CINXE.COM
Cartesian morphism in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Cartesian morphism in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Cartesian morphism </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/13680/#Item_11" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="category_theory_2"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a></strong></p> <p><strong>Background</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-category">(n,r)-category</a></p> </li> </ul> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hom-object+in+a+quasi-category">hom-objects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalences in</a>/<a class="existingWikiWord" href="/nlab/show/equivalence+of+quasi-categories">of</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sub-quasi-category">sub-(∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localization+of+an+%28%E2%88%9E%2C1%29-category">reflective localization</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/opposite+quasi-category">opposite (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/over+quasi-category">over (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/join+of+quasi-categories">join of quasi-categories</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+%28%E2%88%9E%2C1%29-functor">exact (∞,1)-functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-functors">(∞,1)-category of (∞,1)-functors</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-presheaves">(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/fibrations+of+quasi-categories">fibrations</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/left+fibration">left/right fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartesian+morphism">Cartesian morphism</a></li> </ul> </li> </ul> </li> </ul> <p><strong>Universal constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit+in+quasi-categories">limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/terminal+object+in+a+quasi-category">terminal object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor">adjoint functors</a></p> </li> </ul> <p><strong>Local presentation</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+presentable+%28%E2%88%9E%2C1%29-category">locally presentable</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/essentially+small+%28%E2%88%9E%2C1%29-category">essentially small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+small+%28%E2%88%9E%2C1%29-category">locally small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+%28%E2%88%9E%2C1%29-category">accessible</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent-complete+%28%E2%88%9E%2C1%29-category">idempotent-complete</a></p> </li> </ul> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Yoneda+lemma">(∞,1)-Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor+theorem">adjoint (∞,1)-functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">(∞,1)-monadicity theorem</a></p> </li> </ul> <p><strong>Extra stuff, structure, properties</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> </li> </ul> <p><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+weak+equivalences">category with weak equivalences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivator">derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+quasi-categories">model structure for quasi-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+Cartesian+fibrations">model structure for Cartesian fibrations</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+quasi-categories+and+simplicial+categories">relation to simplicial categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+model+category">simplicial model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presentable quasi-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure for Kan complexes</a></li> </ul> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#in_categories'>In categories</a></li> <ul> <li><a href='#traditional_definition'>Traditional definition</a></li> <li><a href='#CartInOrdCatReformulation'>Reformulations</a></li> </ul> <li><a href='#in_categories_2'>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</a></li> <ul> <li><a href='#in_quasicategories'>In quasi-categories</a></li> <li><a href='#in_categories_3'>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>sSet</mi></mrow><annotation encoding="application/x-tex">sSet</annotation></semantics></math>-categories</a></li> </ul> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#pullback_along_cartesian_morphisms'>Pullback along Cartesian morphisms</a></li> <li><a href='#cartesian_morphisms_and_equivalences'>Cartesian morphisms and equivalences</a></li> <ul> <li><a href='#observation'>Observation</a></li> </ul> </ul> <li><a href='#related_pages'>Related pages</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Given a <a class="existingWikiWord" href="/nlab/show/functor">functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p\colon X \to Y</annotation></semantics></math> between categories one may ask for each <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>y</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">f\colon y_1 \to y_2</annotation></semantics></math> that, if given a lift of its target</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><msub><mover><mi>y</mi><mo stretchy="false">^</mo></mover> <mn>2</mn></msub></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mi>p</mi></msup></mtd></mtr> <mtr><mtd><mi>Y</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><msub><mi>y</mi> <mn>1</mn></msub></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><msub><mi>y</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ X &&& && \hat y_2 \\ \downarrow^p \\ Y &&& y_1 &\stackrel{f}{\to}& y_2 } </annotation></semantics></math></div> <p>there be a <em>universal</em> lift of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><msub><mover><mi>y</mi><mo stretchy="false">^</mo></mover> <mn>1</mn></msub></mtd> <mtd><mover><mo>→</mo><mover><mi>f</mi><mo stretchy="false">^</mo></mover></mover></mtd> <mtd><msub><mover><mi>y</mi><mo stretchy="false">^</mo></mover> <mn>2</mn></msub></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mi>p</mi></msup></mtd></mtr> <mtr><mtd><mi>Y</mi></mtd> <mtd></mtd> <mtd></mtd> <mtd><msub><mi>y</mi> <mn>1</mn></msub></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><msub><mi>y</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ X &&& \hat y_1 &\stackrel{\hat f}{\to}& \hat y_2 \\ \downarrow^p \\ Y &&& y_1 &\stackrel{f}{\to}& y_2 } \,. </annotation></semantics></math></div> <p>There may also be other lifts of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>, but the universal one is essentially unique, as usual for anything having a <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a>. Specifically, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>f</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat f</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is essentially uniquely determined by its target <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mover><mi>y</mi><mo stretchy="false">^</mo></mover> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\hat y_2</annotation></semantics></math> and its image <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mover><mi>f</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f = p(\hat f)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, and is called a <strong>cartesian morphism</strong>. A morphism which is cartesian relative to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mi>op</mi></msup><mo lspace="verythinmathspace">:</mo><msup><mi>X</mi> <mi>op</mi></msup><mo>→</mo><msup><mi>Y</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">p^{op}\colon X^{op}\to Y^{op}</annotation></semantics></math> is called <strong>opcartesian</strong> or <strong>cocartesian</strong>.</p> <p>If there are enough cartesian morphisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, they may be used to define <a class="existingWikiWord" href="/nlab/show/functor">functor</a>s</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>:</mo><msub><mi>X</mi> <mrow><msub><mi>y</mi> <mn>2</mn></msub></mrow></msub><mo>→</mo><msub><mi>X</mi> <mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow></msub></mrow><annotation encoding="application/x-tex"> f^* : X_{y_2} \to X_{y_1} </annotation></semantics></math></div> <p>between the <a class="existingWikiWord" href="/nlab/show/fiber">fiber</a>s of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">y_1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>y</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">y_2</annotation></semantics></math>.</p> <p>This way a functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> with enough Cartesian morphisms – called a <a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a> or <a class="existingWikiWord" href="/nlab/show/Grothendieck+fibration">Grothendieck fibration</a> – determines and is determined by a fiber-assigning functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>→</mo><msup><mi>Cat</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">Y \to Cat^{op}</annotation></semantics></math>.</p> <p>This has its analog in <a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher categories</a>.</p> <h2 id="definition">Definition</h2> <h3 id="in_categories">In categories</h3> <h4 id="traditional_definition">Traditional definition</h4> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p><strong>(cartesian morphism)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/functor">functor</a>. A <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">f : x_1 \to x_2</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <strong>strongly cartesian</strong> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> (nowadays often just <em>cartesian</em>), or (strongly) <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian</strong> if for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x'\in X</annotation></semantics></math>, for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>:</mo><mi>x</mi><mo>′</mo><mo>→</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">h:x'\to x_2</annotation></semantics></math> and every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>:</mo><mi>p</mi><mo stretchy="false">(</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo><mo>→</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u:p(x')\to p(x_1)</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>h</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding="application/x-tex">p(h) = p(f) u</annotation></semantics></math>, there exists a unique <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>v</mi><mo>:</mo><mi>x</mi><mo>′</mo><mo>→</mo><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">v:x'\to x_1</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>=</mo><mi>f</mi><mi>v</mi></mrow><annotation encoding="application/x-tex">h = f v</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u = p(v)</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo>∀</mo><mi>x</mi><mo>′</mo></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><mo>∃</mo><mo>!</mo><mi>v</mi></mrow></mpadded></msup></mtd> <mtd><msup><mo>↘</mo> <mpadded width="0"><mrow><mo>∀</mo><mi>h</mi></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><msub><mi>x</mi> <mn>1</mn></msub></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><msub><mi>x</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mover><mo>↦</mo><mi>p</mi></mover><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mtable><mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><mo>∀</mo><mi>u</mi></mrow></mpadded></msup></mtd> <mtd><msup><mo>↘</mo> <mpadded width="0"><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>h</mi><mo stretchy="false">)</mo></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \forall x' \\ \downarrow^{\mathrlap{\exists! v}} & \searrow^{\mathrlap{\forall h}} \\ x_1 &\stackrel{f}{\to}& x_2 } \;\;\; \;\;\; \stackrel{p}{\mapsto} \;\;\; \;\;\; \array{ p(x') \\ \downarrow^{\mathrlap{\forall u}} & \searrow^{\mathrlap{p(h)}} \\ p(x_1) &\stackrel{p(f)}{\to}& p(x_2) } </annotation></semantics></math></div> <p>In imprecise words: for all commuting triangles in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> (involving <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(f)</annotation></semantics></math> as above) and all lifts through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> of its 2-<a class="existingWikiWord" href="/nlab/show/horn">horn</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> (involving <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> as above), there is a unique refinement to a lift of the entire commuting triangle.</p> <p>We can make this definition slightly more explicit by working with the fibres of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>: let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>x</mi></msub></mrow><annotation encoding="application/x-tex">X_x</annotation></semantics></math> denote <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p^{-1}(y)</annotation></semantics></math>, the set of objects living over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math>; and, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>y</mi><mo>→</mo><mi>y</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">f : y \to y'</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><msub><mi>X</mi> <mi>y</mi></msub></mrow><annotation encoding="application/x-tex">x : X_y</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>′</mo><mo>:</mo><msub><mi>X</mi> <mrow><mi>y</mi><mo>′</mo></mrow></msub></mrow><annotation encoding="application/x-tex">x' : X_{y'}</annotation></semantics></math>, let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>f</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X_f(x,x')</annotation></semantics></math> denote <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>∩</mo><mi>X</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p^{-1}(f) \cap X(x,x')</annotation></semantics></math>, the set of morphisms from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">x'</annotation></semantics></math> that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> maps to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>.