrative principles, respectively; the latter balances the other two and ensures a harmonious vibration within a sphere. This Hegelian-like triad is realized within each sphere in the form of creative capacities. The intellectual sphere nurtures capacities to invent and to elaborate, which are integrated by capacity to conceptualize. The emotive sphere nurtures satiation and restrictive capacities integrated by capacity to balance. The active sphere nurtures goal orientation and stabilization capacities integrated by capacity for self-expression. All four spheres vibrate within each other – the superconscious sphere being in the core of the structure followed by intellectual, emotive, and active spheres, respectively – thereby reflecting the path of creative production. If the spheres vibrate in-phase, their amplitudes amplify the creative energy; if in antiphase – the amplitudes reduce the creative energy. Thus, creative act is perceived as continuum with perfectly harmonious vibration within and between the spheres on one side and perfectly disharmonious vibration on the other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creativity" title="creativity">creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=transpersonal" title=" transpersonal"> transpersonal</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20experience" title=" peak experience"> peak experience</a> </p> <a href="https://publications.waset.org/abstracts/42946/transpersonal-model-of-an-individuals-creative-experiencef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6733</span> Separation of Oryzanol from Rice Bran Oil Using Silica: Equilibrium of Batch Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Susanti">A. D. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Sediawan"> W. B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Wirawan"> S. K. Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhijanto"> Budhijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritmaleni"> Ritmaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice bran oil contains significant amounts of oryzanol, a natural antioxidant that considered has higher antioxidant activity than vitamin E (tocopherol). Oryzanol reviewed has several health properties and interested in pharmacy, nutrition, and cosmetics. For practical usage, isolation and purification would be necessary due to the low concentration of oryzanol in crude rice bran oil (0.9-2.9%). Batch chromatography has proved as a promising process for the oryzanol recovery, but productivity was still low and scale-up processes of industrial interest have not yet been described. In order to improve productivity of batch chromatography, a continuous chromatography design namely Simulated Moving Bed (SMB) concept have been proposed. The SMB concept has interested for continuous commercial scale separation of binary system (oryzanol and rice bran oil), and rice bran oil still obtained as side product. Design of SMB chromatography for oryzanol separation requires quantification of its equilibrium. In this study, equilibrium of oryzanol separation conducted in batch adsorption using silica as the adsorbent and n-hexane/acetone (9:1) as the eluent. Three isotherm models, namely the Henry, Langmuir, and Freundlich equations, have been applied and modified for the experimental data to establish appropriate correlation for each sample. It turned out that the model quantitatively describe the equilibrium experimental data and will directed for design of SMB chromatography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=oryzanol" title=" oryzanol"> oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil"> rice bran oil</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20moving%20bed" title=" simulated moving bed"> simulated moving bed</a> </p> <a href="https://publications.waset.org/abstracts/30372/separation-of-oryzanol-from-rice-bran-oil-using-silica-equilibrium-of-batch-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6732</span> The Behavior of Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Mixture Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a development of the papers is introduced. The behavior of the unsteady non-equilibrium distribution functions for a rarefied gas mixture under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the rarefied gas mixture is determined for the first time. The non-equilibrium thermodynamic properties of the system is investigated. The results are applied to the Argon-Neon binary gas mixture, for various values of both of molar fraction parameters and radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior and the results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title="radiation field">radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20gas%20mixture" title=" binary gas mixture"> binary gas mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/10477/the-behavior-of-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-mixture-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6731</span> Analysis of the Scattered Fields by Dielectric Sphere Inside Different Dielectric Mediums: The Case of the Source and Observation Point Is Reciprocal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emi%CC%87ne%20Av%C5%9Far%20Aydin">Emi̇ne Avşar Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezahat%20G%C3%BCnen%C3%A7%20Tuncel"> Nezahat Günenç Tuncel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hami%CC%87t%20Serbest"> A. Hami̇t Serbest</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electromagnetic scattering from a canonical structure is an important issue in electromagnetic theory. In this study, the electromagnetic scattering from