CINXE.COM
Search results for: roller compacted concrete pavements
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: roller compacted concrete pavements</title> <meta name="description" content="Search results for: roller compacted concrete pavements"> <meta name="keywords" content="roller compacted concrete pavements"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="roller compacted concrete pavements" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="roller compacted concrete pavements"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2129</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: roller compacted concrete pavements</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2129</span> The Effects of Various Curing Compounds on the Mechanical Characteristics of Roller Compacted Concrete Pavements (RCCP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Askarinejad">Azadeh Askarinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmida%20Hayati"> Parmida Hayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Parham%20Hayati"> Parham Hayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Parchami"> Reza Parchami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Curing is a very important factor in the ultimate strength and durability of roller compacted concrete pavements (RCCP). Curing involves keeping the concrete is saturated or close to saturation point. Since maintaining concrete moisture has a significant impact on its mechanical properties, permeability and durability, curing is important. The most common procedure for curing of roller compacted concrete is using a white pigmented curing compound. This method is effective, economical and fast. In the present study, different curing compounds were applied on concrete specimens and the results of their effects on the mechanical properties were compared with each other and usual methods of curing in order to select appropriate materials and methods of curing for RCCP construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20compounds" title="curing compounds">curing compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements" title=" roller compacted concrete pavements"> roller compacted concrete pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability "> durability </a> </p> <a href="https://publications.waset.org/abstracts/19721/the-effects-of-various-curing-compounds-on-the-mechanical-characteristics-of-roller-compacted-concrete-pavements-rccp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2128</span> Effect of Poly Naphthalene Sulfonate Superplasticizer on Constructibility of Roller-Compacted Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chamroeun%20Chhorn">Chamroeun Chhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Jae%20Hong"> Seong Jae Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon-Ho%20Cho"> Yoon-Ho Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Jong%20Lee"> Hyun Jong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Woo%20Lee"> Seung Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Roller-Compacted Concrete Pavement (RCCP) in public and private applications has been increasing steadily in the past few decades due to its cost saving. This eco-concrete pavement shares construction characteristics from asphalt pavement and material characteristics from the conventional concrete pavement. Due to its low binder and water content, the consistency of Roller-Compacted Concrete (RCC) is typically very stiff. Thus, it is crucial to control the consistency of this concrete. Without appropriate consistency, required density may not be achieved in actual construction for RCCP. The purpose of this study is to investigate the effect on Poly Naphtalene Sulfonate (PNS) superplasticizer on the consistency of RCC as well as its compactibility in actual construction. From this study, it was found that PNS superplasticizer can effectively reduce the stiffness of an RCC mixture and maintain it for a sufficient amount of time without compromising its strength properties. Moreover, it was observed from field test specimens that the use of this admixture can also improve the compaction efficiency throughout the whole depth of pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller-compacted%20concrete" title="roller-compacted concrete">roller-compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=compactibility" title=" compactibility"> compactibility</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20naphthalene%20sulfonate%20superplasticizer" title=" poly naphthalene sulfonate superplasticizer"> poly naphthalene sulfonate superplasticizer</a> </p> <a href="https://publications.waset.org/abstracts/54668/effect-of-poly-naphthalene-sulfonate-superplasticizer-on-constructibility-of-roller-compacted-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Variation of Quality of Roller-Compacted Concrete Based on Consistency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Chhorn">C. Chhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Han"> S. H. Han</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lee"> S. W. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compacted%20depth" title="compacted depth">compacted depth</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20roughness%20index%20%28IRI%29" title=" international roughness index (IRI)"> international roughness index (IRI)</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=roller-compacted%20concrete%20%28RCC%29" title=" roller-compacted concrete (RCC)"> roller-compacted concrete (RCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=skid%20resistance" title=" skid resistance"> skid resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/65365/variation-of-quality-of-roller-compacted-concrete-based-on-consistency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Overtopping Protection Systems for Overflow Earth Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Pourabdollah">Omid Pourabdollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Misaghian"> Mohsen Misaghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overtopping is known as one the most important reasons for the failure of earth dams. In some cases, it has resulted in heavy damages and losses. Therefore, enhancing the safety of earth dams against overtopping has received much attention in the past four decades. In this paper, at first, the overtopping phenomena and its destructive consequences will be introduced. Then, overtopping failure mechanism of embankments will be described. Finally, different types of protection systems for stabilization of earth dams against overtopping will be presented. These include timber cribs, riprap and gabions, reinforced earth, roller compacted concrete, and the precast concrete blocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embankment%20dam" title="embankment dam">embankment dam</a>, <a href="https://publications.waset.org/abstracts/search?q=overtopping" title=" overtopping"> overtopping</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title=" roller compacted concrete"> roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20concrete%20block" title=" wedge concrete block"> wedge concrete block</a> </p> <a href="https://publications.waset.org/abstracts/109537/overtopping-protection-systems-for-overflow-earth-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> Comparative Study of Compressive Strength of Triangular Polyester Fiber with Fly Ash Roller Compacted Concrete Using Ultrasonic Pulse Velocity Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Keshav%20Kolase">Pramod Keshav Kolase</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai"> Atul K. Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV) tests conducted on roller compacted concrete pavement (RCCP) material containing Class F fly ash of as mineral admixture and triangular polyester fiber as a secondary reinforcement. The each mix design series fly ash content is varied from 0% to 45 % and triangular polyester fiber 0% to 0.75% by volume fraction. In each series and for different ages of curing (i.e. 7, 28 and 90 days) forty-eight cube specimens are cast and tested for compressive strength and UPV. The UPV of fly ash was found to be lower for all mixtures at 7 days in comparison with control mix concrete. But at 28, 56 days and 90 days the UPV were significantly improved for all the mixes. Relationships between compressive strength of RCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20elastic%20modulus" title=" dynamic elastic modulus"> dynamic elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title=" roller compacted concrete"> roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a> </p> <a href="https://publications.waset.org/abstracts/58794/comparative-study-of-compressive-strength-of-triangular-polyester-fiber-with-fly-ash-roller-compacted-concrete-using-ultrasonic-pulse-velocity-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> Design of Roller Compacting Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Zarrin">O. Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramezan%20Shirazi"> M. Ramezan Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a> </p> <a href="https://publications.waset.org/abstracts/23282/design-of-roller-compacting-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Long-Term Durability of Roller-Compacted Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Hee%20Lee">Jun Hee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Kyu%20Kim"> Young Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Jae%20Hong"> Seong Jae Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamroeun%20Chhorn"> Chamroeun Chhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Woo%20Lee"> Seung Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roller-compacted concrete pavement (RCCP), an environmental friendly pavement of which load carry capacity benefitted from both hydration and aggregate interlock from roller compacting, demonstrated a superb structural performance for a relatively small amount of water and cement content. Even though an excellent structural performance can be secured, it is required to investigate roller-compacted concrete (RCC) under environmental loading and its long-term durability under critical conditions. In order to secure long-term durability, an appropriate internal air-void structure is required for this concrete. In this study, a method for improving the long-term durability of RCCP is suggested by analyzing the internal air-void structure and corresponding durability of RCC. The method of improving the long-term durability involves measurements of air content, air voids, and air-spacing factors in RCC that experiences changes in terms of type of air-entraining agent and its usage amount. This test is conducted according to the testing criteria in ASTM C 457, 672, and KS F 2456. It was found that the freezing-thawing and scaling resistances of RCC without any chemical admixture was quite low. Interestingly, an improvement of freezing-thawing and scaling resistances was observed for RCC with appropriate the air entraining (AE) agent content; Relative dynamic elastic modulus was found to be more than 80% for those mixtures. In RCC with AE agent mixtures, large amount of air was distributed within a range of 2% to 3%, and an air void spacing factor ranging between 200 and 300 μm (close to 250 μm, recommended by PCA) was secured. The long-term durability of RCC has a direct relationship with air-void spacing factor, and thus it can only be secured by ensuring the air void spacing factor through the inclusion of the AE in the mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=RCCP" title=" RCCP"> RCCP</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20spacing%20factor" title=" air spacing factor"> air spacing factor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20scaling%20resistance%20test" title=" surface scaling resistance test"> surface scaling resistance test</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing%20and%20thawing%20resistance%20test" title=" freezing and thawing resistance test"> freezing and thawing resistance test</a> </p> <a href="https://publications.waset.org/abstracts/53693/long-term-durability-of-roller-compacted-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pernicova">R. Pernicova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dobias"> D. Dobias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standards. Regulations are detailed and described especially for European Union and for Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Czech%20republic" title=" Czech republic"> Czech republic</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=RCA" title=" RCA"> RCA</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a> </p> <a href="https://publications.waset.org/abstracts/50744/analysis-of-possibilities-for-using-recycled-concrete-aggregate-in-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syfur%20Rahman">Syfur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20J.%20Khattak"> Mohammad J. Khattak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title="roller compacted concrete">roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavement" title=" concrete pavement"> concrete pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a> </p> <a href="https://publications.waset.org/abstracts/114014/mechanical-and-durability-characteristics-of-roller-compacted-geopolymer-concrete-using-recycled-concrete-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nita"> P. Nita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainforced%20concrete" title="rainforced concrete">rainforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airport%20pavements" title=" airport pavements"> airport pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title=" dimensioning"> dimensioning</a> </p> <a href="https://publications.waset.org/abstracts/53911/airfield-pavements-made-of-reinforced-concrete-dimensioning-according-to-the-theory-of-limit-states-and-eurocode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title="scanning electron microscope">scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airfield%20pavements" title=" airfield pavements"> airfield pavements</a> </p> <a href="https://publications.waset.org/abstracts/53038/using-scanning-electron-microscope-and-computed-tomography-for-concrete-diagnostics-of-airfield-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Effect of Electric Arc Furnace Coarse Slag Aggregate And Ground Granulated Blast Furnace Slag on Mechanical and Durability Properties of Roller Compacted Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Thakur">Amiya Kumar Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Ganvir"> Dinesh Ganvir</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20Pal%20Bansal"> Prem Pal Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial by product utilization has been encouraged due to environment and economic factors. Since electric arc furnace slag aggregate is a by-product of steel industry and its storage is a major concern hence it can be used as a replacement of natural aggregate as its physical and mechanical property are comparable or better than the natural aggregates. The present study investigates the effect of partial and full replacement of natural coarse aggregate with coarse EAF slag aggregate and partial replacement of cement with ground granulated blast furnace slag (GGBFS) on the mechanical and durability properties of roller compacted concrete pavement (RCCP).The replacement level of EAF slag aggregate were at five levels (i.e. 0% ,25% ,50%,75% & 100%) and of GGBFS was (0 % & 30%).The EAF slag aggregate was stabilized by exposing to outdoor condition for several years and the volumetric expansion test using steam exposure device was done to check volume stability. Soil compaction method was used for mix proportioning of RCCP. The fresh properties of RCCP investigated were fresh density and modified vebe test was done to measure the consistency of concrete. For investigating the mechanical properties various tests were done at 7 and 28 days (i.e. Compressive strength, split tensile strength, flexure strength modulus of elasticity) and also non-destructive testing was done at 28 days (i.e. Ultra pulse velocity test (UPV) & rebound hammer test). The durability test done at 28 days were water absorption, skid resistance & abrasion resistance. The results showed that with the increase in slag aggregate percentage there was an increase in the fresh density of concrete and also slight increase in the vebe time but with the 30 % GGBFS replacement the vebe time decreased and the fresh density was comparable to 0% GGBFS mix. The compressive strength, split tensile strength, flexure strength & modulus of elasticity increased with the increase in slag aggregate percentage in concrete when compared to control mix. But with the 30 % GGBFS replacement there was slight decrease in mechanical properties when compared to 100 % cement concrete. In UPV test and rebound hammer test all the mixes showed excellent quality of concrete. With the increase in slag aggregate percentage in concrete there was an increase in water absorption, skid resistance and abrasion resistance but with the 30 % GGBFS percentage the skid resistance, water absorption and abrasion resistance decreased when compared to 100 % cement concrete. From the study it was found that