</p> <p>Then for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><msub><mi>X</mi> <mi>y</mi></msub></mrow><annotation encoding="application/x-tex">x : X_y</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>′</mo><mo>:</mo><msub><mi>X</mi> <mrow><mi>y</mi><mo>′</mo></mrow></msub></mrow><annotation encoding="application/x-tex">x' : X_{y'}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>y</mi><mo>′</mo><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f : y' \to y</annotation></semantics></math>, a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>f</mi><mo stretchy="false">¯</mo></mover><mo>:</mo><msub><mi>X</mi> <mi>f</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo>′</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\bar f : X_f(x',x)</annotation></semantics></math> is <em>cartesian</em> iff for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>:</mo><mi>y</mi><mo>″</mo><mo>→</mo><mi>y</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">u : y'' \to y'</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>″</mo><mo>:</mo><msub><mi>X</mi> <mrow><mi>y</mi><mo>″</mo></mrow></msub></mrow><annotation encoding="application/x-tex">x'' : X_{y''}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>:</mo><msub><mi>X</mi> <mrow><mi>f</mi><mo>∘</mo><mi>u</mi></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>″</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h : X_{f \circ u}(x'', x)</annotation></semantics></math>, there is a unique <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>u</mi><mo stretchy="false">¯</mo></mover><mo>:</mo><msub><mi>X</mi> <mi>u</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo>″</mo><mo>,</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\bar u : X_u(x'',x')</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>=</mo><mover><mi>f</mi><mo stretchy="false">¯</mo></mover><mo>∘</mo><mover><mi>u</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">h = \bar f \circ \bar u</annotation></semantics></math>. This can be expressed in the following diagram, where the upper objects and morphisms live in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> over their corresponding data in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="185.787pt" height="155.783pt" viewBox="0 0 185.787 155.783" version="1.2"> <defs> <g> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-1"> <path style="stroke:none;" d="M 7.078125 -6.09375 C 6.59375 -6 6.421875 -5.640625 6.421875 -5.359375 C 6.421875 -5 6.703125 -4.875 6.90625 -4.875 C 7.359375 -4.875 7.671875 -5.265625 7.671875 -5.671875 C 7.671875 -6.296875 6.953125 -6.578125 6.328125 -6.578125 C 5.421875 -6.578125 4.90625 -5.6875 4.78125 -5.40625 C 4.4375 -6.515625 3.5 -6.578125 3.234375 -6.578125 C 1.71875 -6.578125 0.90625 -4.625 0.90625 -4.296875 C 0.90625 -4.234375 0.96875 -4.15625 1.078125 -4.15625 C 1.1875 -4.15625 1.21875 -4.25 1.25 -4.3125 C 1.765625 -5.96875 2.765625 -6.28125 3.1875 -6.28125 C 3.859375 -6.28125 4 -5.65625 4 -5.296875 C 4 -4.96875 3.90625 -4.625 3.734375 -3.90625 L 3.21875 -1.859375 C 3 -0.96875 2.5625 -0.15625 1.78125 -0.15625 C 1.703125 -0.15625 1.328125 -0.15625 1.015625 -0.34375 C 1.546875 -0.453125 1.671875 -0.890625 1.671875 -1.078125 C 1.671875 -1.375 1.453125 -1.546875 1.15625 -1.546875 C 0.8125 -1.546875 0.421875 -1.234375 0.421875 -0.765625 C 0.421875 -0.140625 1.125 0.15625 1.765625 0.15625 C 2.484375 0.15625 2.984375 -0.421875 3.296875 -1.03125 C 3.53125 -0.15625 4.28125 0.15625 4.828125 0.15625 C 6.359375 0.15625 7.15625 -1.8125 7.15625 -2.140625 C 7.15625 -2.203125 7.109375 -2.265625 7.015625 -2.265625 C 6.875 -2.265625 6.859375 -2.1875 6.8125 -2.078125 C 6.421875 -0.765625 5.546875 -0.15625 4.875 -0.15625 C 4.359375 -0.15625 4.078125 -0.53125 4.078125 -1.15625 C 4.078125 -1.484375 4.140625 -1.71875 4.375 -2.703125 L 4.890625 -4.734375 C 5.125 -5.625 5.625 -6.28125 6.3125 -6.28125 C 6.34375 -6.28125 6.765625 -6.28125 7.078125 -6.09375 Z M 7.078125 -6.09375 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-2"> <path style="stroke:none;" d="M 3.921875 1.671875 C 3.515625 2.234375 2.9375 2.75 2.203125 2.75 C 2.03125 2.75 1.3125 2.71875 1.09375 2.03125 C 1.140625 2.046875 1.203125 2.046875 1.234375 2.046875 C 1.6875 2.046875 1.984375 1.65625 1.984375 1.3125 C 1.984375 0.96875 1.703125 0.84375 1.484375 0.84375 C 1.234375 0.84375 0.71875 1.03125 0.71875 1.765625 C 0.71875 2.515625 1.359375 3.046875 2.203125 3.046875 C 3.703125 3.046875 5.203125 1.671875 5.625 0.015625 L 7.09375 -5.796875 C 7.109375 -5.875 7.125 -5.96875 7.125 -6.0625 C 7.125 -6.28125 6.953125 -6.4375 6.734375 -6.4375 C 6.59375 -6.4375 6.28125 -6.375 6.15625 -5.921875 L 5.0625 -1.53125 C 4.984375 -1.265625 4.984375 -1.234375 4.859375 -1.078125 C 4.5625 -0.65625 4.078125 -0.15625 3.359375 -0.15625 C 2.515625 -0.15625 2.453125 -0.96875 2.453125 -1.375 C 2.453125 -2.21875 2.84375 -3.375 3.25 -4.453125 C 3.421875 -4.875 3.5 -5.09375 3.5 -5.390625 C 3.5 -6.015625 3.0625 -6.578125 2.328125 -6.578125 C 0.953125 -6.578125 0.40625 -4.421875 0.40625 -4.296875 C 0.40625 -4.234375 0.46875 -4.15625 0.5625 -4.15625 C 0.703125 -4.15625 0.71875 -4.21875 0.78125 -4.4375 C 1.140625 -5.6875 1.703125 -6.28125 2.28125 -6.28125 C 2.421875 -6.28125 2.671875 -6.28125 2.671875 -5.796875 C 2.671875 -5.40625 2.5 -4.96875 2.28125 -4.40625 C 1.546875 -2.453125 1.546875 -1.953125 1.546875 -1.59375 C 1.546875 -0.171875 2.5625 0.15625 3.3125 0.15625 C 3.75 0.15625 4.28125 0.015625 4.8125 -0.53125 L 4.8125 -0.515625 C 4.59375 0.359375 4.453125 0.9375 3.921875 1.671875 Z M 3.921875 1.671875 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1"> <path style="stroke:none;" d="M 2.640625 -4.71875 C 2.6875 -4.84375 2.734375 -4.921875 2.734375 -5.015625 C 2.734375 -5.34375 2.421875 -5.5625 2.15625 -5.5625 C 1.75 -5.5625 1.640625 -5.21875 1.609375 -5.078125 L 0.34375 -0.78125 C 0.296875 -0.671875 0.296875 -0.640625 0.296875 -0.625 C 0.296875 -0.53125 0.359375 -0.515625 0.453125 -0.484375 C 0.640625 -0.40625 0.65625 -0.40625 0.671875 -0.40625 C 0.703125 -0.40625 0.765625 -0.40625 0.84375 -0.578125 Z M 2.640625 -4.71875 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-2"> <path style="stroke:none;" d="M 5.28125 -6.53125 C 5.28125 -6.859375 5.234375 -6.90625 4.890625 -6.90625 L 0.96875 -6.90625 C 0.8125 -6.90625 0.59375 -6.90625 0.59375 -6.671875 C 0.59375 -6.453125 0.8125 -6.453125 0.96875 -6.453125 L 4.8125 -6.453125 L 4.8125 -3.6875 L 1.109375 -3.6875 C 0.953125 -3.6875 0.734375 -3.6875 0.734375 -3.453125 C 0.734375 -3.21875 0.953125 -3.21875 1.109375 -3.21875 L 4.8125 -3.21875 L 4.8125 -0.453125 L 0.96875 -0.453125 C 0.8125 -0.453125 0.59375 -0.453125 0.59375 -0.234375 C 0.59375 0 0.8125 0 0.96875 0 L 4.890625 0 C 5.21875 0 5.28125 -0.046875 5.28125 -0.375 Z M 5.28125 -6.53125 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph2-1"> <path style="stroke:none;" d="M 2.015625 -6.59375 C 2.015625 -6.921875 1.734375 -7.109375 1.46875 -7.109375 C 1.1875 -7.109375 0.921875 -6.90625 0.921875 -6.59375 C 0.921875 -6.5625 0.9375 -6.375 0.9375 -6.34375 L 1.296875 -2.125 C 1.328125 -1.953125 1.328125 -1.90625 1.46875 -1.90625 C 1.609375 -1.90625 1.625 -1.953125 1.625 -2.125 Z M 2.015625 -0.546875 C 2.015625 -0.890625 1.75 -1.109375 1.46875 -1.109375 C 1.140625 -1.109375 0.921875 -0.84375 0.921875 -0.5625 C 0.921875 -0.25 1.171875 0 1.46875 0 C 1.765625 0 2.015625 -0.234375 2.015625 -0.546875 Z M 2.015625 -0.546875 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph2-2"> <path style="stroke:none;" d="M 4.53125 -5.546875 L 4.53125 -5.921875 L 0.734375 -5.921875 L 0.734375 -5.546875 Z M 4.53125 -5.546875 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-1"> <path style="stroke:none;" d="M 3.734375 -1.078125 C 3.6875 -0.890625 3.21875 -0.171875 2.546875 -0.171875 C 2.0625 -0.171875 1.890625 -0.53125 1.890625 -0.984375 C 1.890625 -1.578125 2.234375 -2.46875 2.453125 -3.03125 C 2.5625 -3.28125 2.59375 -3.359375 2.59375 -3.546875 C 2.59375 -4.09375 2.15625 -4.390625 1.6875 -4.390625 C 0.703125 -4.390625 0.296875 -2.984375 0.296875 -2.859375 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.609375 -2.890625 C 0.875 -3.78125 1.3125 -4.109375 1.65625 -4.109375 C 1.8125 -4.109375 1.90625 -4.015625 1.90625 -3.78125 C 1.90625 -3.546875 1.8125 -3.328125 1.6875 -2.96875 C 1.265625 -1.921875 1.171875 -1.5 1.171875 -1.140625 C 1.171875 -0.15625 1.90625 0.09375 2.5 0.09375 C 3.25 0.09375 3.703125 -0.5 3.75 -0.546875 C 3.90625 -0.078125 4.34375 0.09375 4.703125 0.09375 C 5.171875 0.09375 5.40625 -0.296875 5.46875 -0.453125 C 5.671875 -0.8125 5.8125 -1.390625 5.8125 -1.421875 C 5.8125 -1.484375 5.765625 -1.546875 5.65625 -1.546875 C 5.53125 -1.546875 5.515625 -1.5 5.453125 -1.25 C 5.328125 -0.75 5.140625 -0.171875 4.734375 -0.171875 C 4.515625 -0.171875 4.421875 -0.375 4.421875 -0.640625 C 4.421875 -0.8125 4.515625 -1.15625 4.5625 -1.40625 C 4.625 -1.65625 4.78125 -2.25 4.8125 -2.421875 L 5.015625 -3.1875 C 5.078125 -3.453125 5.203125 -3.921875 5.203125 -3.984375 C 5.203125 -4.234375 5 -4.296875 4.875 -4.296875 C 4.734375 -4.296875 4.515625 -4.203125 4.453125 -3.96875 Z M 3.734375 -1.078125 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-2"> <path style="stroke:none;" d="M 2.90625 -6.609375 C 2.921875 -6.625 2.953125 -6.765625 2.953125 -6.765625 C 2.953125 -6.8125 2.90625 -6.90625 2.78125 -6.90625 C 2.75 -6.90625 2.4375 -6.875 2.203125 -6.859375 L 1.65625 -6.8125 C 1.4375 -6.796875 1.328125 -6.78125 1.328125 -6.609375 C 1.328125 -6.46875 1.46875 -6.46875 1.59375 -6.46875 C 2.0625 -6.46875 2.0625 -6.40625 2.0625 -6.3125 C 2.0625 -6.296875 2.0625 -6.265625 2.015625 -6.09375 L 0.609375 -0.421875 C 0.5625 -0.28125 0.5625 -0.21875 0.5625 -0.203125 C 0.5625 -0.046875 0.703125 0.09375 0.890625 0.09375 C 1.0625 0.09375 1.1875 0 1.28125 -0.125 C 1.296875 -0.1875 1.390625 -0.5 1.4375 -0.703125 L 1.65625 -1.59375 C 1.6875 -1.734375 1.796875 -2.125 1.828125 -2.265625 C 1.96875 -2.84375 1.96875 -2.859375 2.1875 -3.1875 C 2.53125 -3.671875 3 -4.109375 3.65625 -4.109375 C 4.015625 -4.109375 4.234375 -3.90625 4.234375 -3.4375 C 4.234375 -2.890625 3.8125 -1.75 3.625 -1.265625 C 3.5 -0.9375 3.5 -0.875 3.5 -0.75 C 3.5 -0.171875 3.96875 0.09375 4.390625 0.09375 C 5.359375 0.09375 5.765625 -1.296875 5.765625 -1.421875 C 5.765625 -1.515625 5.6875 -1.546875 5.625 -1.546875 C 5.5 -1.546875 5.484375 -1.484375 5.453125 -1.390625 C 5.21875 -0.5625 4.796875 -0.171875 4.421875 -0.171875 C 4.265625 -0.171875 4.1875 -0.28125 4.1875 -0.5 C 4.1875 -0.734375 4.265625 -0.953125 4.359375 -1.203125 C 4.515625 -1.578125 4.953125 -2.734375 4.953125 -3.28125 C 4.953125 -4.03125 4.421875 -4.390625 3.71875 -4.390625 C 3.15625 -4.390625 2.625 -4.15625 2.171875 -3.625 Z M 2.90625 -6.609375 "></path> </symbol> <symbol overflow="visible" id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-3"> <path style="stroke:none;" d="M 3.8125 -3.96875 L 4.734375 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.921875 -4.296875 4.75 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.125 -5.75 4.234375 -6.203125 C 4.265625 -6.375 4.296875 -6.484375 4.453125 -6.59375 C 4.578125 -6.703125 4.65625 -6.734375 4.765625 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.203125 -6.625 C 5.15625 -6.59375 5.09375 -6.5625 5.046875 -6.546875 C 4.875 -6.453125 4.75 -6.265625 4.75 -6.078125 C 4.75 -5.84375 4.9375 -5.703125 5.15625 -5.703125 C 5.4375 -5.703125 5.71875 -5.953125 5.71875 -6.296875 C 5.71875 -6.765625 5.234375 -7 4.75 -7 C 4.421875 -7 3.796875 -6.84375 3.46875 -5.9375 C 3.390625 -5.703125 3.390625 -5.6875 3.109375 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.09375 C 2.046875 -3.96875 2.1875 -3.96875 2.34375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.4375 1.75 1.234375 1.75 1.046875 1.625 C 1.5 1.515625 1.5 1.109375 1.5 1.09375 C 1.5 0.859375 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.96875 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </symbol> </g> </defs> <g id="mZQpTsjfz-tS41yc5wOU5IqVT2I=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-1" x="6.447916" y="16.40415"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1" x="14.751349" y="10.989192"></use> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1" x="17.618584" y="10.989192"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-2" x="6.769468" y="80.353071"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1" x="14.430047" y="74.936866"></use> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1" x="17.297281" y="74.936866"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-1" x="90.068435" y="80.353071"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1" x="98.371869" y="74.936866"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-1" x="170.821949" y="80.353071"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-2" x="90.390986" y="147.202952"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-1" x="98.050317" y="141.787995"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph0-2" x="171.144499" y="147.202952"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:0.47818,1.99255;stroke-miterlimit:10;" d="M -79.119362 55.38804 L -79.119362 14.581277 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 0.00138259 1.959229 L 0.00138259 -1.960285 " transform="matrix(0,-0.998609,-0.998609,0,13.776817,22.352943)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488399 2.867908 C -2.030732 1.146763 -1.021515 0.333132 -0.000563744 0.000637849 C -1.021515 -0.335768 -2.030732 -1.149399 -2.488399 -2.870544 " transform="matrix(0,0.998609,0.998609,0,13.776707,63.4615)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:3.34735,1.91277;stroke-miterlimit:10;" d="M -66.969649 55.747916 L -9.784635 11.248516 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487526 2.867261 C -2.032887 1.149152 -1.019208 0.336934 0.000883402 0.000588174 C -1.022146 -0.3345 -2.032031 -1.145112 -2.486587 -2.866855 " transform="matrix(0.788082,0.613236,0.613236,-0.788082,83.205974,66.699141)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph1-2" x="58.163877" y="40.968932"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph2-1" x="64.035698" y="40.968932"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph2-2" x="67.68789" y="40.968932"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-1" x="66.972857" y="40.968932"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -65.095949 67.260023 C -6.123291 75.247697 39.23668 56.65934 75.349414 9.957658 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486629 2.868211 C -2.032396 1.14714 -1.019383 0.334075 -0.000842377 0.00135735 C -1.02062 -0.33256 -2.031856 -1.147815 -2.486826 -2.86798 " transform="matrix(0.610869,0.78992,0.78992,-0.610869,168.17913,68.028838)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-2" x="110.015649" y="15.285708"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -65.420619 -9.980233 L -9.456052 -55.508407 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485727 2.870432 C -2.031815 1.146986 -1.019601 0.336561 -0.000255765 0.000898772 C -1.019032 -0.333641 -2.031465 -1.147109 -2.486653 -2.868793 " transform="matrix(0.774651,0.630132,0.630132,-0.774651,83.530882,133.364139)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-1" x="59.099574" y="107.121783"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:0.47818,1.99255;stroke-miterlimit:10;" d="M 3.182622 -8.650257 L 3.182622 -52.363407 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 0.00155493 1.959815 L 0.00155493 -1.959699 " transform="matrix(0,-0.998609,-0.998609,0,95.964902,86.302334)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487975 2.871083 C -2.034219 1.146028 -1.021091 0.336307 -0.000139471 -0.0000979809 C -1.021091 -0.336503 -2.034219 -1.146224 -2.487975 -2.867368 " transform="matrix(0,0.998609,0.998609,0,95.964942,130.312639)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 15.770445 1.164176 L 70.983967 1.164176 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487926 2.868636 C -2.03417 1.147491 -1.021042 0.33386 -0.000090155 0.00136588 C -1.021042 -0.33504 -2.03417 -1.148671 -2.487926 -2.869816 " transform="matrix(0.998609,0,0,-0.998609,163.910246,76.622458)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph2-2" x="135.461205" y="68.550512"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-3" x="133.254279" y="71.176853"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:0.47818,1.99255;stroke-miterlimit:10;" d="M 82.304401 -8.650257 L 82.304401 -56.885322 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 0.00155493 1.962138 L 0.00155493 -1.961289 " transform="matrix(0,-0.998609,-0.998609,0,174.975033,86.302334)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485878 2.868941 C -2.032122 1.147797 -1.018994 0.334165 -0.00195437 0.00167119 C -1.018994 -0.334734 -2.032122 -1.148366 -2.485878 -2.86951 " transform="matrix(0,0.998609,0.998609,0,174.974894,134.830077)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 15.449686 -65.780508 L 71.304725 -65.780508 " transform="matrix(0.998609,0,0,-0.998609,92.786649,77.78365)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485435 2.868211 C -2.031679 1.147067 -1.018551 0.333435 -0.00151147 0.000941607 C -1.018551 -0.335464 -2.031679 -1.149096 -2.485435 -2.87024 " transform="matrix(0.998609,0,0,-0.998609,164.231978,143.473597)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#mZQpTsjfz-tS41yc5wOU5IqVT2I=-glyph3-3" x="133.254279" y="138.026734"></use> </g> </g> </svg> <p>If we pass to the <a class="existingWikiWord" href="/nlab/show/nerve">nerve</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(X)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(Y)</annotation></semantics></math> of the categories, then in terms of diagrams in <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> this means that the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f : x \to y</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian precisely if for all <a class="existingWikiWord" href="/nlab/show/horn">horn</a> inclusions</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mo>↘</mo> <mi>f</mi></msup></mtd></mtr> <mtr><mtd><msub><mi>Λ</mi> <mn>2</mn></msub><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>N</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>Δ</mi><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>N</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \Delta^{\{1,2\}} \\ \downarrow & \searrow^f \\ \Lambda_2[2] &\to& N(X) \\ \downarrow && \downarrow^{\mathrlap{p}} \\ \Delta[2] &\to& N(Y) } </annotation></semantics></math></div> <p>such that the last edge of the 2-<a class="existingWikiWord" href="/nlab/show/horn">horn</a> is the given edge <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>, a unique lift <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mo>↘</mo> <mi>f</mi></msup></mtd></mtr> <mtr><mtd><msub><mi>Λ</mi> <mn>2</mn></msub><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>N</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mrow></mrow> <mi>σ</mi></msup><mo>↗</mo></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>Δ</mi><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>N</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \Delta^{\{1,2\}} \\ \downarrow & \searrow^f \\ \Lambda_2[2] &\to& N(X) \\ \downarrow &{}^\sigma\nearrow& \downarrow^{\mathrlap{p}} \\ \Delta[2] &\to& N(Y) } </annotation></semantics></math></div> <p>exists.