CINXE.COM
Search results for: manufacturing recourses integration
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: manufacturing recourses integration</title> <meta name="description" content="Search results for: manufacturing recourses integration"> <meta name="keywords" content="manufacturing recourses integration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="manufacturing recourses integration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="manufacturing recourses integration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4518</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: manufacturing recourses integration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4518</span> The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pouyan%20Jahanbin">Pouyan Jahanbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Houshmand"> Mahmoud Houshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Fatahi%20Valilai"> Omid Fatahi Valilai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot鈥檚 control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20machine%20tools" title="CNC machine tools">CNC machine tools</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20robots" title=" industrial robots"> industrial robots</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge-based%20systems" title=" knowledge-based systems"> knowledge-based systems</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration" title=" manufacturing recourses integration"> manufacturing recourses integration</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system%20%28FMS%29" title=" flexible manufacturing system (FMS)"> flexible manufacturing system (FMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20data%20model" title=" object-oriented data model"> object-oriented data model</a> </p> <a href="https://publications.waset.org/abstracts/27404/the-interoperability-between-cnc-machine-tools-and-robot-handling-systems-based-on-an-object-oriented-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4517</span> Proposal for a Model of Economic Integration for the Development of Industry in Cabinda, Angola</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Bitebe">T. H. Bitebe</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Lima"> T. M. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Charrua-Santos"> F. Charrua-Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Matias%20Oliveira"> C. J. Matias Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to present a proposal for an economic integration model for the development of the manufacturing industry in Cabinda, Angola. It seeks to analyze the degree of economic integration of Cabinda and the dynamics of the manufacturing industry. Therefore, in the same way, to gather information to support the decision-making for public financing programs that will aim at the disengagement of the manufacturing industry in Angola and Cabinda in particular. The Cabinda Province is the 18<sup>th</sup> of Angola, the enclave is located in a privileged area of the African and arable land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20integration" title="economic integration">economic integration</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20development" title=" industrial development"> industrial development</a>, <a href="https://publications.waset.org/abstracts/search?q=Cabinda%20industry" title=" Cabinda industry"> Cabinda industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Angola" title=" Angola"> Angola</a> </p> <a href="https://publications.waset.org/abstracts/89853/proposal-for-a-model-of-economic-integration-for-the-development-of-industry-in-cabinda-angola" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4516</span> A Framework for Embedding Industry 4.0 in the UAE Defence Manufacturing Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Al%20Baloushi">Khalifa Al Baloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Zhang"> Hongwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Perera"> Terrence Perera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few decades, the government of the UAE has been taking actions to consolidate defense manufacturing entities with the view to build a coherent and modern defense manufacturing base. Whilst these actions have significantly improved the overall capabilities of defense manufacturing; further opportunities exist to radically transform the sector. A comprehensive literature review and data collected from a survey identified three potential areas of improvements, (a) integration of Industry 4.0 technologies and other smart technologies, (b) stronger engagement of small and Medium-sized defense manufacturing companies and (c) Enhancing the national defense policies by embedding best practices from other nations. This research paper presents the design and development of a conceptual framework for the UAE defense industrial ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title="industry 4.0">industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20manufacturing" title=" defense manufacturing"> defense manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-systems" title=" eco-systems"> eco-systems</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a> </p> <a href="https://publications.waset.org/abstracts/145808/a-framework-for-embedding-industry-40-in-the-uae-defence-manufacturing-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4515</span> Advanced Manufacturing Technology Adoption in Manufacturing Comapnies in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Nyori%20Makari">George Nyori Makari</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ogola"> J. M. Ogola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades, manufacturing has evolved from a more labor-intensive set of mechanical processes to a sophisticated set of information based technology processes. With the existence of various advanced manufacturing technologies (AMTs), more and more functions or jobs are performed by these machines instead of human labour. This study was undertaken in order to research the extent of AMTs adoption in manufacturing companies in Kenya. In order to investigate a survey was conducted via questionnaires that were sent to 183 selected AMT manufacturing companies in Kenya. 