a dielectric sphere with oblique incidence is investigated. The incident field is considered as a plane wave with H polarized. The scattered and transmitted field expressions with unknown coefficients are written. The unknown coefficients are obtained by using exact boundary conditions. Then, the sphere is considered as having frequency dependent dielectric permittivity. The frequency dependence is shown by Cole-Cole model. The far scattered field expressions are found respect to different incidence angles in the 1-8 GHz frequency range. The observation point is the angular distance of pi from an incident wave. While an incident wave comes with a certain angle, observation point turns from 0 to 360 degrees. According to this, scattered field amplitude is maximum at the location of the incident wave, scattered field amplitude is minimum at the across incident wave. Also, the scattered fields are plotted versus frequency to show frequency-dependence explicitly. Graphics are shown for some incident angles compared with the Harrington's solution. Thus, the results are obtained faster and more reliable with reciprocal rotation. It is expected that when there is another sphere with different properties in the outer sphere, the presence and location of the sphere will be detected faster. In addition, this study leads to use for biomedical applications in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scattering" title="scattering">scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20sphere" title=" dielectric sphere"> dielectric sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20incidence" title=" oblique incidence"> oblique incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=reciprocal%20rotation" title=" reciprocal rotation"> reciprocal rotation</a> </p> <a href="https://publications.waset.org/abstracts/32409/analysis-of-the-scattered-fields-by-dielectric-sphere-inside-different-dielectric-mediums-the-case-of-the-source-and-observation-point-is-reciprocal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6730</span> Analysis of the Homogeneous Turbulence Structure in Uniformly Sheared Bubbly Flow Using First and Second Order Turbulence Closures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hela%20Ayeb%20Mrabtini">Hela Ayeb Mrabtini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Bellakhal"> Ghazi Bellakhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamel%20Chahed"> Jamel Chahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of the dispersed phase in gas-liquid bubbly flow considerably alters the liquid turbulence. The bubbles induce turbulent fluctuations that enhance the global liquid turbulence level and alter the mechanisms of turbulence. RANS modeling of uniformly sheared flows on an isolated sphere centered in a control volume is performed using first and second order turbulence closures. The sphere is placed in the production-dissipation equilibrium zone where the liquid velocity is set equal to the relative velocity of the bubbles. The void fraction is determined by the ratio between the sphere volume and the control volume. The analysis of the turbulence statistics on the control volume provides numerical results that are interpreted with regard to the effect of the bubbles wakes on the turbulence structure in uniformly sheared bubbly flow. We assumed for this purpose that at low void fraction where there is no hydrodynamic interaction between the bubbles, the single-phase flow simulation on an isolated sphere is representative on statistical average of a sphere network. The numerical simulations were firstly validated against the experimental data of bubbly homogeneous turbulence with constant shear and then extended to produce numerical results for a wide range of shear rates from 0 to 10 s^-1. These results are compared with our turbulence closure proposed for gas-liquid bubbly flows. In this closure, the turbulent stress tensor in the liquid is split into a turbulent dissipative part produced by the gradient of the mean velocity which also contains the turbulence generated in the bubble wakes and a pseudo-turbulent non-dissipative part induced by the bubbles displacements. Each part is determined by a specific transport equation. The simulations of uniformly sheared flows on an isolated sphere reproduce the mechanisms related to the turbulent part, and the numerical results are in perfect accordance with the modeling of the transport equation of the turbulent part. The reduction of second order turbulence closure provides a description of the modification of turbulence structure by the bubbles presence using a dimensionless number expressed in terms of two-time scales characterizing the turbulence induced by the shear and that induced by bubbles displacements. The numerical simulations carried out in the framework of a comprehensive analysis reproduce particularly the attenuation of the turbulent friction showed in the experimental results of bubbly homogeneous turbulence subjected to a constant shear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20bubbly%20flows" title="gas-liquid bubbly flows">gas-liquid bubbly flows</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20turbulence" title=" homogeneous turbulence"> homogeneous turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20closure" title=" turbulence closure"> turbulence closure</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20shear" title=" uniform shear"> uniform shear</a> </p> <a href="https://publications.waset.org/abstracts/46555/analysis-of-the-homogeneous-turbulence-structure-in-uniformly-sheared-bubbly-flow-using-first-and-second-order-turbulence-closures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6729</span> The