</p> </div> <p> <div class='num_remark' id='WeakCartesianMorphisms'> <h6>Remark</h6> <p><strong>(weak/local Cartesian morphisms)</strong> <br /> There is a weaker universal property, originally devised by Grothendieck and Gabriel, where one requires the above lifting property only for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>=</mo><msub><mi>id</mi> <mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">u = id_{p(x_1)}</annotation></semantics></math>. Morphisms satisfying this universal property have in recent years been called <em><a class="existingWikiWord" href="/nlab/show/locally+Cartesian+morphisms">locally Cartesian morphisms</a></em>, although historically they have been called simply <em>Cartesian</em>, or sometimes <em>weak Cartesian</em>. For the case of Grothendieck <a class="existingWikiWord" href="/nlab/show/fibered+categories">fibered categories</a> the notion of weak Cartesian morphisms already coincides with that of actual Cartesian morphisms.</p> <p>Equivalently, a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><msup><mi>x</mi> <mstyle scriptlevel="0"><mo>′</mo></mstyle></msup></mrow><annotation encoding="application/x-tex">f:x\to x^\prime</annotation></semantics></math> is called <em>locally <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-Cartesian</em> (relative to a functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X\to Y</annotation></semantics></math>) if it is Cartesian with respect to the projection functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>pf</mi></msub><mo>:</mo><msub><mi>X</mi> <mi>pf</mi></msub><mo>→</mo><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow><annotation encoding="application/x-tex">p_{pf}:X_{pf}\to \mathbf{2}</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>pf</mi></msub></mrow><annotation encoding="application/x-tex">X_{pf}</annotation></semantics></math> is the (homotopy) pullback of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> along the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>c</mi> <mi>pf</mi></msub><mo>:</mo><mstyle mathvariant="bold"><mn>2</mn></mstyle><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">c_{pf}:\mathbf{2}\to Y</annotation></semantics></math> classifying the arrow <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>pf</mi><mo>:</mo><mi>px</mi><mo>→</mo><msup><mi>px</mi> <mstyle scriptlevel="0"><mo>′</mo></mstyle></msup></mrow><annotation encoding="application/x-tex">pf:px\to px^\prime</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>.</p> </div> </p> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p><strong>(Grothendieck fibration)</strong></p> <p>If for every morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> and every lift of its target there is at least one lift which has as its target the chosen one and is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian morphism in the strong sense, one says that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is a <strong>fibered category</strong> (also called <a class="existingWikiWord" href="/nlab/show/Grothendieck+fibration">Grothendieck fibration</a>). Equivalently,</p> <ul> <li>(<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/prefibered+category">prefibered category</a>) for every morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> and every lift of its target there is at least one lift through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> which has as its target the chosen one and is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian morphism in the weak sense</li> </ul> <p><em>and</em></p> <ul> <li>the composition of every two composable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian morphisms (in the weak sense) is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian morphism (in the weak sense).</li> </ul> </div> <h4 id="CartInOrdCatReformulation">Reformulations</h4> <p>We discuss equivalent reformulations of the above definition of Cartesian morphism that lend themselves better to generalization to <a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a>.</p> <p>For the following, we need this notation: let</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">X/x_2</annotation></semantics></math> by the <a class="existingWikiWord" href="/nlab/show/overcategory">overcategory</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> over the object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_2</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Y/p(x_2)</annotation></semantics></math> the corresponding <a class="existingWikiWord" href="/nlab/show/overcategory">overcategory</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(x_2)</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">X/f</annotation></semantics></math> the category whose objects</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Obj</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">/</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><msub><mi>x</mi> <mn>1</mn></msub></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd></mtd> <mtd><msub><mi>x</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex"> Obj(X/f) = \left\{ \array{ && a \\ &\swarrow && \searrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \right\} </annotation></semantics></math></div> <p>are objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> equipped with morphisms to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">x_1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_2</annotation></semantics></math> such that the obvious triangle commutes, and whose morphisms are morphisms between these tip objects such that all diagrams in sight commute.</p> </li> <li> <p>similarly for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Y/p(f)</annotation></semantics></math>.</p> </li> </ul> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>The condition that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>∈</mo><mi>Mor</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">f \in Mor X</annotation></semantics></math> is a Cartesian morphism with respect to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y </annotation></semantics></math> is equivalent to the condition that the functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo stretchy="false">/</mo><mi>f</mi><mo>→</mo><mi>X</mi><mo stretchy="false">/</mo><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow><msub><mo>×</mo> <mrow><mi>Y</mi><mo stretchy="false">/</mo><mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mrow></msub><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \phi : X/f \to X/{x_2} \times_{Y/{p(x_2)}} Y/p(f) </annotation></semantics></math></div> <p>into the (strict) <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> of the obvious projection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow><mo>→</mo><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X/{x_2} \to Y/p(x_2)</annotation></semantics></math> along the projection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Y/p(f) \to Y/p(x_2)</annotation></semantics></math> induced by the commutativity of</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi><mo stretchy="false">/</mo><mi>f</mi></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>ϕ</mi> <mn>2</mn></msub></mrow></mover></mtd> <mtd><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msub><mi>ϕ</mi> <mn>1</mn></msub></mrow></mpadded></msup><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>X</mi><mo stretchy="false">/</mo><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Y</mi><mo stretchy="false">/</mo><mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ X/f &\stackrel{\phi_2}{\to}& Y/p(f) \\ {}^{\mathllap{\phi_1}}\downarrow && \downarrow \\ X/{x_2} &\to& Y/{p(x_2)} } </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/k-surjective+functor">surjective equivalence</a>, and this in turn is equivalent to it being an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> of categories.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>It is immediate to see that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> being an isomorphism of categories is equivalent to the condition that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is a Cartesian morphism. We discuss that just the condition that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> is a surjective equivalence already implies that it is an isomorphism of categories.</p> <p>So assume now that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> is a surjective equivalence.</p> <p>Notice that objects in the pullback category are compatible pairs</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><msub><mi>x</mi> <mn>1</mn></msub></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd></mtd> <mtd><msub><mi>x</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>∈</mo><mi>X</mi><msub><mo stretchy="false">/</mo> <mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd></mtd> <mtd><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>∈</mo><mi>Y</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \left( \left( \array{ && a \\ &&& \searrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \right) \in X/_{x_2} \;\;\;\;\;\;\,,\;\;\;\;\;\; \left( \array{ && b \\ & \swarrow && \searrow \\ p(x_1) &&\stackrel{p(f)}{\to}&& p(x_2) } \right) \in Y/p(f) \right) \,. </annotation></semantics></math></div> <p>We have that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> being <em>surjective</em> on object means that every such pair is in the image of some object</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>g</mi></mpadded></msup><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><msub><mi>x</mi> <mn>1</mn></msub></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd></mtd> <mtd><msub><mi>x</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>∈</mo><msub><mi>X</mi> <mi>f</mi></msub><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \left( \array{ && a \\ &{}^{\mathllap{g}}\swarrow&& \searrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } \right) \in X_{f} \,, </annotation></semantics></math></div> <p>and hence that every filler <em>exists</em> . Assume two such fillers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">g'</annotation></semantics></math>. Then by the fact that an <a class="existingWikiWord" href="/nlab/show/equivalence+of+categories">equivalence of categories</a> is a surjection (even an isomorphism) on corresponding hom-sets, it follows that there exists (even uniquely) a morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">X/f</annotation></semantics></math> connecting them</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>g</mi></mpadded></msup><mo>↙</mo></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>h</mi></mpadded></msup></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mi>g</mi><mo>′</mo></mrow></mpadded></msup><mo>↙</mo></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><msub><mi>x</mi> <mn>1</mn></msub></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd></mtd> <mtd><msub><mi>x</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ && a \\ &{}^{\mathllap{g}}\swarrow & \downarrow^{\mathrlap{h}} & \searrow \\ && a \\ \downarrow & {}^{\mathllap{g'}}\swarrow && \searrow & \downarrow \\ x_1 &&\stackrel{f}{\to}&& x_2 } </annotation></semantics></math></div> <p>such that this maps under <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> to the identity morphism in the pullback category. But in particular this maps to the morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>h</mi></mpadded></msup></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>a</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><msub><mi>x</mi> <mn>2</mn></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ && a \\ && \downarrow^{\mathrlap{h}} & \searrow \\ && a \\ & && \searrow & \downarrow \\ &&&& x_2 } </annotation></semantics></math></div> <p>in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding="application/x-tex">X/{x_2}</annotation></semantics></math> and evidently is the identity there if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> is the identity. Hence this maps also to the identity in the pullback category if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> is the identity. So <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> must be the identity. So if two lifts of an object through the surjective equivalence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> exist, they must already be equal. Hence the surjective equivalence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> is even an isomorphism on objects and hence an isomorphism of categories.</p> </div> <h3 id="in_categories_2">In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</h3> <p>The notion of cartesian morphism generalizes from <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a> to <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>. The definition given above can be rephrased as a pullback relation between homsets, which we can take as an abstract definition</p> <div class="num_defn"> <h6 id="definition_4">Definition</h6> <p><strong>(cartesian edge in an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> be a functor of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-categories">(∞,1)-categories</a>. Then, a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>x</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">f : x \to x'</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian</strong> if and only if the commutative square induced by the distributivity of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> over composition</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="251.666" height="97.661" viewBox="0 0 251.666 97.661"> <defs> <g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-0"> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-1"> <path d="M 7.09375 -6.0625 L 5.6875 -9.328125 C 5.890625 -9.6875 6.328125 -9.75 6.515625 -9.765625 C 6.609375 -9.765625 6.765625 -9.78125 6.765625 -10.03125 C 6.765625 -10.203125 6.625 -10.203125 6.546875 -10.203125 C 6.28125 -10.203125 5.984375 -10.171875 5.734375 -10.171875 L 4.875 -10.171875 C 3.953125 -10.171875 3.296875 -10.203125 3.28125 -10.203125 C 3.171875 -10.203125 3.015625 -10.203125 3.015625 -9.921875 C 3.015625 -9.765625 3.15625 -9.765625 3.34375 -9.765625 C 4.21875 -9.765625 4.265625 -9.625 4.421875 -9.265625 L 6.203125 -5.109375 L 2.953125 -1.640625 C 2.421875 -1.0625 1.78125 -0.5 0.671875 -0.4375 C 0.5 -0.421875 0.375 -0.421875 0.375 -0.15625 C 0.375 -0.109375 0.390625 0 0.546875 0 C 0.765625 0 0.984375 -0.03125 1.1875 -0.03125 L 1.890625 -0.03125 C 2.375 -0.03125 2.890625 0 3.359375 0 C 3.46875 0 3.640625 0 3.640625 -0.265625 C 3.640625 -0.421875 3.546875 -0.4375 3.453125 -0.4375 C 3.15625 -0.46875 2.953125 -0.625 2.953125 -0.859375 C 2.953125 -1.125 3.140625 -1.296875 3.5625 -1.75 L 4.90625 -3.203125 C 5.234375 -3.546875 6.015625 -4.40625 6.34375 -4.734375 L 7.921875 -1.0625 C 7.9375 -1.03125 7.984375 -0.875 7.984375 -0.859375 C 7.984375 -0.734375 7.65625 -0.46875 7.1875 -0.4375 C 7.09375 -0.4375 6.9375 -0.421875 6.9375 -0.15625 C 6.9375 0 7.078125 0 7.15625 0 C 7.40625 0 7.703125 -0.03125 7.96875 -0.03125 L 9.609375 -0.03125 C 9.875 -0.03125 10.15625 0 10.40625 0 C 10.515625 0 10.6875 0 10.6875 -0.28125 C 10.6875 -0.4375 10.53125 -0.4375 10.390625 -0.4375 C 9.5 -0.453125 9.46875 -0.515625 9.21875 -1.078125 L 7.25 -5.703125 L 9.140625 -7.734375 C 9.296875 -7.890625 9.640625 -8.265625 9.765625 -8.40625 C 10.40625 -9.078125 11.015625 -9.6875 12.21875 -9.765625 C 12.375 -9.78125 12.515625 -9.78125 12.515625 -10.03125 C 12.515625 -10.203125 12.390625 -10.203125 12.328125 -10.203125 C 12.109375 -10.203125 11.890625 -10.171875 11.6875 -10.171875 L 11 -10.171875 C 10.515625 -10.171875 10 -10.203125 9.53125 -10.203125 C 9.421875 -10.203125 9.25 -10.203125 9.25 -9.9375 C 9.25 -9.78125 9.34375 -9.765625 9.4375 -9.765625 C 9.671875 -9.734375 9.9375 -9.625 9.9375 -9.328125 L 9.921875 -9.3125 C 9.90625 -9.203125 9.875 -9.046875 9.703125 -8.875 Z M 7.09375 -6.0625 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-2"> <path d="M 4.5 -1.78125 C 4.421875 -1.53125 4.421875 -1.5 4.21875 -1.203125 C 3.890625 -0.796875 3.21875 -0.15625 