the mix containing 30 % GGBFS with different percentages of EAF slag aggregate were having comparable results for all the mechanical and durability property when compared to 100 % cement mixes. Hence 30 % GGBFS can be used as cement replacement with 100 % EAF slag aggregate as natural coarse aggregate replacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability%20properties" title="durability properties">durability properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20arc%20furnace%20slag%20aggregate" title=" electric arc furnace slag aggregate"> electric arc furnace slag aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBFS" title=" GGBFS"> GGBFS</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavement" title=" roller compacted concrete pavement"> roller compacted concrete pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction%20method" title=" soil compaction method"> soil compaction method</a> </p> <a href="https://publications.waset.org/abstracts/150737/effect-of-electric-arc-furnace-coarse-slag-aggregate-and-ground-granulated-blast-furnace-slag-on-mechanical-and-durability-properties-of-roller-compacted-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Javad%20Vaziri%20Kang%20Olyaei">Seyed Javad Vaziri Kang Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sadat%20Dabiri"> Asma Sadat Dabiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fazaeli"> Hassan Fazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ali%20Amini"> Amir Ali Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavement" title="concrete pavement">concrete pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20polypropylene%20fibers" title=" macro polypropylene fibers"> macro polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20polypropylene%20fibers" title=" micro polypropylene fibers"> micro polypropylene fibers</a> </p> <a href="https://publications.waset.org/abstracts/128419/investigation-of-the-addition-of-macro-and-micro-polypropylene-fibers-on-mechanical-properties-of-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2116</span> LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcela%20Ondova">Marcela Ondova</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Estokova"> Adriana Estokova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavements" title=" concrete pavements"> concrete pavements</a> </p> <a href="https://publications.waset.org/abstracts/8536/lca-and-multi-criteria-analysis-of-fly-ash-concrete-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2115</span> Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvam%20M.">Selvam M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadthya%20Poornachandar"> Vadthya Poornachandar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surender%20Singh"> Surender Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavement" title="concrete pavement">concrete pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=RAP%20aggregate" title=" RAP aggregate"> RAP aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20prediction" title=" performance prediction"> performance prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20design" title=" pavement design"> pavement design</a> </p> <a href="https://publications.waset.org/abstracts/142746/design-of-sustainable-concrete-pavement-by-incorporating-rap-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2114</span> A Study on the Effect of Different Climate Conditions on Time of Balance of Bleeding and Evaporation in Plastic Shrinkage Cracking of Concrete Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Ziari">Hasan Ziari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fazaeli"> Hassan Fazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Javad%20Vaziri%20Kang%20Olyaei"> Seyed Javad Vaziri Kang Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sadat%20Dabiri"> Asma Sadat Dabiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of cracks in concrete pavements is a place for the ingression of corrosive substances, acids, oils, and water into the pavement and reduces its long-term durability and level of service. One of the causes of early cracks in concrete pavements is the plastic shrinkage. This shrinkage occurs due to the formation of negative capillary pressures after the equilibrium of the bleeding and evaporation rates at the pavement surface. These cracks form if the tensile stresses caused by the restrained shrinkage exceed the tensile strength of the concrete. Different climate conditions change the rate of evaporation and thus change the balance time of the bleeding and evaporation, which changes the severity of cracking in concrete. The present study examined the relationship between the balance time of bleeding and evaporation and the area of cracking in the concrete slabs using the standard method ASTM C1579 in 27 different environmental conditions by using continuous video recording and digital image analyzing. The results showed that as the evaporation rate increased and the balance time decreased, the crack severity significantly increased so that by reducing the balance time from the maximum value to its minimum value, the cracking area increased more than four times. It was also observed that the cracking area- balance time curve could be interpreted in three sections. An examination of these three parts showed that the combination of climate conditions has a significant effect on increasing or decreasing these two variables. The criticality of a single factor cannot cause the critical conditions of plastic cracking. By combining two mild environmental factors with a severe climate factor (in terms of surface evaporation rate), a considerable reduction in balance time and a sharp increase in cracking severity can be prevented. The results of this study showed that balance time could be an