Lived Experience of Siblings of Autistic Children; From the Private to Public Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiana%20Taghikhan">Kiana Taghikhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamim%20Sherafat"> Shamim Sherafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Taheri"> Mostafa Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although many people with autism spectrum disorder around the world face many problems and challenges, their conditions may unintentionally affect the lives of the people around them. In this research the experiences of siblings of autistic children have been investigated in both the public and private spheres of their lives. "Private sphere" includes the experiences of research participants in socializing with relatives and family, assignments and responsibilities, as well as how they spend their leisure time and lifestyle. The "public sphere" includes the experience of their presence in society, such as university, or workplace and any outdoor activities that could have been affected by their sibling’s disorder. The present research has been done using the qualitative research method and in-depth interview technique with siblings of autistic children. The sample population is 15 individuals who participated in the research theoretically and purposefully. Based on the findings, the private and social experiences of these individuals is very different compared to peers who do not have siblings with autism disorder in the family. The difference is to such an extent that causes them to separate and distance themselves from other members of the society, and depending on their special conditions, it can affect their goals and life opportunities such as job, marriage, having children, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=siblings" title=" siblings"> siblings</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20sphere" title=" private sphere"> private sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20sphere" title=" public sphere"> public sphere</a> </p> <a href="https://publications.waset.org/abstracts/190021/the-lived-experience-of-siblings-of-autistic-children-from-the-private-to-public-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6728</span> Pure Scalar Equilibria for Normal-Form Games</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herbert%20W.%20Corley">Herbert W. Corley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compromise%20equilibrium" title="compromise equilibrium">compromise equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20equilibrium" title=" greedy equilibrium"> greedy equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=normal-form%20game" title=" normal-form game"> normal-form game</a>, <a href="https://publications.waset.org/abstracts/search?q=parity%20equilibrium" title=" parity equilibrium"> parity equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20strategies" title=" pure strategies"> pure strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=satisficing%20equilibrium" title=" satisficing equilibrium"> satisficing equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=scalar%20equilibria" title=" scalar equilibria"> scalar equilibria</a>, <a href="https://publications.waset.org/abstracts/search?q=utility%20function" title=" utility function"> utility function</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20equilibrium" title=" weighted equilibrium"> weighted equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/153301/pure-scalar-equilibria-for-normal-form-games" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6727</span> Some Aspects of Improving Service Sphere Management in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gechbaia%20Badri">Gechbaia Badri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article, it is studied and realized the perfection issues of service sphere management in Georgia’s reality. As stated above, to transfer the country's economy onto marketing relationships, to form competitive dynamic market is dictated by the time and represents objective necessity. In the last period, the abruptly increasing of changes on science and education caused servicing sphere and producing skills, consumptions based on fields of places and changing role in a structure of the national economy. The main recourse in the new system of the economy became the intellectual capital. The economical progress is significantly determined by developing informational technologies. In the article, it is investigated the service problems of different fields of national economy and are given sentences to settle these problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20management" title="service management">service management</a>, <a href="https://publications.waset.org/abstracts/search?q=service" title=" service"> service</a>, <a href="https://publications.waset.org/abstracts/search?q=paradigm" title=" paradigm"> paradigm</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20and%20management%20engineering" title=" business and management engineering"> business and management engineering</a> </p> <a href="https://publications.waset.org/abstracts/24301/some-aspects-of-improving-service-sphere-management-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6726</span> Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.D.%20Susanti">A.D. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Sediawan"> W. B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Wirawan"> S.K. Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhijanto"> Budhijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritmaleni"> Ritmaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title="adsorption equilibrium">adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oryzanol" title=" oryzanol"> oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil "> rice bran oil </a> </p> <a href="https://publications.waset.org/abstracts/31079/oryzanol-recovery-from-rice-bran-oil-adsorption-equilibrium-models-through-kinetics-data-approachments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6725</span> Numerical Simulation on Two Components Particles Flow in Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Heng">Wang Heng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Zhaoping"> Zhong Zhaoping</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Feihong"> Guo Feihong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Jia"> Wang Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xiaoyi"> Wang Xiaoyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/36080/numerical-simulation-on-two-components-particles-flow-in-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6724</span> Instability by Weak Precession of the Flow in a Rapidly Rotating Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kida">S. Kida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the flow of an incompressible viscous fluid in a precessing sphere whose spin and precession axes are orthogonal to each other. The flow is characterized by two non-dimensional parameters, the Reynolds number Re and the Poincare number Po. For which values of (Re, Po) will the flow approach a steady state from an arbitrary initial condition? To answer it we are searching the instability boundary of the steady states in the whole (Re, Po) plane. Here, we focus the rapidly rotating and weakly precessing limit, i.e., Re >> 1 and Po << 1. The steady flow was obtained by the asymptotic expansion for small ε=Po Re¹/² << 1. The flow exhibits nearly a solid-body rotation in the whole sphere except for a thin boundary layer which develops over the sphere surface. The thickness of this boundary layer is of O(δ), where δ=Re⁻¹/², except where two circular critical bands of thickness of O(δ⁴/⁵) and of width of O(δ²/⁵) which are located away from the spin axis by about 60°. We perform the linear stability analysis of the steady flow. We assume that the disturbances are localized in the critical bands and make an expansion analysis in terms of ε to derive the eigenvalue problem for the growth rate of the disturbance, which is solved numerically. As the solution, we obtain an asymptote of the stability boundary as Po=28.36Re⁻⁰.⁸. This agrees excellently with the corresponding laboratory experiments and numerical simulations. One of the most popular instability mechanisms so far is the parametric instability, which turns out, however, not to give the correct stability boundary. The present instability is different from the parametric instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20band" title=" critical band"> critical band</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=precessing%20sphere" title=" precessing sphere"> precessing sphere</a> </p> <a href="https://publications.waset.org/abstracts/99149/instability-by-weak-precession-of-the-flow-in-a-rapidly-rotating-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6723</span> Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anwar">Mohammad Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Waliullah"> Shah Waliullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20equilibrium%20constant" title="thermodynamic equilibrium constant">thermodynamic equilibrium constant</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant" title=" reaction rate constant"> reaction rate constant</a>, <a href="https://publications.waset.org/abstracts/search?q=PBL%20teaching" title=" PBL teaching"> PBL teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dialectical%20relation" title=" dialectical relation"> dialectical relation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20thinking" title=" innovative thinking"> innovative thinking</a> </p> <a href="https://publications.waset.org/abstracts/161693/teaching-and-learning-dialectical-relationship-between-thermodynamic-equilibrium-and-reaction-rate-constant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6722</span> Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanshio%20Richard%20Tyokyaa">Kanshio Richard Tyokyaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagadish%20Singh"> Jagadish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-plane" title="out-of-plane">out-of-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20points" title=" equilibrium points"> equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20restricted%20three-body%20problem" title=" elliptic restricted three-body problem"> elliptic restricted three-body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness" title=" oblateness"> oblateness</a>, <a href="https://publications.waset.org/abstracts/search?q=zonal%20harmonic" title=" zonal harmonic"> zonal harmonic</a> </p> <a href="https://publications.waset.org/abstracts/91381/stability-of-out-of-plane-equilibrium-points-in-the-elliptic-restricted-three-body-problem-with-oblateness-up-to-zonal-harmonic-j4-of-both-primaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6721</span> Measurement of the Neutron Spectrum of 241AmLi and 241AmF Sources Using the Bonner Sphere Spectrometers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Rocha%20Carvalho">Victor Rocha Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bonner Sphere Spectrometry was used to obtain the average energy, the fluence rate, and radioprotection quantities such as the personal and ambient dose equivalent of the ²⁴¹AmLi and ²⁴¹AmF