92 companies responded positively. All the surveyed companies were found to have a measure of investment in at least two of the 14 types of AMTs investigated. In general the company surveyed showed that the level of AMT adoption in Kenya is very low with investments levels at a mean of 2.057 and integration levels at a mean of 1.639 in a scale of 1-5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMT%20adoption" title="AMT adoption">AMT adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=AMT%20investments" title=" AMT investments"> AMT investments</a>, <a href="https://publications.waset.org/abstracts/search?q=AMT%20integration" title=" AMT integration"> AMT integration</a>, <a href="https://publications.waset.org/abstracts/search?q=companies%20in%20Kenya" title=" companies in Kenya"> companies in Kenya</a> </p> <a href="https://publications.waset.org/abstracts/37149/advanced-manufacturing-technology-adoption-in-manufacturing-comapnies-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4514</span> The Impacts of Soft and Hard Enterprise Resource Planning to the Corporate Business Performance through the Enterprise Resource Planning Integrated System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sautma%20Ronni%20Basana">Sautma Ronni Basana</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeplin%20Jiwa%20Husada%20Tarigan"> Zeplin Jiwa Husada Tarigan</a>, <a href="https://publications.waset.org/abstracts/search?q=Widjojo%20Suprapto"> Widjojo Suprapto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Companies have already implemented the Enterprise Resource Planning (ERP) system to increase the data integration so that they can improve their business performance. Although some companies have managed to implement the ERP well, they still need to improve gradually so that the ERP functions can be optimized. To obtain a faster and more accurate data, the key users and IT department have to customize the process to suit the needs of the company. In reality, sustaining the ERP technology system requires soft and hard ERP so it enables to improve the business performance of the company. Soft and hard ERP are needed to build a tough system to ensure the integration among departments running smoothly. This research has three questions. First, is the soft ERP bringing impacts to the hard ERP and system integration. Then, is the hard ERP having impacts to the system integration. Finally, is the business performance of the manufacturing companies is affected by the soft ERP, hard ERP, and system integration. The questionnaires are distributed to 100 manufacturing companies in East Java, and are collected from 90 companies which have implemented the ERP, with the response rate of 90%. From the data analysis using PLS program, it is obtained that the soft ERP brings positive impacts to the hard ERP and system integration for the companies. Then, the hard ERP brings also positive impacts to the system integration. Finally, the business process performance of the manufacturing companies is affected by the system integration, soft ERP, and hard ERP simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20ERP" title="soft ERP">soft ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20ERP" title=" hard ERP"> hard ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20integration" title=" system integration"> system integration</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20performance" title=" business performance"> business performance</a> </p> <a href="https://publications.waset.org/abstracts/82486/the-impacts-of-soft-and-hard-enterprise-resource-planning-to-the-corporate-business-performance-through-the-enterprise-resource-planning-integrated-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4513</span> An Integrated Supply Chain Management to Manufacturing Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tissayakorn">Kittipong Tissayakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Akagi"> Fumio Akagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Song"> Yu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title="supply chain">supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20integration" title=" supply chain integration"> supply chain integration</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20industries" title=" manufacturing industries"> manufacturing industries</a> </p> <a href="https://publications.waset.org/abstracts/1560/an-integrated-supply-chain-management-to-manufacturing-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4512</span> Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwumeka%20Daniel%20Ezeliora">Chukwumeka Daniel Ezeliora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20six%20sigma" title="lean six sigma">lean six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20mitigation" title=" risk mitigation"> risk mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20efficiency" title=" operational efficiency"> operational efficiency</a> </p> <a href="https://publications.waset.org/abstracts/172687/exploratory-analysis-and-development-of-sustainable-lean-six-sigma-methodologies-integration-for-effective-operation-and-risk-mitigation-in-manufacturing-sectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4511</span> Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramadan">M. Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Salah"> B. Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title=" Industry 4.0"> Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20mapping" title=" value stream mapping"> value stream mapping</a> </p> <a href="https://publications.waset.org/abstracts/103104/smart-lean-manufacturing-in-the-context-of-industry-40-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4510</span> Advanced Manufacturing Technology Adoption and Organizational Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Nyori%20Makari">George Nyori Makari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data on 92 industrial organizations point to the existence of relationships between advanced manufacturing technology (AMT) adoption and some aspects of organizational structure, including the number of specialized sub-units, the number of levels of authority, span of control, degree of role programming specification, degree of communication programming specification and the degree of output programming. Primary finding is that as the investments and integration of AMTs increases, the more likely the foregoing aspects of structure increase. The findings hold with size and a number of other organizational variables controlled. The results indicate that a company鈥檚 capacity to assimilate technology depends on its organizational capabilities. The study encapsulates the need for companies to increase their organizational capabilities during investment and integration of AMTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology" title="advanced manufacturing technology">advanced manufacturing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=adoption" title=" adoption"> adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20structure" title=" organizational