essential factor in controlling and predicting plastic shrinkage cracking in concrete pavements. It is necessary to control this factor in the case of constructing concrete pavements in different climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleeding%20and%20cracking%20severity" title="bleeding and cracking severity">bleeding and cracking severity</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavements" title=" concrete pavements"> concrete pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20conditions" title=" climate conditions"> climate conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20shrinkage" title=" plastic shrinkage "> plastic shrinkage </a> </p> <a href="https://publications.waset.org/abstracts/127405/a-study-on-the-effect-of-different-climate-conditions-on-time-of-balance-of-bleeding-and-evaporation-in-plastic-shrinkage-cracking-of-concrete-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Altaf%20Wasil">Imran Altaf Wasil</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Ganvir"> Dinesh Ganvir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement" title="reclaimed asphalt pavement">reclaimed asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20quality%20concrete" title=" pavement quality concrete"> pavement quality concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20granulated%20blast%20furnace%20slag" title=" glass granulated blast furnace slag"> glass granulated blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20durability%20properties" title=" mechanical and durability properties"> mechanical and durability properties</a> </p> <a href="https://publications.waset.org/abstracts/150742/experimental-investigation-of-the-effect-of-glass-granulated-blast-furnace-slag-on-pavement-quality-concrete-pavement-made-of-recycled-asphalt-pavement-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Stress Analysis of Hexagonal Element for Precast Concrete Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Novak">J. Novak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kohoutkova"> A. Kohoutkova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kristek"> V. Kristek</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vodicka"> J. Vodicka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sramek"> M. Sramek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imperfection" title="imperfection">imperfection</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete%20element" title=" precast concrete element"> precast concrete element</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20design" title=" reinforcement design"> reinforcement design</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a> </p> <a href="https://publications.waset.org/abstracts/98874/stress-analysis-of-hexagonal-element-for-precast-concrete-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> Pavement Quality Evaluation Using Intelligent Compaction Technology: Overview of Some Case Studies in Oklahoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagar%20Ghos">Sagar Ghos</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20E.%20Elaryan"> Andrew E. Elaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ashik%20Ali"> Syed Ashik Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Musharraf%20Zaman"> Musharraf Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ashiqur%20Rahman"> Mohammed Ashiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Achieving desired density during construction is an important indicator of pavement quality. Insufficient compaction often compromises pavement performance and service life. Intelligent compaction (IC) is an emerging technology for monitoring compaction quality during the construction of asphalt pavements. This paper aims to provide an overview of findings from four case studies in Oklahoma involving the compaction quality of asphalt pavements, namely SE 44th St project (Project 1) and EOC Turnpike project (Project 2), Highway 92 project (Project 3), and 108th Avenue project (Project 4). For this purpose, an IC technology, the intelligent compaction analyzer (ICA), developed at the University of Oklahoma, was used to evaluate compaction quality. Collected data include GPS locations, roller vibrations, roller speed, the direction of movement, and temperature of the asphalt mat. The collected data were analyzed using a widely used software, VETA. The average densities for Projects 1, 2, 3 and 4, were found as 89.8%, 91.50%, 90.7% and 87.5%, respectively. The maximum densities were found as 94.6%, 95.8%, 95.9%, and 89.7% for Projects 1, 2, 3, and 4, respectively. It was observed that the ICA estimated densities correlated well with the field core densities. The ICA results indicated that at least 90% of the asphalt mats were subjected to at least two roller passes. However, the number of passes required to achieve the desired density (94% to 97%) differed from project to project depending on the underlying layer. The results of these case studies show both opportunities and challenges in using IC for monitoring compaction quality during construction in real-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement%20construction" title="asphalt pavement construction">asphalt pavement construction</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20compaction" title=" intelligent compaction"> intelligent compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20compaction%20analyzer" title=" intelligent compaction analyzer"> intelligent compaction analyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20compaction%20measure%20value" title=" intelligent compaction measure value"> intelligent compaction measure value</a> </p> <a href="https://publications.waset.org/abstracts/136762/pavement-quality-evaluation-using-intelligent-compaction-technology-overview-of-some-case-studies-in-oklahoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ashteyat">Ahmed