2.53125 -0.15625 C 1.90625 -0.15625 1.5625 -0.703125 1.5625 -1.578125 C 1.5625 -2.40625 2.03125 -4.078125 2.3125 -4.703125 C 2.828125 -5.75 3.53125 -6.28125 4.109375 -6.28125 C 5.09375 -6.28125 5.28125 -5.0625 5.28125 -4.9375 C 5.28125 -4.921875 5.25 -4.734375 5.234375 -4.703125 Z M 5.453125 -5.59375 C 5.28125 -5.984375 4.890625 -6.59375 4.109375 -6.59375 C 2.421875 -6.59375 0.59375 -4.40625 0.59375 -2.203125 C 0.59375 -0.71875 1.46875 0.15625 2.484375 0.15625 C 3.296875 0.15625 4 -0.5 4.421875 -0.984375 C 4.578125 -0.109375 5.265625 0.15625 5.71875 0.15625 C 6.171875 0.15625 6.53125 -0.125 6.796875 -0.65625 C 7.03125 -1.171875 7.25 -2.078125 7.25 -2.140625 C 7.25 -2.203125 7.1875 -2.265625 7.09375 -2.265625 C 6.953125 -2.265625 6.953125 -2.203125 6.890625 -1.96875 C 6.65625 -1.09375 6.375 -0.15625 5.765625 -0.15625 C 5.328125 -0.15625 5.296875 -0.53125 5.296875 -0.84375 C 5.296875 -1.1875 5.34375 -1.34375 5.484375 -1.921875 C 5.59375 -2.296875 5.65625 -2.625 5.78125 -3.0625 C 6.328125 -5.296875 6.46875 -5.84375 6.46875 -5.9375 C 6.46875 -6.140625 6.296875 -6.296875 6.078125 -6.296875 C 5.59375 -6.296875 5.484375 -5.78125 5.453125 -5.59375 Z M 5.453125 -5.59375 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-3"> <path d="M 2.90625 0.0625 C 2.90625 -0.8125 2.625 -1.453125 2.015625 -1.453125 C 1.53125 -1.453125 1.296875 -1.0625 1.296875 -0.734375 C 1.296875 -0.40625 1.53125 0 2.03125 0 C 2.21875 0 2.390625 -0.0625 2.53125 -0.1875 C 2.546875 -0.21875 2.5625 -0.21875 2.578125 -0.21875 C 2.609375 -0.21875 2.609375 -0.015625 2.609375 0.0625 C 2.609375 0.546875 2.53125 1.53125 1.65625 2.5 C 1.5 2.671875 1.5 2.703125 1.5 2.734375 C 1.5 2.8125 1.5625 2.890625 1.640625 2.890625 C 1.765625 2.890625 2.90625 1.78125 2.90625 0.0625 Z M 2.90625 0.0625 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-4"> <path d="M 7.078125 -6.09375 C 6.609375 -6 6.421875 -5.640625 6.421875 -5.359375 C 6.421875 -5 6.703125 -4.890625 6.921875 -4.890625 C 7.359375 -4.890625 7.671875 -5.265625 7.671875 -5.671875 C 7.671875 -6.296875 6.953125 -6.59375 6.328125 -6.59375 C 5.421875 -6.59375 4.921875 -5.6875 4.78125 -5.40625 C 4.4375 -6.53125 3.515625 -6.59375 3.234375 -6.59375 C 1.71875 -6.59375 0.90625 -4.625 0.90625 -4.296875 C 0.90625 -4.25 0.96875 -4.171875 1.078125 -4.171875 C 1.1875 -4.171875 1.21875 -4.25 1.25 -4.3125 C 1.765625 -5.96875 2.765625 -6.28125 3.203125 -6.28125 C 3.875 -6.28125 4 -5.65625 4 -5.296875 C 4 -4.96875 3.90625 -4.625 3.734375 -3.90625 L 3.21875 -1.859375 C 3 -0.96875 2.5625 -0.15625 1.78125 -0.15625 C 1.703125 -0.15625 1.328125 -0.15625 1.015625 -0.34375 C 1.546875 -0.453125 1.671875 -0.890625 1.671875 -1.078125 C 1.671875 -1.375 1.453125 -1.546875 1.171875 -1.546875 C 0.8125 -1.546875 0.421875 -1.234375 0.421875 -0.765625 C 0.421875 -0.140625 1.125 0.15625 1.765625 0.15625 C 2.484375 0.15625 2.984375 -0.421875 3.296875 -1.03125 C 3.546875 -0.15625 4.28125 0.15625 4.84375 0.15625 C 6.359375 0.15625 7.171875 -1.8125 7.171875 -2.140625 C 7.171875 -2.203125 7.109375 -2.265625 7.015625 -2.265625 C 6.890625 -2.265625 6.875 -2.203125 6.828125 -2.078125 C 6.421875 -0.765625 5.5625 -0.15625 4.890625 -0.15625 C 4.359375 -0.15625 4.078125 -0.53125 4.078125 -1.15625 C 4.078125 -1.484375 4.140625 -1.71875 4.375 -2.703125 L 4.90625 -4.734375 C 5.125 -5.625 5.625 -6.28125 6.3125 -6.28125 C 6.34375 -6.28125 6.765625 -6.28125 7.078125 -6.09375 Z M 7.078125 -6.09375 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-5"> <path d="M 8.78125 -8.546875 L 9.125 -8.890625 C 9.78125 -9.5625 10.34375 -9.71875 10.859375 -9.765625 C 11.03125 -9.78125 11.15625 -9.796875 11.15625 -10.046875 C 11.15625 -10.203125 11.015625 -10.203125 10.984375 -10.203125 C 10.796875 -10.203125 10.609375 -10.171875 10.421875 -10.171875 L 9.8125 -10.171875 C 9.375 -10.171875 8.921875 -10.203125 8.5 -10.203125 C 8.390625 -10.203125 8.234375 -10.203125 8.234375 -9.921875 C 8.234375 -9.78125 8.375 -9.765625 8.421875 -9.765625 C 8.875 -9.734375 8.875 -9.515625 8.875 -9.421875 C 8.875 -9.265625 8.75 -9.03125 8.453125 -8.6875 L 4.90625 -4.609375 L 3.21875 -9.15625 C 3.125 -9.359375 3.125 -9.390625 3.125 -9.421875 C 3.125 -9.734375 3.734375 -9.765625 3.90625 -9.765625 C 4.09375 -9.765625 4.25 -9.765625 4.25 -10.03125 C 4.25 -10.203125 4.125 -10.203125 4.03125 -10.203125 C 3.78125 -10.203125 3.484375 -10.171875 3.21875 -10.171875 L 1.5625 -10.171875 C 1.296875 -10.171875 1.015625 -10.203125 0.765625 -10.203125 C 0.65625 -10.203125 0.5 -10.203125 0.5 -9.921875 C 0.5 -9.765625 0.625 -9.765625 0.84375 -9.765625 C 1.578125 -9.765625 1.71875 -9.640625 1.859375 -9.296875 L 3.703125 -4.3125 C 3.71875 -4.265625 3.765625 -4.109375 3.765625 -4.0625 C 3.765625 -4.015625 3.03125 -1.078125 2.984375 -0.921875 C 2.875 -0.515625 2.71875 -0.453125 1.765625 -0.4375 C 1.515625 -0.4375 1.390625 -0.4375 1.390625 -0.15625 C 1.390625 0 1.546875 0 1.59375 0 C 1.859375 0 2.1875 -0.03125 2.46875 -0.03125 L 4.234375 -0.03125 C 4.5 -0.03125 4.8125 0 5.078125 0 C 5.1875 0 5.359375 0 5.359375 -0.265625 C 5.359375 -0.4375 5.265625 -0.4375 5 -0.4375 C 4.078125 -0.4375 4.078125 -0.53125 4.078125 -0.703125 C 4.078125 -0.8125 4.203125 -1.28125 4.265625 -1.578125 L 4.8125 -3.734375 C 4.90625 -4.046875 4.90625 -4.078125 5.03125 -4.234375 Z M 8.78125 -8.546875 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-6"> <path d="M 0.640625 1.890625 C 0.53125 2.34375 0.484375 2.46875 -0.140625 2.46875 C -0.3125 2.46875 -0.46875 2.46875 -0.46875 2.75 C -0.46875 2.78125 -0.453125 2.890625 -0.28125 2.890625 C -0.09375 2.890625 0.125 2.875 0.3125 2.875 L 0.953125 2.875 C 1.265625 2.875 2.03125 2.890625 2.34375 2.890625 C 2.4375 2.890625 2.609375 2.890625 2.609375 2.625 C 2.609375 2.46875 2.515625 2.46875 2.25 2.46875 C 1.5625 2.46875 1.53125 2.359375 1.53125 2.234375 C 1.53125 2.0625 2.203125 -0.515625 2.28125 -0.84375 C 2.453125 -0.4375 2.859375 0.15625 3.625 0.15625 C 5.3125 0.15625 7.140625 -2.046875 7.140625 -4.25 C 7.140625 -5.609375 6.359375 -6.59375 5.25 -6.59375 C 4.28125 -6.59375 3.484375 -5.65625 3.3125 -5.453125 C 3.203125 -6.203125 2.609375 -6.59375 2.015625 -6.59375 C 1.578125 -6.59375 1.234375 -6.375 0.953125 -5.8125 C 0.6875 -5.265625 0.484375 -4.359375 0.484375 -4.296875 C 0.484375 -4.25 0.53125 -4.171875 0.640625 -4.171875 C 0.765625 -4.171875 0.78125 -4.1875 0.859375 -4.53125 C 1.09375 -5.40625 1.375 -6.28125 1.96875 -6.28125 C 2.3125 -6.28125 2.4375 -6.046875 2.4375 -5.59375 C 2.4375 -5.25 2.390625 -5.09375 2.328125 -4.828125 Z M 3.21875 -4.65625 C 3.328125 -5.078125 3.75 -5.515625 3.984375 -5.71875 C 4.15625 -5.875 4.640625 -6.28125 5.21875 -6.28125 C 5.875 -6.28125 6.171875 -5.625 6.171875 -4.859375 C 6.171875 -4.140625 5.75 -2.453125 5.375 -1.671875 C 5 -0.859375 4.3125 -0.15625 3.625 -0.15625 C 2.609375 -0.15625 2.453125 -1.4375 2.453125 -1.5 C 2.453125 -1.53125 2.484375 -1.65625 2.5 -1.734375 Z M 3.21875 -4.65625 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-0"> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1"> <path d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2"> <path d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-2-0"> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-2-1"> <path d="M 2.640625 -4.71875 C 2.6875 -4.859375 2.734375 -4.921875 2.734375 -5.03125 C 2.734375 -5.359375 2.4375 -5.578125 2.15625 -5.578125 C 1.75 -5.578125 1.640625 -5.21875 1.609375 -5.078125 L 0.34375 -0.78125 C 0.296875 -0.671875 0.296875 -0.640625 0.296875 -0.625 C 0.296875 -0.53125 0.359375 -0.515625 0.453125 -0.484375 C 0.640625 -0.40625 0.65625 -0.40625 0.671875 -0.40625 C 0.703125 -0.40625 0.765625 -0.40625 0.84375 -0.578125 Z M 2.640625 -4.71875 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-0"> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-1"> <path d="M 5.203125 -3.8125 C 5.6875 -4.296875 7.09375 -5.75 7.34375 -5.9375 C 7.75 -6.265625 8 -6.4375 8.71875 -6.484375 C 8.78125 -6.484375 8.859375 -6.546875 8.859375 -6.671875 C 8.859375 -6.765625 8.765625 -6.8125 8.71875 -6.8125 C 8.625 -6.8125 8.5625 -6.78125 7.78125 -6.78125 C 7.03125 -6.78125 6.765625 -6.8125 6.71875 -6.8125 C 6.671875 -6.8125 6.515625 -6.8125 6.515625 -6.625 C 6.515625 -6.609375 6.515625 -6.484375 6.671875 -6.484375 C 6.734375 -6.46875 7.015625 -6.453125 7.015625 -6.21875 C 7.015625 -6.15625 6.96875 -6.046875 6.890625 -5.96875 L 6.859375 -5.90625 C 6.828125 -5.875 6.828125 -5.859375 6.734375 -5.765625 L 5.0625 -4.09375 L 4.046875 -6.203125 C 4.1875 -6.4375 4.484375 -6.46875 4.609375 -6.484375 C 4.65625 -6.484375 4.796875 -6.484375 4.796875 -6.65625 C 4.796875 -6.75 4.71875 -6.8125 4.640625 -6.8125 C 4.53125 -6.8125 4.15625 -6.78125 4.0625 -6.78125 C 4 -6.78125 3.625 -6.78125 3.421875 -6.78125 C 2.5 -6.78125 2.375 -6.8125 2.28125 -6.8125 C 2.25 -6.8125 2.078125 -6.8125 2.078125 -6.625 C 2.078125 -6.484375 2.21875 -6.484375 2.375 -6.484375 C 2.875 -6.484375 2.953125 -6.375 3.046875 -6.1875 L 4.375 -3.40625 L 2.328125 -1.3125 C 1.734375 -0.71875 1.265625 -0.375 0.5625 -0.328125 C 0.4375 -0.3125 0.3125 -0.3125 0.3125 -0.140625 C 0.3125 -0.078125 0.375 0 0.46875 0 C 0.53125 0 0.640625 -0.03125 1.40625 -0.03125 C 2.125 -0.03125 2.4375 0 2.46875 0 C 2.515625 0 2.671875 0 2.671875 -0.1875 C 2.671875 -0.203125 2.65625 -0.3125 2.515625 -0.328125 C 2.328125 -0.34375 2.1875 -0.40625 2.1875 -0.59375 C 2.1875 -0.75 2.296875 -0.875 2.453125 -1.03125 C 2.625 -1.21875 3.140625 -1.734375 3.5 -2.078125 C 3.734375 -2.3125 4.28125 -2.890625 4.515625 -3.109375 L 5.65625 -0.734375 C 5.71875 -0.625 5.71875 -0.625 5.71875 -0.609375 C 5.71875 -0.515625 5.5 -0.34375 5.171875 -0.328125 C 5.109375 -0.328125 4.96875 -0.3125 4.96875 -0.140625 C 4.96875 -0.125 4.984375 0 5.140625 0 C 5.25 0 5.609375 -0.015625 5.71875 -0.03125 L 6.34375 -0.03125 C 7.265625 -0.03125 7.40625 0 7.5 0 C 7.53125 0 7.6875 0 7.6875 -0.1875 C 7.6875 -0.328125 7.5625 -0.328125 7.40625 -0.328125 C 6.875 -0.328125 6.8125 -0.453125 6.734375 -0.59375 Z M 5.203125 -3.8125 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-2"> <path d="M 3.90625 -3.796875 C 3.8125 -3.96875 3.53125 -4.390625 2.921875 -4.390625 C 1.734375 -4.390625 0.421875 -3.015625 0.421875 -1.53125 C 0.421875 -0.5 1.09375 0.09375 1.859375 0.09375 C 2.5 0.09375 3.046875 -0.40625 3.234375 -0.609375 C 3.40625 0.078125 4.09375 0.09375 4.203125 0.09375 C 4.671875 0.09375 4.890625 -0.28125 4.96875 -0.453125 C 5.171875 -0.8125 5.3125 -1.390625 5.3125 -1.421875 C 5.3125 -1.484375 5.28125 -1.5625 5.15625 -1.5625 C 5.03125 -1.5625 5.015625 -1.5 4.953125 -1.25 C 4.8125 -0.703125 4.625 -0.171875 4.234375 -0.171875 C 4 -0.171875 3.921875 -0.375 3.921875 -0.640625 C 3.921875 -0.8125 4 -1.15625 4.0625 -1.40625 C 4.125 -1.65625 4.28125 -2.25 4.3125 -2.4375 L 4.515625 -3.1875 C 4.5625 -3.421875 4.671875 -3.84375 4.671875 -3.890625 C 4.671875 -4.125 4.484375 -4.203125 4.359375 -4.203125 C 4.203125 -4.203125 3.953125 -4.109375 3.90625 -3.796875 Z M 3.234375 -1.078125 C 2.734375 -0.390625 2.21875 -0.171875 1.890625 -0.171875 C 1.4375 -0.171875 1.203125 -0.59375 1.203125 -1.109375 C 1.203125 -1.578125 1.46875 -2.65625 1.6875 -3.09375 C 1.984375 -3.703125 2.46875 -4.109375 2.9375 -4.109375 C 3.578125 -4.109375 3.765625 -3.390625 3.765625 -3.265625 C 3.765625 -3.234375 3.515625 -2.25 3.453125 -2 C 3.328125 -1.53125 3.328125 -1.5 3.234375 -1.078125 Z M 3.234375 -1.078125 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-3"> <path d="M 1.859375 -0.15625 C 1.859375 0.5 1.71875 1.0625 1.109375 1.6875 C 1.0625 1.71875 1.046875 1.734375 1.046875 1.78125 C 1.046875 1.859375 1.125 1.921875 1.203125 1.921875 C 1.3125 1.921875 2.140625 1.140625 2.140625 -0.03125 C 2.140625 -0.671875 1.90625 -1.109375 1.46875 -1.109375 C 1.109375 -1.109375 0.921875 -0.828125 0.921875 -0.5625 C 0.921875 -0.28125 1.109375 0 1.46875 0 C 1.71875 0 1.859375 -0.140625 1.859375 -0.15625 Z M 1.859375 -0.15625 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-4"> <path d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-5"> <path d="M 0.515625 1.203125 C 0.4375 1.53125 0.421875 1.609375 0.015625 1.609375 C -0.125 1.609375 -0.234375 1.609375 -0.234375 1.796875 C -0.234375 1.890625 -0.15625 1.9375 -0.09375 1.9375 C 0 1.9375 0.046875 1.90625 0.78125 1.90625 C 1.5 1.90625 1.703125 1.9375 1.78125 1.9375 C 1.8125 1.9375 1.96875 1.9375 1.96875 1.75 C 1.96875 1.609375 1.828125 1.609375 1.703125 1.609375 C 1.21875 1.609375 1.21875 1.546875 1.21875 1.453125 C 1.21875 1.390625 1.40625 0.671875 1.703125 -0.484375 C 1.828125 -0.265625 2.140625 0.09375 2.6875 0.09375 C 3.90625 0.09375 5.1875 -1.3125 5.1875 -2.765625 C 5.1875 -3.75 4.546875 -4.390625 3.75 -4.390625 C 3.15625 -4.390625 2.671875 -3.984375 2.375 -3.6875 C 2.171875 -4.390625 1.5 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.546875 1.65625 -3.3125 1.640625 -3.234375 Z M 2.359375 -3.078125 C 2.40625 -3.234375 2.40625 -3.265625 2.546875 -3.4375 C 2.9375 -3.890625 3.359375 -4.109375 3.71875 -4.109375 C 4.21875 -4.109375 4.40625 -3.625 4.40625 -3.1875 C 4.40625 -2.8125 4.1875 -1.75 3.890625 -1.15625 C 3.625 -0.625 3.15625 -0.171875 2.6875 -0.171875 C 2 -0.171875 1.84375 -0.953125 1.84375 -1.03125 C 1.84375 -1.046875 1.859375 -1.15625 1.875 -1.1875 Z M 2.359375 -3.078125 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-6"> <path d="M 6.328125 -5.609375 C 6.40625 -5.6875 6.484375 -5.765625 6.5625 -5.859375 C 6.9375 -6.1875 7.265625 -6.4375 7.828125 -6.484375 C 7.921875 -6.484375 8.03125 -6.5 8.03125 -6.671875 C 8.03125 -6.734375 7.96875 -6.8125 7.890625 -6.8125 C 7.78125 -6.8125 7.796875 -6.78125 7.0625 -6.78125 C 6.40625 -6.78125 6.1875 -6.8125 6.125 -6.8125 C 6.078125 -6.8125 5.9375 -6.8125 5.9375 -6.625 C 5.9375 -6.53125 6 -6.484375 6.09375 -6.484375 C 6.390625 -6.453125 6.40625 -6.34375 6.40625 -6.296875 C 6.40625 -6.09375 6.09375 -5.78125 6.09375 -5.765625 L 3.65625 -3.15625 L 2.40625 -6.09375 C 2.375 -6.140625 2.34375 -6.234375 2.34375 -6.28125 C 2.34375 -6.484375 2.8125 -6.484375 2.90625 -6.484375 C 3 -6.484375 3.140625 -6.484375 3.140625 -6.671875 C 3.140625 -6.71875 3.09375 -6.8125 2.984375 -6.8125 C 2.84375 -6.8125 2.515625 -6.78125 2.359375 -6.78125 L 1.75 -6.78125 C 0.828125 -6.78125 0.6875 -6.8125 0.59375 -6.8125 C 0.4375 -6.8125 0.40625 -6.703125 0.40625 -6.625 C 0.40625 -6.484375 0.53125 -6.484375 0.671875 -6.484375 C 1.21875 -6.484375 1.265625 -6.375 1.34375 -6.1875 L 2.8125 -2.734375 L 2.359375 -0.90625 C 2.21875 -0.375 2.21875 -0.34375 1.453125 -0.328125 C 1.28125 -0.328125 1.171875 -0.328125 1.171875 -0.140625 C 1.171875 -0.09375 1.203125 0 1.328125 0 C 1.515625 0 1.75 -0.015625 1.9375 -0.03125 L 3.203125 -0.03125 C 3.359375 -0.015625 3.703125 0 3.828125 0 C 3.890625 0 4.03125 0 4.03125 -0.1875 C 4.03125 -0.328125 3.90625 -0.328125 3.734375 -0.328125 C 3.734375 -0.328125 3.515625 -0.328125 3.359375 -0.34375 C 3.140625 -0.375 3.125 -0.40625 3.125 -0.5 C 3.125 -0.578125 3.25 -1.0625 3.3125 -1.359375 C 3.4375 -1.828125 3.53125 -2.15625 3.625 -2.578125 C 3.65625 -2.71875 3.671875 -2.734375 3.765625 -2.828125 Z M 6.328125 -5.609375 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-0"> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-1"> <path d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </g> <g id="YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-2"> <path d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-1" x="24.37" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="37.68875" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-2" x="43.38" y="20.432"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-3" x="51.061216" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-4" x="57.621632" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="65.93125" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-1" x="176.551" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="189.86975" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-2" x="195.55975" y="20.432"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-3" x="203.240966" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-4" x="209.801382" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-2-1" x="218.111" y="15.0095"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="221.60475" y="20.