isotopic neutron sources used in the Neutron Metrology Laboratory - LN. The counts of the sources were performed with six different spherical moderators around the detector. Through this, the neutron spectrum was obtained by means of the software named NeuraLN, developed by the LN, that uses the neural networks technique. The 241AmLi achieved a result close to the literature, and 241AmF, which contains few published references, acquired a result with a slight variation from the literature. Therefore, besides fulfilling its objective, the work raises questions about a possible standard of the ²⁴¹AmLi and about the lack of work with the ²⁴¹AmF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20physics" title="nuclear physics">nuclear physics</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20metrology" title=" neutron metrology"> neutron metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectrometry" title=" neutron spectrometry"> neutron spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=bonner%20sphere%20spectrometers" title=" bonner sphere spectrometers"> bonner sphere spectrometers</a> </p> <a href="https://publications.waset.org/abstracts/160581/measurement-of-the-neutron-spectrum-of-241amli-and-241amf-sources-using-the-bonner-sphere-spectrometers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6720</span> Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Saida">Takahiro Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Kogiso"> Takahiro Kogiso</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Maruyama"> Takahiro Maruyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sphere" title="carbon sphere">carbon sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20by%20layer" title=" layer by layer"> layer by layer</a> </p> <a href="https://publications.waset.org/abstracts/90727/synthesis-and-characterization-of-the-carbon-spheres-built-up-from-reduced-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6719</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6718</span> Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=factsage" title=" factsage"> factsage</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a> </p> <a href="https://publications.waset.org/abstracts/137291/development-of-a-thermodynamic-model-for-ladle-metallurgy-steel-making-processes-using-factsage-and-its-macro-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6717</span> Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huijuan%20Liu">Huijuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fukun%20Li"> Fukun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Yuan"> Hao Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bolt-sphere%20joint" title="bolt-sphere joint">bolt-sphere joint</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title=" constitutive model"> constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20damage" title=" ductile damage"> ductile damage</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20calibration" title=" model calibration"> model calibration</a> </p> <a href="https://publications.waset.org/abstracts/146234/elastoplastic-and-ductile-damage-model-calibration-of-steels-for-bolt-sphere-joints-used-in-chinas-space-structure-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6716</span> Media Regulation and Public Sphere in the Digital Age: An Analysis in the Light of Constructive Democracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Marden%20Cabral%20Coutinho">Carlos Marden Cabral Coutinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Luis%20Bolzan%20de%20Morais"> Jose Luis Bolzan de Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article proposed intends to analyze the possibility (and conditions) of a media regulation law in a democratic rule of law in the twenty-first century. To do so, will be presented initially the idea of the public sphere (by Jürgen Habermas), showing how it is presented as an interface between the citizen and the state (or the private and public) and how important is it in a deliberative democracy. Based on this paradigm, the traditional perception of the role of public information (such as system functional element) and on the possibility of media regulation will be exposed, due to the public nature of their activity. A critical argument will then be displayed from two different perspectives: a) the formal function of the current media information, considering that the digital age has fragmented the information access; b) the concept of a constructive democracy, which reduces the need for representation, changing the strategic importance of the public sphere. The question to be addressed (based on the comparative law) is if the regulation is justified in a polycentric democracy, especially when it operates under the digital age (with immediate and virtual communication). The proposal is to be presented in the sense that even in a twenty-first century the media in a democratic rule of law still has an extremely important role and may be subject to regulation, but this should be on terms very different (and narrower) from those usually defended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constructive%20democracy" title="constructive democracy">constructive democracy</a>, <a href="https://publications.waset.org/abstracts/search?q=media" title=" media"> media</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20age" title=" digital age"> digital age</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20sphere" title=" public sphere"> public sphere</a> </p> <a href="https://publications.waset.org/abstracts/25585/media-regulation-and-public-sphere-in-the-digital-age-an-analysis-in-the-light-of-constructive-democracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6715</span> Muslims