M. Ashteyat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity" title="residual modulus of elasticity">residual modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacted-concrete" title=" self compacted-concrete"> self compacted-concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20modeling" title=" material modeling"> material modeling</a> </p> <a href="https://publications.waset.org/abstracts/22992/modeling-residual-modulus-of-elasticity-of-self-compacted-concrete-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> Design of New Sustainable Pavement Concrete: An Experimental Road</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Rosales">Manuel Rosales</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Agrela"> Francisco Agrela</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Rosales"> Julia Rosales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20bottom%20ash" title="biomass bottom ash">biomass bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20pavements" title=" recycled concrete pavements"> recycled concrete pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20experimental%20road" title=" full-scale experimental road"> full-scale experimental road</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/162790/design-of-new-sustainable-pavement-concrete-an-experimental-road" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Roller Compacting Concrete “RCC” in Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orod%20Zarrin">Orod Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ramezan%20Shirazi"> Mohsen Ramezan Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rehabilitation of dam components such as foundations, buttresses, spillways and overtopping protection require a wide range of construction and design methodologies. Geotechnical Engineering considerations play an important role in the design and construction of foundations of new dams. Much investigation is required to assess and evaluate the existing dams. The application of roller compacting concrete (RCC) has been accepted as a new method for constructing new dams or rehabilitating old ones. In the past 40 years there have been so many changes in the usage of RCC and now it is one of most satisfactory solutions of water and hydropower resource throughout the world. The considerations of rehabilitation and construction of dams might differ due to upstream reservoir and its influence on penetrating and dewatering of downstream, operations requirements and plant layout. One of the advantages of RCC is its rapid placement which allows the dam to be operated quickly. Unlike ordinary concrete it is a drier mix, and stiffs enough for compacting by vibratory rollers. This paper evaluates some different aspects of RCC and focuses on its preparation progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spillway" title="spillway">spillway</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrating%20consistency" title=" vibrating consistency"> vibrating consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20tightness" title=" water tightness"> water tightness</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a> </p> <a href="https://publications.waset.org/abstracts/21131/roller-compacting-concrete-rcc-in-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iuri%20Salukvadze">Iuri Salukvadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection%20systems" title=" seismic protection systems"> seismic protection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20roads" title=" motor roads"> motor roads</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/86721/study-of-properties-of-concretes-made-of-local-building-materials-and-containing-admixtures-and-their-further-introduction-in-construction-operations-and-road-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chudasama">Mahesh Chudasama</a>, <a href="https://publications.waset.org/abstracts/search?q=Harit%20Raval"> Harit Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller-bending" title="roller-bending">roller-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=static-bending" title=" static-bending"> static-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-conditions" title=" stress-conditions"> stress-conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical-modeling" title=" analytical-modeling"> analytical-modeling</a> </p> <a href="https://publications.waset.org/abstracts/45482/a-comparative-study-of-force-prediction-models-during-static-bending-stage-for-3-roller-cone-frustum-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ashtiani">Ali Ashtiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Carrasco"> Cesar Carrasco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built-in%20curling" title="built-in curling">built-in curling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20of%20slab%20support" title=" loss of slab support"> loss of slab support</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title=" rigid pavement"> rigid pavement</a> </p> <a href="https://publications.waset.org/abstracts/80767/finite-element-modeling-of-the-effects-of-loss-of-rigid-pavements-slab-support-due-to-built-in-curling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Unconfined Strength of Nano Reactive Silica Sand Powder Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kabir">Hossein Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Sadeghi"> Mojtaba Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20silica%20sand%20powder%20concrete%20%28RSSPC%29" title="reactive silica sand powder concrete (RSSPC)">reactive silica sand powder concrete (RSSPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20curing" title=" normal curing"> normal