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-5" x="6.434" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="18.17525" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-6" x="23.8665" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="31.21025" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-2" x="36.90025" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="44.5815" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-3" x="50.2715" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-6" x="56.831916" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="64.1715" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-4" x="69.8615" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="78.1765" y="88.456"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="83.867175" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-5" x="158.615" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="170.35625" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-6" x="176.04625" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="183.39" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-2" x="189.08" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="196.76125" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-3" x="202.4525" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-6" x="209.012916" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-1" x="216.35125" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-0-4" x="222.04125" y="88.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-2-1" x="230.35625" y="83.03225"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="233.85" y="88.456"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-1-2" x="239.540675" y="88.456"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -47.528312 34.012688 L 43.557625 34.012688 " transform="matrix(1, 0, 0, -1, 125.833, 50.708)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488245 2.867575 C -2.031214 1.148825 -1.019495 0.336325 0.00003625 0.0003875 C -1.019495 -0.33555 -2.031214 -1.14805 -2.488245 -2.870706 " transform="matrix(1, 0, 0, -1, 169.62887, 16.6957)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-1" x="107.854" y="10.69"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-1" x="117.33775" y="10.69"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-2" x="121.45525" y="10.69"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-3" x="127.078156" y="10.69"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-4" x="130.018126" y="10.69"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-2" x="136.2015" y="10.69"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -77.836906 20.821281 L -77.836906 -20.342781 " transform="matrix(1, 0, 0, -1, 125.833, 50.708)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486213 2.870478 C -2.033088 1.147821 -1.021369 0.335321 -0.0018375 -0.00061625 C -1.021369 -0.336554 -2.033088 -1.149054 -2.486213 -2.867804 " transform="matrix(0, 1, 1, 0, 47.99671, 71.2909)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-5" x="51.513" y="51.884"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 76.092781 20.821281 L 76.092781 -20.342781 " transform="matrix(1, 0, 0, -1, 125.833, 50.708)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486213 2.870935 C -2.033088 1.148279 -1.021369 0.335779 -0.0018375 -0.00015875 C -1.021369 -0.336096 -2.033088 -1.148596 -2.486213 -2.867346 " transform="matrix(0, 1, 1, 0, 201.92594, 71.2909)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-5" x="205.441" y="51.884"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -29.590812 -34.01075 L 25.620125 -34.01075 " transform="matrix(1, 0, 0, -1, 125.833, 50.708)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485569 2.868738 C -2.032444 1.146081 -1.020725 0.333581 -0.00119375 0.00155 C -1.020725 -0.334387 -2.032444 -1.146887 -2.485569 -2.869544 " transform="matrix(1, 0, 0, -1, 151.6926, 84.7203)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-6" x="94.791" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-1" x="103.2785" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-5" x="107.39475" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-1" x="112.7235" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-2" x="116.83975" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-2" x="122.46225" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-3" x="126.5785" y="78.713"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-5" x="129.518471" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-1" x="134.84725" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-3-4" x="138.96475" y="78.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-2" x="145.14725" y="78.713"></use> <use xlink:href="#YxCLr74adyplMZ6NkUsVBPWRv-Q=-glyph-4-2" x="149.263807" y="78.713"></use> </g> </svg> </div> <p>is a pullback square for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">a \in X</annotation></semantics></math>.</p> </div> <p>Similarly, the reformulation in terms of slice/cone categories generalizes directly, and is indeed equivalent to the definition given above:</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> be a functor of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-categories">(∞,1)-categories</a>. Then, a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>x</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">f : x \to x'</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian iff the commutative square</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="153.132" height="97.716" viewBox="0 0 153.132 97.716"> <defs> <g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-0"> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-1"> <path d="M 7.09375 -6.0625 L 5.6875 -9.328125 C 5.890625 -9.6875 6.328125 -9.75 6.515625 -9.765625 C 6.609375 -9.765625 6.765625 -9.78125 6.765625 -10.03125 C 6.765625 -10.203125 6.625 -10.203125 6.546875 -10.203125 C 6.28125 -10.203125 5.984375 -10.171875 5.734375 -10.171875 L 4.875 -10.171875 C 3.953125 -10.171875 3.296875 -10.203125 3.28125 -10.203125 C 3.171875 -10.203125 3.015625 -10.203125 3.015625 -9.921875 C 3.015625 -9.765625 3.15625 -9.765625 3.34375 -9.765625 C 4.21875 -9.765625 4.265625 -9.625 4.421875 -9.265625 L 6.203125 -5.109375 L 2.953125 -1.640625 C 2.421875 -1.0625 1.78125 -0.5 0.671875 -0.4375 C 0.5 -0.421875 0.375 -0.421875 0.375 -0.15625 C 0.375 -0.109375 0.390625 0 0.546875 0 C 0.765625 0 0.984375 -0.03125 1.1875 -0.03125 L 1.890625 -0.03125 C 2.375 -0.03125 2.890625 0 3.359375 0 C 3.46875 0 3.640625 0 3.640625 -0.265625 C 3.640625 -0.421875 3.546875 -0.4375 3.453125 -0.4375 C 3.15625 -0.46875 2.953125 -0.625 2.953125 -0.859375 C 2.953125 -1.125 3.140625 -1.296875 3.5625 -1.75 L 4.90625 -3.203125 C 5.234375 -3.546875 6.015625 -4.40625 6.34375 -4.734375 L 7.921875 -1.0625 C 7.9375 -1.03125 7.984375 -0.875 7.984375 -0.859375 C 7.984375 -0.734375 7.65625 -0.46875 7.1875 -0.4375 C 7.09375 -0.4375 6.9375 -0.421875 6.9375 -0.15625 C 6.9375 0 7.078125 0 7.15625 0 C 7.40625 0 7.703125 -0.03125 7.96875 -0.03125 L 9.609375 -0.03125 C 9.875 -0.03125 10.15625 0 10.40625 0 C 10.515625 0 10.6875 0 10.6875 -0.28125 C 10.6875 -0.4375 10.53125 -0.4375 10.390625 -0.4375 C 9.5 -0.453125 9.46875 -0.515625 9.21875 -1.078125 L 7.25 -5.703125 L 9.140625 -7.734375 C 9.296875 -7.890625 9.640625 -8.265625 9.765625 -8.40625 C 10.40625 -9.078125 11.015625 -9.6875 12.21875 -9.765625 C 12.375 -9.78125 12.515625 -9.78125 12.515625 -10.03125 C 12.515625 -10.203125 12.390625 -10.203125 12.328125 -10.203125 C 12.109375 -10.203125 11.890625 -10.171875 11.6875 -10.171875 L 11 -10.171875 C 10.515625 -10.171875 10 -10.203125 9.53125 -10.203125 C 9.421875 -10.203125 9.25 -10.203125 9.25 -9.9375 C 9.25 -9.78125 9.34375 -9.765625 9.4375 -9.765625 C 9.671875 -9.734375 9.9375 -9.625 9.9375 -9.328125 L 9.921875 -9.3125 C 9.90625 -9.203125 9.875 -9.046875 9.703125 -8.875 Z M 7.09375 -6.0625 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-2"> <path d="M 8.78125 -8.546875 L 9.125 -8.890625 C 9.78125 -9.5625 10.34375 -9.71875 10.859375 -9.765625 C 11.03125 -9.78125 11.15625 -9.796875 11.15625 -10.046875 C 11.15625 -10.203125 11.015625 -10.203125 10.984375 -10.203125 C 10.796875 -10.203125 10.609375 -10.171875 10.421875 -10.171875 L 9.8125 -10.171875 C 9.375 -10.171875 8.921875 -10.203125 8.5 -10.203125 C 8.390625 -10.203125 8.234375 -10.203125 8.234375 -9.921875 C 8.234375 -9.78125 8.375 -9.765625 8.421875 -9.765625 C 8.875 -9.734375 8.875 -9.515625 8.875 -9.421875 C 8.875 -9.265625 8.75 -9.03125 8.453125 -8.6875 L 4.90625 -4.609375 L 3.21875 -9.15625 C 3.125 -9.359375 3.125 -9.390625 3.125 -9.421875 C 3.125 -9.734375 3.734375 -9.765625 3.90625 -9.765625 C 4.09375 -9.765625 4.25 -9.765625 4.25 -10.03125 C 4.25 -10.203125 4.125 -10.203125 4.03125 -10.203125 C 3.78125 -10.203125 3.484375 -10.171875 3.21875 -10.171875 L 1.5625 -10.171875 C 1.296875 -10.171875 1.015625 -10.203125 0.765625 -10.203125 C 0.65625 -10.203125 0.5 -10.203125 0.5 -9.921875 C 0.5 -9.765625 0.625 -9.765625 0.84375 -9.765625 C 1.578125 -9.765625 1.71875 -9.640625 1.859375 -9.296875 L 3.703125 -4.3125 C 3.71875 -4.265625 3.765625 -4.109375 3.765625 -4.0625 C 3.765625 -4.015625 3.03125 -1.078125 2.984375 -0.921875 C 2.875 -0.515625 2.71875 -0.453125 1.765625 -0.4375 C 1.515625 -0.4375 1.390625 -0.4375 1.390625 -0.15625 C 1.390625 0 1.546875 0 1.59375 0 C 1.859375 0 2.1875 -0.03125 2.46875 -0.03125 L 4.234375 -0.03125 C 4.5 -0.03125 4.8125 0 5.078125 0 C 5.1875 0 5.359375 0 5.359375 -0.265625 C 5.359375 -0.4375 5.265625 -0.4375 5 -0.4375 C 4.078125 -0.4375 4.078125 -0.53125 4.078125 -0.703125 C 4.078125 -0.8125 4.203125 -1.28125 4.265625 -1.578125 L 4.8125 -3.734375 C 4.90625 -4.046875 4.90625 -4.078125 5.03125 -4.234375 Z M 8.78125 -8.546875 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-0"> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-1"> <path d="M 4.640625 -7.0625 C 4.6875 -7.203125 4.6875 -7.21875 4.6875 -7.25 C 4.6875 -7.375 4.59375 -7.484375 4.46875 -7.484375 C 4.3125 -7.484375 4.265625 -7.359375 4.234375 -7.25 L 0.640625 2.078125 C 0.59375 2.21875 0.59375 2.234375 0.59375 2.265625 C 0.59375 2.390625 0.6875 2.5 0.8125 2.5 C 0.984375 2.5 1.015625 2.375 1.0625 2.265625 Z M 4.640625 -7.0625 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-2"> <path d="M 5 -3.984375 C 4.5625 -3.875 4.53125 -3.484375 4.53125 -3.4375 C 4.53125 -3.21875 4.703125 -3.078125 4.921875 -3.078125 C 5.140625 -3.078125 5.484375 -3.234375 5.484375 -3.671875 C 5.484375 -4.234375 4.859375 -4.390625 4.484375 -4.390625 C 4.015625 -4.390625 3.640625 -4.0625 3.40625 -3.671875 C 3.1875 -4.203125 2.671875 -4.390625 2.265625 -4.390625 C 1.171875 -4.390625 0.5625 -3.15625 0.5625 -2.875 C 0.5625 -2.78125 0.640625 -2.734375 0.71875 -2.734375 C 0.84375 -2.734375 0.859375 -2.796875 0.890625 -2.90625 C 1.109375 -3.640625 1.71875 -4.109375 2.234375 -4.109375 C 2.625 -4.109375 2.8125 -3.84375 2.8125 -3.484375 C 2.8125 -3.28125 2.6875 -2.828125 2.609375 -2.5 C 2.546875 -2.21875 2.328125 -1.328125 2.265625 -1.140625 C 2.140625 -0.59375 1.78125 -0.171875 1.328125 -0.171875 C 1.28125 -0.171875 1.03125 -0.171875 0.8125 -0.3125 C 1.28125 -0.421875 1.28125 -0.84375 1.28125 -0.859375 C 1.28125 -1.09375 1.09375 -1.21875 0.875 -1.21875 C 0.609375 -1.21875 0.3125 -1 0.3125 -0.625 C 0.3125 -0.15625 0.8125 0.09375 1.3125 0.09375 C 1.84375 0.09375 2.21875 -0.296875 2.390625 -0.625 C 2.609375 -0.125 3.078125 0.09375 3.546875 0.09375 C 4.640625 0.09375 5.234375 -1.140625 5.234375 -1.421875 C 5.234375 -1.53125 5.15625 -1.5625 5.078125 -1.5625 C 4.96875 -1.5625 4.9375 -1.484375 4.921875 -1.390625 C 4.71875 -0.71875 4.140625 -0.171875 3.5625 -0.171875 C 3.234375 -0.171875 3 -0.40625 3 -0.8125 C 3 -1.015625 3.0625 -1.25 3.203125 -1.796875 C 3.265625 -2.109375 3.484375 -2.984375 3.53125 -3.171875 C 3.671875 -3.6875 4.03125 -4.109375 4.46875 -4.109375 C 4.53125 -4.109375 4.78125 -4.109375 5 -3.984375 Z M 5 -3.984375 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-3"> <path d="M 0.515625 1.203125 C 0.4375 1.53125 0.421875 1.609375 0.015625 1.609375 C -0.125 1.609375 -0.234375 1.609375 -0.234375 1.796875 C -0.234375 1.890625 -0.15625 1.9375 -0.09375 1.9375 C 0 1.9375 0.046875 1.90625 0.78125 1.90625 C 1.5 1.90625 1.703125 1.9375 1.78125 1.9375 C 1.8125 1.9375 1.96875 1.9375 1.96875 1.75 C 1.96875 1.609375 1.828125 1.609375 1.703125 1.609375 C 1.21875 1.609375 1.21875 1.546875 1.21875 1.453125 C 1.21875 1.390625 1.40625 0.671875 1.703125 -0.484375 C 1.828125 -0.265625 2.140625 0.09375 2.6875 0.09375 C 3.90625 0.09375 5.1875 -1.3125 5.1875 -2.765625 C 5.1875 -3.75 4.546875 -4.390625 3.75 -4.390625 C 3.15625 -4.390625 2.671875 -3.984375 2.375 -3.6875 C 2.171875 -4.390625 1.5 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.546875 1.65625 -3.3125 1.640625 -3.234375 Z M 2.359375 -3.078125 C 2.40625 -3.234375 2.40625 -3.265625 2.546875 -3.4375 C 2.9375 -3.890625 3.359375 -4.109375 3.71875 -4.109375 C 4.21875 -4.109375 4.40625 -3.625 4.40625 -3.1875 C 4.40625 -2.8125 4.1875 -1.75 3.890625 -1.15625 C 3.625 -0.625 3.15625 -0.171875 2.6875 -0.171875 C 2 -0.171875 1.84375 -0.953125 1.84375 -1.03125 C 1.84375 -1.046875 1.859375 -1.15625 1.875 -1.1875 Z M 2.359375 -3.078125 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-4"> <path d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-2-0"> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-2-1"> <path d="M 2.34375 -3.515625 C 2.390625 -3.625 2.40625 -3.703125 2.40625 -3.75 C 2.40625 -3.984375 2.203125 -4.171875 1.953125 -4.171875 C 1.65625 -4.171875 1.5625 -3.90625 1.53125 -3.8125 L 0.5 -0.609375 C 0.484375 -0.5625 0.453125 -0.515625 0.453125 -0.484375 C 0.453125 -0.34375 0.75 -0.296875 0.765625 -0.296875 C 0.828125 -0.296875 0.859375 -0.359375 0.890625 -0.421875 Z M 2.34375 -3.515625 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-0"> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-1"> <path d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-2"> <path d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-4-0"> </g> <g id="V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-4-1"> <path d="M 1.765625 -4.921875 C 1.765625 -5.1875 1.53125 -5.34375 1.3125 -5.34375 C 1.09375 -5.34375 0.859375 -5.1875 0.859375 -4.921875 L 1.171875 -1.65625 C 1.171875 -1.53125 1.1875 -1.46875 1.3125 -1.46875 C 1.4375 -1.46875 1.453125 -1.53125 1.46875 -1.65625 Z M 1.765625 -0.453125 C 1.765625 -0.6875 1.5625 -0.890625 1.3125 -0.890625 C 1.0625 -0.890625 0.859375 -0.6875 0.859375 -0.453125 C 0.859375 -0.203125 1.0625 0 1.3125 0 C 1.5625 0 1.765625 -0.203125 1.765625 -0.453125 Z M 1.765625 -0.453125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-1" x="11.388" y="19.325"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-1" x="23.53175" y="21.65"></use> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-2" x="28.824893" y="21.65"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-1" x="114.37" y="19.325"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-1" x="126.515" y="21.65"></use> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-2" x="131.808143" y="21.65"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-2-1" x="137.76625" y="18.8125"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-2" x="6.434" y="87.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-1" x="14.924" y="89.75575"></use> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-3" x="20.217143" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-1" x="25.54525" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-2" x="29.6615" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-2" x="35.62025" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-0-2" x="109.417" y="87.432"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-1" x="117.907" y="89.75575"></use> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-3" x="123.200143" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-1" x="128.52825" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-2" x="132.6445" y="89.75575"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-2-1" x="138.60325" y="86.9195"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-2" x="141.95825" y="89.75575"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.476156 35.090156 L 30.644937 35.090156 " transform="matrix(1, 0, 0, -1, 76.566, 50.68)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487633 2.86962 C -2.030601 1.146964 -1.018883 0.334464 0.00064875 -0.00147375 C -1.018883 -0.333505 -2.030601 -1.146005 -2.487633 -2.868661 " transform="matrix(1, 0, 0, -1, 107.44857, 15.58837)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-4" x="70.72" y="10.136"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-4-1" x="75.805" y="11.8935"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -53.167563 20.820625 L -53.167563 -20.343437 " transform="matrix(1, 0, 0, -1, 76.566, 50.68)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485556 2.868755 C -2.032431 1.146099 -1.020713 0.333599 -0.00118125 0.0015675 C -1.020713 -0.33437 -2.032431 -1.14687 -2.485556 -2.869526 " transform="matrix(0, 1, 1, 0, 23.39687, 71.2629)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-3" x="26.913" y="51.856"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.492594 20.820625 L 51.492594 -20.343437 " transform="matrix(1, 0, 0, -1, 76.566, 50.68)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485556 2.871027 C -2.032431 1.148371 -1.020713 0.335871 -0.00118125 -0.00006625 C -1.020713 -0.336004 -2.032431 -1.148504 -2.485556 -2.867254 " transform="matrix(0, 1, 1, 0, 128.05866, 71.2629)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-3" x="131.574" y="51.856"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -29.523031 -33.015312 L 25.687906 -33.015312 " transform="matrix(1, 0, 0, -1, 76.566, 50.68)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487008 2.867895 C -2.033883 1.149145 -1.018258 0.336645 0.00127375 0.0007075 C -1.018258 -0.33523 -2.033883 -1.14773 -2.487008 -2.870386 " transform="matrix(1, 0, 0, -1, 102.49482, 83.69602)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-3" x="63.39" y="77.