in Diaspora Negotiating Islam through Muslim Public Sphere and the Role of Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabah%20Khan">Sabah Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of universal Islam tends to exaggerate the extent of homogeneity in Islamic beliefs and practices across Muslim communities. In the age of migration, various Muslim communities are in diaspora. The immediate implication of this is what happens to Islam in diaspora? How Islam gets represented in new forms? Such pertinent questions need to be dealt with. This paper shall draw on the idea of religious transnationalism, primarily transnational Islam. There are multiple ways to conceptualize transnational phenomenon with reference to Islam in terms of flow of people, transnational organizations and networks; Ummah oriented solidarity and the new Muslim public sphere. This paper specifically deals with the new Muslim public sphere. It primarily refers to the space and networks enabled by new media and communication technologies, whereby Muslim identity and Islamic normativity are rehearsed, debated by people in different locales. A new sense of public is emerging across Muslim communities, which needs to be contextualized. This paper uses both primary and secondary data. Primary data elicited through content analysis of audio-visuals on social media and secondary sources of information ranging from books, articles, journals, etc. The basic aim of the paper is to focus on the emerging Muslim public sphere and the role of media in expanding public spheres of Islam. It also explores how Muslims in diaspora negotiate Islam and Islamic practices through media and the new Muslim public sphere. This paper cogently weaves in discussions firstly, of re-intellectualization of Islamic discourse in the public sphere. In other words, how Muslims have come to reimagine their collective identity and critically look at fundamental principles and authoritative tradition. Secondly, the emerging alternative forms of Islam by young Muslims in diaspora. In other words, how young Muslims search for unorthodox ways and media for religious articulation, including music, clothing and TV. This includes transmission and distribution of Islam in diaspora in terms of emerging ‘media Islam’ or ‘soundbite Islam’. The new Muslim public sphere has offered an arena to a large number of participants to critically engage with Islam, which leads not only to a critical engagement with traditional forms of Islamic authority but also emerging alternative forms of Islam and Islamic practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islam" title="Islam">Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=media" title=" media"> media</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslims" title=" Muslims"> Muslims</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20sphere" title=" public sphere"> public sphere</a> </p> <a href="https://publications.waset.org/abstracts/74341/muslims-in-diaspora-negotiating-islam-through-muslim-public-sphere-and-the-role-of-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6714</span> Using Axiomatic Design for Developing a Framework of Manufacturing Cloud Service Composition in the Equilibrium State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Vaziri%20Goodarzi">Ehsan Vaziri Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Houshmand"> Mahmood Houshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Fatahi%20Valilai"> Omid Fatahi Valilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahidreza%20Ghezavati"> Vahidreza Ghezavati</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrooz%20Bamdad"> Shahrooz Bamdad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One important paradigm of industry 4.0 is Cloud Manufacturing (CM).&nbsp;In CM everything is considered as a service, therefore, the CM platform should consider all service provider&#39;s capabilities and tries to integrate services in an equilibrium state. This research develops a framework for implementing manufacturing cloud service composition in the equilibrium state. The developed framework using&nbsp;well-known tools called axiomatic design&nbsp;(AD) and game theory. The research has investigated the factors for forming equilibrium for measures of the manufacturing cloud service composition. Functional requirements (FRs) represent the measures of manufacturing cloud service composition in the equilibrium state. These FRs satisfied by related Design Parameters (DPs). The FRs and DPs are defined by considering the game theory, QoS, consumer needs, parallel and cooperative services. Ultimately, four FRs and DPs represent the framework. To insure the validity of the framework, the authors have used the first AD&rsquo;s independent axiom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axiomatic%20design" title="axiomatic design">axiomatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20cloud%20service%20composition" title=" manufacturing cloud service composition"> manufacturing cloud service composition</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufacturing" title=" cloud manufacturing"> cloud manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a> </p> <a href="https://publications.waset.org/abstracts/113120/using-axiomatic-design-for-developing-a-framework-of-manufacturing-cloud-service-composition-in-the-equilibrium-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=224">224</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=225">225</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20processes%20on%20the%20sphere&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10