curing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20accelerated%20curing" title=" thermal accelerated curing"> thermal accelerated curing</a> </p> <a href="https://publications.waset.org/abstracts/56116/unconfined-strength-of-nano-reactive-silica-sand-powder-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Strength Analysis of RCC Dams Subject to the Layer-by-Layer Construction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archil%20Motsonelidze">Archil Motsonelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20Dvalishvili"> Vitaly Dvalishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing roller compacted concrete (RCC) dams indicate that the layer-by-layer construction method gives considerable economies as compared with the conventional methods. RCC dams have also gained acceptance in the regions of high seismic activity. Earthquake resistance analysis of RCC gravity dams based on nonlinear finite element technique is presented. An elastic-plastic approach is used to describe the material of a dam while it is under static conditions (period of construction). Seismic force, as an acceleration equivalent to that produced by a real earthquake, is supposed to act when the dam is completed. The materials of the dam and foundation may be nonhomogeneous and anisotropic. The “dam-foundation” system is idealized as a plain strain problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20construction" title=" layer-by-layer construction"> layer-by-layer construction</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20dams" title=" RCC dams"> RCC dams</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20analysis" title=" strength analysis"> strength analysis</a> </p> <a href="https://publications.waset.org/abstracts/35897/strength-analysis-of-rcc-dams-subject-to-the-layer-by-layer-construction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Charhate">Shrikant Charhate</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Deshpande"> Gayatri Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile" title=" geotextile"> geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20ACB" title=" permeable ACB"> permeable ACB</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20base" title=" stone base"> stone base</a> </p> <a href="https://publications.waset.org/abstracts/86967/study-and-analysis-of-permeable-articulated-concrete-blocks-pavement-with-reference-to-indian-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sridhar%20Reddy">K. Sridhar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amaranatha%20Reddy"> M. Amaranatha Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilanjan%20Mitra"> Nilanjan Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=joint%20behavior" title="joint behavior">joint behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20slabs" title=" short slabs"> short slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20joints" title=" uncracked joints"> uncracked joints</a>, <a href="https://publications.waset.org/abstracts/search?q=undoweled%20joints" title=" undoweled joints"> undoweled joints</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20numerical%20simulation" title=" 3D numerical simulation"> 3D numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/105020/3d-numerical-simulation-of-undoweled-and-uncracked-joints-in-short-paneled-concrete-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> The Use of Seashell by-Products in Pervious Concrete Pavers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dang%20Hanh%20Nguyen">Dang Hanh Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Sebaibi"> Nassim Sebaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boutouil"> Mohamed Boutouil</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud"> Fabienne Baraud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pervious concrete is a green alternative to conventional pavements with minimal fine aggregate and a high void content. Pervious concrete allows water to infiltrate through the pavement, thereby reducing the runoff and the requirement for stormwater management systems. Seashell By-Products (SBP) are produced in an important quantity in France and are considered as waste. This work investigated to use SBP in pervious concrete and produce an even more environmentally friendly product, Pervious Concrete Pavers. The research methodology involved substituting the coarse aggregate in the previous concrete mix design with 20%, 40% and 60% SBP. The testing showed that pervious concrete containing less than 40% SBP had strengths, permeability and void content which are comparable to the pervious concrete containing with only natural aggregate. The samples that contained 40% SBP or higher had a significant loss in strength and an increase in permeability and a void content from the control mix pervious concrete. On the basis of the results in this research, it was found that the natural aggregate can be substituted by SBP without affecting the delicate balance of a pervious concrete mix. Additional, it is recommended that the optimum replacement percentage for SBP in pervious concrete is 40 % direct replacement of natural coarse aggregate while maintaining the structural performance and drainage capabilities of the pervious concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seashell%20by-products" title="seashell by-products">seashell by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=pervious%20concrete%20pavers" title=" pervious concrete pavers"> pervious concrete pavers</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a> </p> <a href="https://publications.waset.org/abstracts/1640/the-use-of-seashell-by-products-in-pervious-concrete-pavers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete%20pavements&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>