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-1" x="68.71875" y="77.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-1-4" x="72.835" y="77.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-3-2" x="79.01875" y="77.689"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#V59gojjEC6Gv85OWh-2YuOPGmLA=-glyph-4-1" x="83.135" y="79.4465"></use> </g> </svg> </div> <p>is a pullback square.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>The definition of being <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian can be described as a pullback square of hom-functors. By the contravariant <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X(-, x)</annotation></semantics></math> classifies the <a class="existingWikiWord" href="/nlab/show/right+fibration">right fibration</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>x</mi></mrow></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">X_{/x} \to X</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo stretchy="false">(</mo><mi>p</mi><mo>−</mo><mo>,</mo><mi>p</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Y(p-, p(x))</annotation></semantics></math> classifies the pullback of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Y</mi> <mrow><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msub><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y_{/p(x)} \to Y</annotation></semantics></math> along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>; that is by the <a class="existingWikiWord" href="/nlab/show/comma+category">comma category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">↓</mo><mi>p</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">(p \downarrow p(x)) \to Y</annotation></semantics></math>. There is a commutative diagram</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="290.873" height="165.74" viewBox="0 0 290.873 165.74"> <defs> <g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-1"> <path d="M 7.09375 -6.0625 L 5.6875 -9.328125 C 5.890625 -9.6875 6.328125 -9.75 6.515625 -9.765625 C 6.609375 -9.765625 6.765625 -9.78125 6.765625 -10.03125 C 6.765625 -10.203125 6.625 -10.203125 6.546875 -10.203125 C 6.28125 -10.203125 5.984375 -10.171875 5.734375 -10.171875 L 4.875 -10.171875 C 3.953125 -10.171875 3.296875 -10.203125 3.28125 -10.203125 C 3.171875 -10.203125 3.015625 -10.203125 3.015625 -9.921875 C 3.015625 -9.765625 3.15625 -9.765625 3.34375 -9.765625 C 4.21875 -9.765625 4.265625 -9.625 4.421875 -9.265625 L 6.203125 -5.109375 L 2.953125 -1.640625 C 2.421875 -1.0625 1.78125 -0.5 0.671875 -0.4375 C 0.5 -0.421875 0.375 -0.421875 0.375 -0.15625 C 0.375 -0.109375 0.390625 0 0.546875 0 C 0.765625 0 0.984375 -0.03125 1.1875 -0.03125 L 1.890625 -0.03125 C 2.375 -0.03125 2.890625 0 3.359375 0 C 3.46875 0 3.640625 0 3.640625 -0.265625 C 3.640625 -0.421875 3.546875 -0.4375 3.453125 -0.4375 C 3.15625 -0.46875 2.953125 -0.625 2.953125 -0.859375 C 2.953125 -1.125 3.140625 -1.296875 3.5625 -1.75 L 4.90625 -3.203125 C 5.234375 -3.546875 6.015625 -4.40625 6.34375 -4.734375 L 7.921875 -1.0625 C 7.9375 -1.03125 7.984375 -0.875 7.984375 -0.859375 C 7.984375 -0.734375 7.65625 -0.46875 7.1875 -0.4375 C 7.09375 -0.4375 6.9375 -0.421875 6.9375 -0.15625 C 6.9375 0 7.078125 0 7.15625 0 C 7.40625 0 7.703125 -0.03125 7.96875 -0.03125 L 9.609375 -0.03125 C 9.875 -0.03125 10.15625 0 10.40625 0 C 10.515625 0 10.6875 0 10.6875 -0.28125 C 10.6875 -0.4375 10.53125 -0.4375 10.390625 -0.4375 C 9.5 -0.453125 9.46875 -0.515625 9.21875 -1.078125 L 7.25 -5.703125 L 9.140625 -7.734375 C 9.296875 -7.890625 9.640625 -8.265625 9.765625 -8.40625 C 10.40625 -9.078125 11.015625 -9.6875 12.21875 -9.765625 C 12.375 -9.78125 12.515625 -9.78125 12.515625 -10.03125 C 12.515625 -10.203125 12.390625 -10.203125 12.328125 -10.203125 C 12.109375 -10.203125 11.890625 -10.171875 11.6875 -10.171875 L 11 -10.171875 C 10.515625 -10.171875 10 -10.203125 9.53125 -10.203125 C 9.421875 -10.203125 9.25 -10.203125 9.25 -9.9375 C 9.25 -9.78125 9.34375 -9.765625 9.4375 -9.765625 C 9.671875 -9.734375 9.9375 -9.625 9.9375 -9.328125 L 9.921875 -9.3125 C 9.90625 -9.203125 9.875 -9.046875 9.703125 -8.875 Z M 7.09375 -6.0625 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-2"> <path d="M 0.640625 1.890625 C 0.53125 2.34375 0.484375 2.46875 -0.140625 2.46875 C -0.3125 2.46875 -0.46875 2.46875 -0.46875 2.75 C -0.46875 2.78125 -0.453125 2.890625 -0.28125 2.890625 C -0.09375 2.890625 0.125 2.875 0.3125 2.875 L 0.953125 2.875 C 1.265625 2.875 2.03125 2.890625 2.34375 2.890625 C 2.4375 2.890625 2.609375 2.890625 2.609375 2.625 C 2.609375 2.46875 2.515625 2.46875 2.25 2.46875 C 1.5625 2.46875 1.53125 2.359375 1.53125 2.234375 C 1.53125 2.0625 2.203125 -0.515625 2.28125 -0.84375 C 2.453125 -0.4375 2.859375 0.15625 3.625 0.15625 C 5.3125 0.15625 7.140625 -2.046875 7.140625 -4.25 C 7.140625 -5.609375 6.359375 -6.59375 5.25 -6.59375 C 4.28125 -6.59375 3.484375 -5.65625 3.3125 -5.453125 C 3.203125 -6.203125 2.609375 -6.59375 2.015625 -6.59375 C 1.578125 -6.59375 1.234375 -6.375 0.953125 -5.8125 C 0.6875 -5.265625 0.484375 -4.359375 0.484375 -4.296875 C 0.484375 -4.25 0.53125 -4.171875 0.640625 -4.171875 C 0.765625 -4.171875 0.78125 -4.1875 0.859375 -4.53125 C 1.09375 -5.40625 1.375 -6.28125 1.96875 -6.28125 C 2.3125 -6.28125 2.4375 -6.046875 2.4375 -5.59375 C 2.4375 -5.25 2.390625 -5.09375 2.328125 -4.828125 Z M 3.21875 -4.65625 C 3.328125 -5.078125 3.75 -5.515625 3.984375 -5.71875 C 4.15625 -5.875 4.640625 -6.28125 5.21875 -6.28125 C 5.875 -6.28125 6.171875 -5.625 6.171875 -4.859375 C 6.171875 -4.140625 5.75 -2.453125 5.375 -1.671875 C 5 -0.859375 4.3125 -0.15625 3.625 -0.15625 C 2.609375 -0.15625 2.453125 -1.4375 2.453125 -1.5 C 2.453125 -1.53125 2.484375 -1.65625 2.5 -1.734375 Z M 3.21875 -4.65625 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-3"> <path d="M 7.078125 -6.09375 C 6.609375 -6 6.421875 -5.640625 6.421875 -5.359375 C 6.421875 -5 6.703125 -4.890625 6.921875 -4.890625 C 7.359375 -4.890625 7.671875 -5.265625 7.671875 -5.671875 C 7.671875 -6.296875 6.953125 -6.59375 6.328125 -6.59375 C 5.421875 -6.59375 4.921875 -5.6875 4.78125 -5.40625 C 4.4375 -6.53125 3.515625 -6.59375 3.234375 -6.59375 C 1.71875 -6.59375 0.90625 -4.625 0.90625 -4.296875 C 0.90625 -4.25 0.96875 -4.171875 1.078125 -4.171875 C 1.1875 -4.171875 1.21875 -4.25 1.25 -4.3125 C 1.765625 -5.96875 2.765625 -6.28125 3.203125 -6.28125 C 3.875 -6.28125 4 -5.65625 4 -5.296875 C 4 -4.96875 3.90625 -4.625 3.734375 -3.90625 L 3.21875 -1.859375 C 3 -0.96875 2.5625 -0.15625 1.78125 -0.15625 C 1.703125 -0.15625 1.328125 -0.15625 1.015625 -0.34375 C 1.546875 -0.453125 1.671875 -0.890625 1.671875 -1.078125 C 1.671875 -1.375 1.453125 -1.546875 1.171875 -1.546875 C 0.8125 -1.546875 0.421875 -1.234375 0.421875 -0.765625 C 0.421875 -0.140625 1.125 0.15625 1.765625 0.15625 C 2.484375 0.15625 2.984375 -0.421875 3.296875 -1.03125 C 3.546875 -0.15625 4.28125 0.15625 4.84375 0.15625 C 6.359375 0.15625 7.171875 -1.8125 7.171875 -2.140625 C 7.171875 -2.203125 7.109375 -2.265625 7.015625 -2.265625 C 6.890625 -2.265625 6.875 -2.203125 6.828125 -2.078125 C 6.421875 -0.765625 5.5625 -0.15625 4.890625 -0.15625 C 4.359375 -0.15625 4.078125 -0.53125 4.078125 -1.15625 C 4.078125 -1.484375 4.140625 -1.71875 4.375 -2.703125 L 4.90625 -4.734375 C 5.125 -5.625 5.625 -6.28125 6.3125 -6.28125 C 6.34375 -6.28125 6.765625 -6.28125 7.078125 -6.09375 Z M 7.078125 -6.09375 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-4"> <path d="M 8.78125 -8.546875 L 9.125 -8.890625 C 9.78125 -9.5625 10.34375 -9.71875 10.859375 -9.765625 C 11.03125 -9.78125 11.15625 -9.796875 11.15625 -10.046875 C 11.15625 -10.203125 11.015625 -10.203125 10.984375 -10.203125 C 10.796875 -10.203125 10.609375 -10.171875 10.421875 -10.171875 L 9.8125 -10.171875 C 9.375 -10.171875 8.921875 -10.203125 8.5 -10.203125 C 8.390625 -10.203125 8.234375 -10.203125 8.234375 -9.921875 C 8.234375 -9.78125 8.375 -9.765625 8.421875 -9.765625 C 8.875 -9.734375 8.875 -9.515625 8.875 -9.421875 C 8.875 -9.265625 8.75 -9.03125 8.453125 -8.6875 L 4.90625 -4.609375 L 3.21875 -9.15625 C 3.125 -9.359375 3.125 -9.390625 3.125 -9.421875 C 3.125 -9.734375 3.734375 -9.765625 3.90625 -9.765625 C 4.09375 -9.765625 4.25 -9.765625 4.25 -10.03125 C 4.25 -10.203125 4.125 -10.203125 4.03125 -10.203125 C 3.78125 -10.203125 3.484375 -10.171875 3.21875 -10.171875 L 1.5625 -10.171875 C 1.296875 -10.171875 1.015625 -10.203125 0.765625 -10.203125 C 0.65625 -10.203125 0.5 -10.203125 0.5 -9.921875 C 0.5 -9.765625 0.625 -9.765625 0.84375 -9.765625 C 1.578125 -9.765625 1.71875 -9.640625 1.859375 -9.296875 L 3.703125 -4.3125 C 3.71875 -4.265625 3.765625 -4.109375 3.765625 -4.0625 C 3.765625 -4.015625 3.03125 -1.078125 2.984375 -0.921875 C 2.875 -0.515625 2.71875 -0.453125 1.765625 -0.4375 C 1.515625 -0.4375 1.390625 -0.4375 1.390625 -0.15625 C 1.390625 0 1.546875 0 1.59375 0 C 1.859375 0 2.1875 -0.03125 2.46875 -0.03125 L 4.234375 -0.03125 C 4.5 -0.03125 4.8125 0 5.078125 0 C 5.1875 0 5.359375 0 5.359375 -0.265625 C 5.359375 -0.4375 5.265625 -0.4375 5 -0.4375 C 4.078125 -0.4375 4.078125 -0.53125 4.078125 -0.703125 C 4.078125 -0.8125 4.203125 -1.28125 4.265625 -1.578125 L 4.8125 -3.734375 C 4.90625 -4.046875 4.90625 -4.078125 5.03125 -4.234375 Z M 8.78125 -8.546875 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-1"> <path d="M 4.640625 -7.0625 C 4.6875 -7.203125 4.6875 -7.21875 4.6875 -7.25 C 4.6875 -7.375 4.59375 -7.484375 4.46875 -7.484375 C 4.3125 -7.484375 4.265625 -7.359375 4.234375 -7.25 L 0.640625 2.078125 C 0.59375 2.21875 0.59375 2.234375 0.59375 2.265625 C 0.59375 2.390625 0.6875 2.5 0.8125 2.5 C 0.984375 2.5 1.015625 2.375 1.0625 2.265625 Z M 4.640625 -7.0625 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-2"> <path d="M 5 -3.984375 C 4.5625 -3.875 4.53125 -3.484375 4.53125 -3.4375 C 4.53125 -3.21875 4.703125 -3.078125 4.921875 -3.078125 C 5.140625 -3.078125 5.484375 -3.234375 5.484375 -3.671875 C 5.484375 -4.234375 4.859375 -4.390625 4.484375 -4.390625 C 4.015625 -4.390625 3.640625 -4.0625 3.40625 -3.671875 C 3.1875 -4.203125 2.671875 -4.390625 2.265625 -4.390625 C 1.171875 -4.390625 0.5625 -3.15625 0.5625 -2.875 C 0.5625 -2.78125 0.640625 -2.734375 0.71875 -2.734375 C 0.84375 -2.734375 0.859375 -2.796875 0.890625 -2.90625 C 1.109375 -3.640625 1.71875 -4.109375 2.234375 -4.109375 C 2.625 -4.109375 2.8125 -3.84375 2.8125 -3.484375 C 2.8125 -3.28125 2.6875 -2.828125 2.609375 -2.5 C 2.546875 -2.21875 2.328125 -1.328125 2.265625 -1.140625 C 2.140625 -0.59375 1.78125 -0.171875 1.328125 -0.171875 C 1.28125 -0.171875 1.03125 -0.171875 0.8125 -0.3125 C 1.28125 -0.421875 1.28125 -0.84375 1.28125 -0.859375 C 1.28125 -1.09375 1.09375 -1.21875 0.875 -1.21875 C 0.609375 -1.21875 0.3125 -1 0.3125 -0.625 C 0.3125 -0.15625 0.8125 0.09375 1.3125 0.09375 C 1.84375 0.09375 2.21875 -0.296875 2.390625 -0.625 C 2.609375 -0.125 3.078125 0.09375 3.546875 0.09375 C 4.640625 0.09375 5.234375 -1.140625 5.234375 -1.421875 C 5.234375 -1.53125 5.15625 -1.5625 5.078125 -1.5625 C 4.96875 -1.5625 4.9375 -1.484375 4.921875 -1.390625 C 4.71875 -0.71875 4.140625 -0.171875 3.5625 -0.171875 C 3.234375 -0.171875 3 -0.40625 3 -0.8125 C 3 -1.015625 3.0625 -1.25 3.203125 -1.796875 C 3.265625 -2.109375 3.484375 -2.984375 3.53125 -3.171875 C 3.671875 -3.6875 4.03125 -4.109375 4.46875 -4.109375 C 4.53125 -4.109375 4.78125 -4.109375 5 -3.984375 Z M 5 -3.984375 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-3"> <path d="M 0.515625 1.203125 C 0.4375 1.53125 0.421875 1.609375 0.015625 1.609375 C -0.125 1.609375 -0.234375 1.609375 -0.234375 1.796875 C -0.234375 1.890625 -0.15625 1.9375 -0.09375 1.9375 C 0 1.9375 0.046875 1.90625 0.78125 1.90625 C 1.5 1.90625 1.703125 1.9375 1.78125 1.9375 C 1.8125 1.9375 1.96875 1.9375 1.96875 1.75 C 1.96875 1.609375 1.828125 1.609375 1.703125 1.609375 C 1.21875 1.609375 1.21875 1.546875 1.21875 1.453125 C 1.21875 1.390625 1.40625 0.671875 1.703125 -0.484375 C 1.828125 -0.265625 2.140625 0.09375 2.6875 0.09375 C 3.90625 0.09375 5.1875 -1.3125 5.1875 -2.765625 C 5.1875 -3.75 4.546875 -4.390625 3.75 -4.390625 C 3.15625 -4.390625 2.671875 -3.984375 2.375 -3.6875 C 2.171875 -4.390625 1.5 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.546875 1.65625 -3.3125 1.640625 -3.234375 Z M 2.359375 -3.078125 C 2.40625 -3.234375 2.40625 -3.265625 2.546875 -3.4375 C 2.9375 -3.890625 3.359375 -4.109375 3.71875 -4.109375 C 4.21875 -4.109375 4.40625 -3.625 4.40625 -3.1875 C 4.40625 -2.8125 4.1875 -1.75 3.890625 -1.15625 C 3.625 -0.625 3.15625 -0.171875 2.6875 -0.171875 C 2 -0.171875 1.84375 -0.953125 1.84375 -1.03125 C 1.84375 -1.046875 1.859375 -1.15625 1.875 -1.1875 Z M 2.359375 -3.078125 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-4"> <path d="M 3.8125 -3.96875 L 4.75 -3.96875 C 4.9375 -3.96875 5.0625 -3.96875 5.0625 -4.15625 C 5.0625 -4.296875 4.9375 -4.296875 4.765625 -4.296875 L 3.875 -4.296875 C 4.03125 -5.1875 4.140625 -5.765625 4.234375 -6.203125 C 4.28125 -6.375 4.3125 -6.484375 4.453125 -6.609375 C 4.578125 -6.71875 4.671875 -6.734375 4.78125 -6.734375 C 4.921875 -6.734375 5.078125 -6.703125 5.21875 -6.625 C 5.15625 -6.609375 5.109375 -6.578125 5.046875 -6.546875 C 4.890625 -6.453125 4.765625 -6.28125 4.765625 -6.078125 C 4.765625 -5.859375 4.9375 -5.71875 5.15625 -5.71875 C 5.453125 -5.71875 5.71875 -5.96875 5.71875 -6.3125 C 5.71875 -6.78125 5.25 -7.015625 4.765625 -7.015625 C 4.421875 -7.015625 3.796875 -6.859375 3.484375 -5.9375 C 3.390625 -5.71875 3.390625 -5.6875 3.125 -4.296875 L 2.375 -4.296875 C 2.171875 -4.296875 2.046875 -4.296875 2.046875 -4.109375 C 2.046875 -3.96875 2.1875 -3.96875 2.359375 -3.96875 L 3.0625 -3.96875 L 2.34375 -0.09375 C 2.15625 0.90625 2 1.75 1.46875 1.75 C 1.453125 1.75 1.234375 1.75 1.046875 1.640625 C 1.5 1.53125 1.5 1.109375 1.5 1.09375 C 1.5 0.875 1.328125 0.734375 1.109375 0.734375 C 0.84375 0.734375 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.75 0.984375 2.03125 1.46875 2.03125 C 2.078125 2.03125 2.5 1.390625 2.625 1.140625 C 2.984375 0.484375 3.21875 -0.75 3.234375 -0.859375 Z M 3.8125 -3.96875 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-2-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-2-1"> <path d="M 2.34375 -3.515625 C 2.390625 -3.625 2.40625 -3.703125 2.40625 -3.75 C 2.40625 -3.984375 2.203125 -4.171875 1.953125 -4.171875 C 1.65625 -4.171875 1.5625 -3.90625 1.53125 -3.8125 L 0.5 -0.609375 C 0.484375 -0.5625 0.453125 -0.515625 0.453125 -0.484375 C 0.453125 -0.34375 0.75 -0.296875 0.765625 -0.296875 C 0.828125 -0.296875 0.859375 -0.359375 0.890625 -0.421875 Z M 2.34375 -3.515625 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-1"> <path d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-2"> <path d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-4-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-4-1"> <path d="M 4.03125 -9.828125 C 4.03125 -10.09375 4.03125 -10.359375 3.734375 -10.359375 C 3.4375 -10.359375 3.4375 -10.09375 3.4375 -9.828125 L 3.4375 0.828125 C 3.078125 0.25 2.65625 -0.171875 2.28125 -0.453125 C 1.375 -1.140625 0.46875 -1.28125 0.4375 -1.28125 C 0.25 -1.28125 0.25 -1.125 0.25 -1 C 0.25 -0.765625 0.265625 -0.75 0.59375 -0.640625 C 1.609375 -0.359375 2.203125 0.171875 2.546875 0.546875 C 3.296875 1.375 3.484375 2.265625 3.5625 2.734375 C 3.578125 2.8125 3.625 2.890625 3.734375 2.890625 C 3.875 2.890625 3.890625 2.78125 3.90625 2.640625 C 4.25 0.953125 5.3125 -0.203125 6.953125 -0.671875 C 7.1875 -0.75 7.21875 -0.75 7.21875 -1 C 7.21875 -1.125 7.21875 -1.28125 7.03125 -1.28125 C 6.984375 -1.28125 6.109375 -1.125 5.265625 -0.515625 C 4.765625 -0.140625 4.359375 0.3125 4.03125 0.828125 Z M 4.03125 -9.828125 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-5-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-5-1"> <path d="M 2.640625 -4.71875 C 2.6875 -4.859375 2.734375 -4.921875 2.734375 -5.03125 C 2.734375 -5.359375 2.4375 -5.578125 2.15625 -5.578125 C 1.75 -5.578125 1.640625 -5.21875 1.609375 -5.078125 L 0.34375 -0.78125 C 0.296875 -0.671875 0.296875 -0.640625 0.296875 -0.625 C 0.296875 -0.53125 0.359375 -0.515625 0.453125 -0.484375 C 0.640625 -0.40625 0.65625 -0.40625 0.671875 -0.40625 C 0.703125 -0.40625 0.765625 -0.40625 0.84375 -0.578125 Z M 2.640625 -4.71875 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-1"> <path d="M 3.3125 2.5 C 3.40625 2.5 3.515625 2.5 3.515625 2.375 C 3.515625 2.328125 3.515625 2.328125 3.375 2.1875 C 2.015625 0.90625 1.671875 -0.953125 1.671875 -2.5 C 1.671875 -5.359375 2.859375 -6.703125 3.375 -7.171875 C 3.515625 -7.296875 3.515625 -7.3125 3.515625 -7.359375 C 3.515625 -7.40625 3.484375 -7.484375 3.375 -7.484375 C 3.21875 -7.484375 2.71875 -6.96875 2.640625 -6.875 C 1.3125 -5.484375 1.03125 -3.6875 1.03125 -2.5 C 1.03125 -0.265625 1.96875 1.53125 3.3125 2.5 Z M 3.3125 2.5 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-2"> <path d="M 3.078125 -2.5 C 3.078125 -3.4375 2.921875 -4.578125 2.296875 -5.75 C 1.8125 -6.671875 0.90625 -7.484375 0.734375 -7.484375 C 0.625 -7.484375 0.59375 -7.40625 0.59375 -7.359375 C 0.59375 -7.3125 0.59375 -7.296875 0.71875 -7.171875 C 2.109375 -5.859375 2.4375 -4.03125 2.4375 -2.5 C 2.4375 0.375 1.25 1.71875 0.734375 2.1875 C 0.609375 2.3125 0.59375 2.328125 0.59375 2.375 C 0.59375 2.421875 0.625 2.5 0.734375 2.5 C 0.890625 2.5 1.390625 1.984375 1.46875 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.5 Z M 3.078125 -2.5 "></path> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-7-0"> </g> <g id="VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-7-1"> <path d="M 1.765625 -4.921875 C 1.765625 -5.1875 1.53125 -5.34375 1.3125 -5.34375 C 1.09375 -5.34375 0.859375 -5.1875 0.859375 -4.921875 L 1.171875 -1.65625 C 1.171875 -1.53125 1.1875 -1.46875 1.3125 -1.46875 C 1.4375 -1.46875 1.453125 -1.53125 1.46875 -1.65625 Z M 1.765625 -0.453125 C 1.765625 -0.6875 1.5625 -0.890625 1.3125 -0.890625 C 1.0625 -0.890625 0.859375 -0.6875 0.859375 -0.453125 C 0.859375 -0.203125 1.0625 0 1.3125 0 C 1.5625 0 1.765625 -0.203125 1.765625 -0.453125 Z M 1.765625 -0.453125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-1" x="25.195" y="19.325"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-1" x="37.33875" y="21.65"></use> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-2" x="42.631893" y="21.65"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-1" x="155.859" y="19.325"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-1" x="168.004" y="21.65"></use> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-2" x="173.297143" y="21.65"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-2-1" x="179.25525" y="18.8125"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-1" x="6.434" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-2" x="12.124" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-4-1" x="23.619" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-2" x="35.24275" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-1" x="42.5865" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-3" x="48.2765" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-2" x="56.5915" y="88.428"></use> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-2" x="62.282175" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-1" x="137.03" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-2" x="142.72" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-4-1" x="154.215" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-2" x="165.83875" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-1" x="173.1825" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-3" x="178.8725" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-5-1" x="187.1875" y="83.0055"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-2" x="190.68125" y="88.428"></use> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-3-2" x="196.371925" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-1" x="271.12" y="88.428"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-4" x="20.241" y="155.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-1" x="28.731" y="157.77975"></use> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-3" x="34.024143" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-1" x="39.35225" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-2" x="43.4685" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-2" x="49.42725" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-4" x="150.905" y="155.456"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-1" x="159.395" y="157.77975"></use> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-3" x="164.688143" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-1" x="170.01625" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-2" x="174.1325" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-2-1" x="180.09125" y="154.9435"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-2" x="183.44625" y="157.77975"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-0-4" x="271.907" y="155.456"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -89.541469 69.102156 L 3.263219 69.102156 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487601 2.86931 C -2.03057 1.146654 -1.018851 0.334154 0.00068 -0.00178375 C -1.018851 -0.333815 -2.03057 -1.146315 -2.487601 -2.868971 " transform="matrix(1, 0, 0, -1, 148.93682, 15.58806)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-4" x="98.368" y="10.136"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-7-1" x="103.453" y="11.8935"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -108.232875 54.832625 L -108.232875 13.668562 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485256 2.867333 C -2.032131 1.148583 -1.020412 0.336083 -0.00088125 0.000145 C -1.020412 -0.335792 -2.032131 -1.148292 -2.485256 -2.870949 " transform="matrix(0, 1, 1, 0, 37.20298, 71.2626)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.110875 54.832625 L 24.110875 13.668562 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485256 2.870379 C -2.032131 1.147722 -1.020412 0.335222 -0.00088125 -0.000715 C -1.020412 -0.336653 -2.032131 -1.149153 -2.485256 -2.867903 " transform="matrix(0, 1, 1, 0, 169.54759, 71.2626)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -70.77975 0.00059375 L -15.568813 0.00059375 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486006 2.867781 C -2.032881 1.149031 -1.021163 0.336531 -0.00163125 0.00059375 C -1.021163 -0.335344 -2.032881 -1.147844 -2.486006 -2.8705 " transform="matrix(1, 0, 0, -1, 130.1071, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -108.232875 -13.190813 L -108.232875 -54.354875 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486526 2.86798 C -2.033357 1.149205 -1.021602 0.332802 0.00186252 0.000785053 C -1.021589 -0.33518 -2.033311 -1.147716 -2.486411 -2.870416 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 37.20234, 139.2872)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 63.310094 0.00059375 L 118.524937 0.00059375 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487512 2.867781 C -2.030481 1.149031 -1.018762 0.336531 0.00076875 0.00059375 C -1.018762 -0.335344 -2.030481 -1.147844 -2.487512 -2.8705 " transform="matrix(1, 0, 0, -1, 264.19845, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.110875 -13.190813 L 24.110875 -54.354875 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486526 2.871056 C -2.033357 1.148375 -1.021602 0.335879 0.00186254 -0.0000449636 C -1.021589 -0.33601 -2.033311 -1.148546 -2.486411 -2.86734 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 169.54692, 139.2872)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 132.34525 -9.452531 L 132.34525 -54.354875 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486449 2.867867 C -2.033324 1.149117 -1.021605 0.336617 0.0018325 0.00068 C -1.021605 -0.335258 -2.033324 -1.147758 -2.486449 -2.870414 " transform="matrix(0, 1, 1, 0, 277.78057, 139.28723)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-3" x="281.295" y="118.012"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -84.588344 -67.02675 L -1.693813 -67.02675 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486996 2.868777 C -2.033871 1.146121 -1.018246 0.333621 0.001285 0.00159 C -1.018246 -0.334348 -2.033871 -1.146848 -2.486996 -2.869504 " transform="matrix(1, 0, 0, -1, 143.98309, 151.72034)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-3" x="91.038" y="145.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-1" x="96.3655" y="145.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-1-4" x="100.483" y="145.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-6-2" x="106.6655" y="145.713"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#VXVMTC9pEf7YBUl16pcFVs0GmNM=-glyph-7-1" x="110.783" y="147.4705"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 49.435094 -67.02675 L 119.314 -67.02675 " transform="matrix(1, 0, 0, -1, 145.436, 84.692)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48716 2.868777 C -2.034035 1.146121 -1.01841 0.333621 0.00112125 0.00159 C -1.01841 -0.334348 -2.034035 -1.146848 -2.48716 -2.869504 " transform="matrix(1, 0, 0, -1, 264.98716, 151.72034)"></path> </svg> </div> <p>The bottom-right square and wide rectangle are pullbacks by construction. By the <a class="existingWikiWord" href="/nlab/show/pasting+law">pasting law</a>, the bottom-left square is a pullback, and thus the top-left square is a pullback if and only if the tall rectangle is.</p> <p>By the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a>, the top-left square is a pullback iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian, so the proposition follows.</p> </div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f : x \to y</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>f</mi></mrow></msub><mo>→</mo><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>x</mi></mrow></msub></mrow><annotation encoding="application/x-tex">X_{/f} \to X_{/x}</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/equivalence+of+%28%E2%88%9E%2C1%29-categories">equivalence of (∞,1)-categories</a>, and composing its inverse with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>f</mi></mrow></msub><mo>→</mo><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>x</mi></mrow></msub></mrow><annotation encoding="application/x-tex">X_{/f} \to X_{/x}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/dependent+sum">dependent sum</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>!</mo></msub><mo>:</mo><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>x</mi></mrow></msub><mo>→</mo><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>y</mi></mrow></msub></mrow><annotation encoding="application/x-tex">f_! : X_{/x} \to X_{/y}</annotation></semantics></math>.</p> </div> <p>To make this concrete, we can also discuss adaptations of the abstract idea to two different models of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> theory: <a class="existingWikiWord" href="/nlab/show/quasi-categories">quasi-categories</a> and <a class="existingWikiWord" href="/nlab/show/simplicially+enriched+categories">sSet categories</a>.</p> <h4 id="in_quasicategories">In quasi-categories</h4> <p>We formulate a notion <strong>cartesian edge</strong> or <em>cartesian morphism</em> in a <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> relative to a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> of simplicial sets. In the case that these simplicial sets are <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-categories</a> – i.e. simplicial set incarnations of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-categories</a> – this yields a notion of cartesian morphisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories.</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> be a morphism of <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a>s. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">f : x_1 \to x_2</annotation></semantics></math> be an edge in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, i.e. a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi>Δ</mi> <mn>1</mn></msup><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">f : \Delta^1 \to X</annotation></semantics></math>.</p> <p>Recall the notion of <a class="existingWikiWord" href="/nlab/show/over+quasi-category">over quasi-category</a> obtained from the notion of <a class="existingWikiWord" href="/nlab/show/join+of+quasi-categories">join of quasi-categories</a>. Using this we obtain <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a>s <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">X/f</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding="application/x-tex">X/{x_2}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S/p(f)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S/p(x_2)</annotation></semantics></math> in generalization of the categories considered in the above definition of cartesian morphisms in categories.</p> <div class="num_defn"> <h6 id="definition_5">Definition</h6> <p><strong>(cartesian edge in a simplicial set)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> be an <a class="existingWikiWord" href="/nlab/show/inner+Kan+fibration">inner Kan fibration</a> of simplicial sets.</p> <p>Then a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f : x \to y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian</strong> if the induced morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>f</mi></mrow></msub><mo>→</mo><msub><mi>X</mi> <mrow><mo stretchy="false">/</mo><mi>y</mi></mrow></msub><msub><mo>×</mo> <mrow><msub><mi>Y</mi> <mrow><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></msub></mrow></msub><msub><mi>Y</mi> <mrow><mo stretchy="false">/</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex"> X_{/f} \to X_{/y} \times_{Y_{/p(y)}} Y_{/p(f)} </annotation></semantics></math></div> <p>into the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> in <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> is an acyclic <a class="existingWikiWord" href="/nlab/show/Kan+fibration">Kan fibration</a>.</p> </div> <p>This is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, def 2.4.1.1</a>.</p> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>The morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f : x \to y</annotation></semantics></math> as above, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a>, is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian precisely if for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n \geq 2</annotation></semantics></math> and all right outer <a class="existingWikiWord" href="/nlab/show/horn">horn</a> inclusions</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow></msup></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mo>↘</mo> <mi>f</mi></msup></mtd></mtr> <mtr><mtd><mi>Λ</mi><mo stretchy="false">[</mo><mi>n</mi><msub><mo stretchy="false">]</mo> <mi>n</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>Δ</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Y</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \Delta^{\{n-1,n\}} \\ \downarrow & \searrow^f \\ \Lambda[n]_n &\to& X \\ \downarrow && \downarrow^{\mathrlap{p}} \\ \Delta[n] &\to& Y } </annotation></semantics></math></div> <p>(with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Λ</mi><mo stretchy="false">[</mo><mi>n</mi><msub><mo stretchy="false">]</mo> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">\Lambda[n]_n</annotation></semantics></math> the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>th <a class="existingWikiWord" href="/nlab/show/horn">horn</a> of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/simplex">simplex</a>) such that the last edge of the horn is the given edge <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>, a lift <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow></msup></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mo>↘</mo> <mi>f</mi></msup></mtd></mtr> <mtr><mtd><mi>Λ</mi><mo stretchy="false">[</mo><mi>n</mi><msub><mo stretchy="false">]</mo> <mi>n</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>X</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msup><mrow></mrow> <mi>σ</mi></msup><mo>↗</mo></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>Δ</mi><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Y</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \Delta^{\{n-1,n\}} \\ \downarrow & \searrow^f \\ \Lambda[n]_n &\to& X \\ \downarrow &{}^\sigma\nearrow& \downarrow^{\mathrlap{p}} \\ \Delta[n] &\to& Y } </annotation></semantics></math></div> <p>exists.</p> </div> <p>This is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT remark 2.4.1.4</a>.</p> <div class="num_remark"> <h6 id="remark_2">Remark</h6> <p>This means that an <a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> with a collection of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian morphisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> specified satisfies the same kind of condition as a <em><a class="existingWikiWord" href="/nlab/show/right+fibration">right fibration</a></em> , the only difference being that not <em>all</em> right outer horns inclusion are required to have lifts, but only those where the last edge of the horn maps to a cartesian morphism.</p> <p>In this sense a <a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a> is a generalization of a <a class="existingWikiWord" href="/nlab/show/right+fibration">right fibration</a>.</p> </div> <div class="num_prop"> <h6 id="proposition_4">Proposition</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a> of <a class="existingWikiWord" href="/nlab/show/quasi-categories">quasi-categories</a> then a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f : x \to y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-Cartesian precisely if for all objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> the diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>Hom</mi> <mi>X</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>Hom</mi> <mi>X</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><msub><mi>Hom</mi> <mi>X</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><msub><mi>Hom</mi> <mi>Y</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>,</mo><mi>p</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>Hom</mi> <mi>Y</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>,</mo><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><msub><mi>Hom</mi> <mi>Y</mi></msub><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>,</mo><mi>p</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ Hom_X(a,x) &\stackrel{Hom_X(a,f)}{\to}& Hom_X(a,y) \\ \downarrow && \downarrow \\ Hom_Y(p(a), p(x)) &\stackrel{Hom_Y(p(a), p(f))}{\to}& Hom_Y(p(a), p(y)) } </annotation></semantics></math></div> <p>of <a class="existingWikiWord" href="/nlab/show/hom-object+in+a+quasi-category">hom-objects in a quasi-category</a> is a <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a> square (in <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> equipped with its <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">standard model structure</a>).</p> </div> <div class="proof"> <h6 id="proof_3">Proof</h6> <p>This is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, prop. 2.4.4.3</a>.</p> </div> <h4 id="in_categories_3">In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>sSet</mi></mrow><annotation encoding="application/x-tex">sSet</annotation></semantics></math>-categories</h4> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> be <a class="existingWikiWord" href="/nlab/show/simplicially+enriched+categories">simplicially enriched categories</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">F : C \to D</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a>-<a class="existingWikiWord" href="/nlab/show/enriched+functor">enriched functor</a>.</p> <div class="num_defn"> <h6 id="definition_6">Definition</h6> <p>A morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">f : x \to y \in C</annotation></semantics></math> is <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-cartesian</strong> if it is so under the <a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo>:</mo><mi>sSet</mi><mi>Cat</mi><mo>→</mo><mi>sSet</mi></mrow><annotation encoding="application/x-tex">N : sSet Cat \to sSet</annotation></semantics></math> in the sense of quasi-categories above, i.e. if</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><msub><mo stretchy="false">)</mo> <mrow><mo stretchy="false">/</mo><mi>f</mi></mrow></msub><mo>→</mo><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><msub><mo stretchy="false">)</mo> <mrow><mo stretchy="false">/</mo><mi>y</mi></mrow></msub><msub><mo>×</mo> <mrow><mi>N</mi><mo stretchy="false">(</mo><mi>D</mi><msub><mo stretchy="false">)</mo> <mrow><mo stretchy="false">/</mo><mi>F</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></msub></mrow></msub><mi>N</mi><mo stretchy="false">(</mo><mi>D</mi><msub><mo stretchy="false">)</mo> <mrow><mo stretchy="false">/</mo><mi>F</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex"> N(C)_{/f} \to N(C)_{/y} \times_{N(D)_{/F(y)}} N(D)_{/F(f)} </annotation></semantics></math></div> <p>is an acyclic <a class="existingWikiWord" href="/nlab/show/Kan+fibration">Kan fibration</a>.</p> </div> <div class="num_prop"> <h6 id="proposition_5">Proposition</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> are enriched in <a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a>es and if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is hom-wise a <a class="existingWikiWord" href="/nlab/show/Kan+fibration">Kan fibration</a>, then</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo><mo>:</mo><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo><mo>→</mo><mi>N</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(F) : N(C) \to N(D)</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a>;</p> </li> <li> <p>a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f :x \to y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(C)</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(F)</annotation></semantics></math>-cartesian morphism precisely if for all objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> the diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>C</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>C</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>C</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>D</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>,</mo><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>C</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>,</mo><mi>F</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>D</mi><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>,</mo><mi>F</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ C(a,x) &\stackrel{C(a,f)}{\to}& C(a,y) \\ \downarrow && \downarrow \\ D(F(a), F(x)) &\stackrel{C(F(a), F(f))}{\to}& D(F(a), F(y)) } </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a> square in <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> equipped with its <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">standard model structure</a>.</p> </li> </ul> </div> <div class="proof"> <h6 id="proof_4">Proof</h6> <p>This is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, prop. 2.4.1.10</a>.</p> </div> <h2 id="properties">Properties</h2> <h3 id="pullback_along_cartesian_morphisms">Pullback along Cartesian morphisms</h3> <div class="num_lemma"> <h6 id="lemma">Lemma</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>ℰ</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">p : \mathcal{E} \to \mathcal{C}</annotation></semantics></math> a functor, if in a diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>g</mi></mpadded></msup><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>h</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>C</mi></mtd> <mtd><mover><mo>→</mo><mi>k</mi></mover></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ A &\stackrel{f}{\to}& B \\ {}^{\mathllap{g}}\downarrow && \downarrow^{\mathrlap{h}} \\ C &\stackrel{k}{\to}& D } </annotation></semantics></math></div> <p>in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}</annotation></semantics></math> the two vertical morphisms are vertical with respect to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> (meaning that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>Id</mi> <mi>p</mi></msub><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(g) = Id_p(A)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>h</mi><mo stretchy="false">)</mo><mo>=</mo><mi>Id</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(h) = Id(B)</annotation></semantics></math>) and if the two horizontal morphisms are <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-Cartesian morphisms, then this square is a <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> square.</p> </div> <div class="proof"> <h6 id="proof_5">Proof</h6> <p>If</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Q</mi></mtd> <mtd><mover><mo>→</mo><mrow></mrow></mover></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>h</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>C</mi></mtd> <mtd><mover><mo>→</mo><mi>k</mi></mover></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ Q &\stackrel{}{\to}& B \\ \downarrow && \downarrow^{\mathrlap{h}} \\ C &\stackrel{k}{\to}& D } </annotation></semantics></math></div> <p>is another cone over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>D</mi><mo>←</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">C \to D \leftarrow B</annotation></semantics></math>, then its image under <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><mi>Q</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ p(Q) \\ \downarrow & \searrow \\ p(C) &\stackrel{p(k)}{\to}& D } \,. </annotation></semantics></math></div> <p>Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(f) = p(k)</annotation></semantics></math>, another lift of the right horn of this is given by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Q</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><mi>B</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ Q \\ & \searrow \\ A &\stackrel{f}{\to}& B } </annotation></semantics></math></div> <p>which gives a unique filler <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Q</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">Q \to A</annotation></semantics></math> by the fact that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is Cartesian.</p> <p>But this produces now two fillers – namely the original <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Q</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">Q \to C</annotation></semantics></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Q</mi><mo>→</mo><mi>A</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">Q \to A \to C</annotation></semantics></math> just obtained – of the horn</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Q</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>C</mi></mtd> <mtd><mover><mo>→</mo><mi>k</mi></mover></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ Q &\to& B \\ && \downarrow \\ C &\stackrel{k}{\to}& D } </annotation></semantics></math></div> <p>over</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><mi>Q</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd></mtr> <mtr><mtd><mi>p</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ p(Q) \\ \downarrow & \searrow \\ p(C) &\stackrel{p(k)}{\to}& D } \,. </annotation></semantics></math></div> <p>Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> is Cartesian, these two fillers must be equal. This means that the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Q</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">Q \to A</annotation></semantics></math> is a cone morphism and unique as such. Hence the original square is a pullback.</p> </div> <p>This appears as <a class="existingWikiWord" href="/nlab/show/Elephant">Elephant, lemma 1.3.3</a>.</p> <h3 id="cartesian_morphisms_and_equivalences">Cartesian morphisms and equivalences</h3> <div class="num_lemma"> <h6 id="observation">Observation</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/category">category</a>, a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is cartesian with respect to the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal</a> <a class="existingWikiWord" href="/nlab/show/functor">functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">C \to *</annotation></semantics></math> precisely if it is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>.</p> <p>In particular all <a class="existingWikiWord" href="/nlab/show/identity">identity</a> morphisms are cartesian.</p> </div> <p>This is trivial to see. The analog statement holds also for <a class="existingWikiWord" href="/nlab/show/quasi-categories">quasi-categories</a>, where it is rather more nontrivial and quite useful:</p> <div class="num_prop"> <h6 id="proposition_6">Proposition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a>, a morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is cartesian with respect to the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal</a> morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">C \to *</annotation></semantics></math> precisely if it is an <a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalence</a>.</p> <p>More generally, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p : X \to Y</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a>, a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalence</a> precisely if it is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>-cartesian and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(f)</annotation></semantics></math> is an equivalence in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>.</p> </div> <div class="proof"> <h6 id="proof_6">Proof</h6> <p>The first statement is a proposition of <a class="existingWikiWord" href="/nlab/show/Andre+Joyal">Andre Joyal</a>, slightly reformulated in the language of cartesian morphisms. It appears as <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, prop 1.2.4.3</a>. A proof appears below <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, corollary 2.1.2.2</a>.</p> <p>The second statement is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, prop. 2.4.1.5</a>.</p> </div> <h2 id="related_pages">Related pages</h2> <ul> <li>A Cartesian morphism is the special case of a <a class="existingWikiWord" href="/nlab/show/strictly+final+lift">strictly final lift</a> of a structured <a class="existingWikiWord" href="/nlab/show/sink">sink</a> when the sink is a singleton.</li> </ul> <h2 id="references">References</h2> <p>Original reference:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Alexander+Grothendieck">Alexander Grothendieck</a>, §VI.5 of: <em>Revêtements Étales et Groupe Fondamental - Séminaire de Géometrie Algébrique du Bois Marie 1960/61</em> (<a class="existingWikiWord" href="/nlab/show/SGA+1">SGA 1</a>) , LNM <strong>224</strong> Springer (1971) [updated version with comments by M. Raynaud: <a href="http://arxiv.org/abs/math/0206203">arxiv.0206203</a>]</li> </ul> <p>Review:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Angelo+Vistoli">Angelo Vistoli</a>, Def. 3.1 in: <em>Grothendieck topologies, fibered categories and descent theory</em>, in: <em><a class="existingWikiWord" href="/nlab/show/Fundamental+algebraic+geometry+--+Grothendieck%27s+FGA+explained">Fundamental algebraic geometry – Grothendieck's FGA explained</a></em>, Mathematical Surveys and Monographs <strong>123</strong>, Amer. Math. Soc. (2005) 1-104 [<a href="https://bookstore.ams.org/surv-123-s">ISBN:978-0-8218-4245-4</a>, <a href="http://arxiv.org/abs/math/0412512">math.AG/0412512</a>]</li> </ul> <p>For the 1-categorical case see for instance section B1.3 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, <em><a class="existingWikiWord" href="/nlab/show/Sketches+of+an+Elephant">Sketches of an Elephant</a></em></li> </ul> <p>The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categorical version is in section 2.4 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <em><a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">Higher Topos Theory</a></em></li> </ul> <p>See also the references at <a class="existingWikiWord" href="/nlab/show/Grothendieck+fibration">Grothendieck fibration</a>.</p> </body></html> </div> <div class="revisedby"> <p> Last revised on December 28, 2023 at 11:40:03. See the <a href="/nlab/history/Cartesian+morphism" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Cartesian+morphism" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/13680/#Item_11">Discuss</a><span class="backintime"><a href="/nlab/revision/Cartesian+morphism/50" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Cartesian+morphism" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Cartesian+morphism" accesskey="S" class="navlink" id="history" rel="nofollow">History (50 revisions)</a> <a href="/nlab/show/Cartesian+morphism/cite" style="color: black">Cite</a> <a href="/nlab/print/Cartesian+morphism" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Cartesian+morphism" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>