structure"> organizational structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a> </p> <a href="https://publications.waset.org/abstracts/52446/advanced-manufacturing-technology-adoption-and-organizational-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4509</span> A Study on the Relationship between Transaction Fairness, Social Capital, Supply Chain Integration and Sustainability: Focusing on Manufacturing Companies of South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Min%20Park">Sung-Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Kwon%20Park"> Chan Kwon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae-Bogk%20Kim"> Chae-Bogk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to analyze the relationship between transaction fairness, social capital, supply chain integration and sustainability. Based on the previous studies, measurement items were determined by using SPSS 22 and exploratory factor analysis was performed, and again, using AMOS 21 for confirmatory factor analysis and path analysis was performed by using study items that satisfy reliability, validity, and appropriateness of measurement model. It has shown that transaction fairness has a (+) significant effect on social capital, social capital on supply chain integration, supply chain integration on economic sustainability and social sustainability, and has a (+), but not significant effect on environmental sustainability. It has shown that supply chain integration has been proven to play a role as a parameter between social capital and economic and social sustainability, but not as a parameter between environmental sustainability. Through this study, it is suggested that clearly examining the relationship between fairness of trade, social capital, supply chain integration and sustainability, maintaining fairness of the transaction make formation of social capital, and further integration of supply chain, and achieve sustainability of entire supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transaction%20fairness" title="transaction fairness">transaction fairness</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital" title=" social capital"> social capital</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20integration" title=" supply chain integration"> supply chain integration</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/74486/a-study-on-the-relationship-between-transaction-fairness-social-capital-supply-chain-integration-and-sustainability-focusing-on-manufacturing-companies-of-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4508</span> Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yohannes%20Haile">Yohannes Haile</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipo%20Onipede"> Dipo Onipede</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ashour"> Omar Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-physical%20production%20system" title=" cyber-physical production system"> cyber-physical production system</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20manufacturing%20enterprises" title=" digital manufacturing enterprises"> digital manufacturing enterprises</a>, <a href="https://publications.waset.org/abstracts/search?q=disruptive%20innovation" title=" disruptive innovation"> disruptive innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20value%20creation" title=" new value creation"> new value creation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-digital-physical%20loop" title=" physical-digital-physical loop"> physical-digital-physical loop</a> </p> <a href="https://publications.waset.org/abstracts/102165/adapting-cyber-physical-production-systems-to-small-and-mid-size-manufacturing-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4507</span> Framework for Improving Manufacturing "Implicit Competitiveness" by Enhancing Monozukuri Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Togawa">Takahiro Togawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Phuc"> Nguyen Huu Phuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research focuses on a framework which analyses the relationship between product/process architecture, manufacturing organizational capability and manufacturing "implicit competitiveness" in order to improve manufacturing implicit competitiveness. We found that 1) there is a relationship between architecture-based manufacturing organizational capability and manufacturing implicit competitiveness, and 2) analysis and measures conducted in manufacturing organizational capability proved effective to improve manufacturing implicit competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implicit%20competitiveness" title="implicit competitiveness">implicit competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=QCD" title=" QCD"> QCD</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20capacity" title=" organizational capacity"> organizational capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20strategy" title=" architectural strategy"> architectural strategy</a> </p> <a href="https://publications.waset.org/abstracts/64771/framework-for-improving-manufacturing-implicit-competitiveness-by-enhancing-monozukuri-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4506</span> A Review of the Run to Run (R to R) Control in the Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ranjbar"> Mostafa Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Run-to-Run%20%28R2R%29%20control" title="Run-to-Run (R2R) control">Run-to-Run (R2R) control</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20in%20engineering" title=" process in engineering"> process in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20controls" title=" manufacturing controls"> manufacturing controls</a> </p> <a href="https://publications.waset.org/abstracts/48352/a-review-of-the-run-to-run-r-to-r-control-in-the-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4505</span> Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benson%20Tette">Benson Tette</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Mensah"> Thomas Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carpentry" title="carpentry">carpentry</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20manufacturing%20%28CAM%29" title=" computer-aided manufacturing (CAM)"> computer-aided manufacturing (CAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%28IT%29" title=" information technology(IT)"> information technology(IT)</a> </p> <a href="https://publications.waset.org/abstracts/166238/integrating-computer-aided-manufacturing-and-computer-aided-design-for-streamlined-carpentry-production-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4504</span> Design of a Service-Enabled Dependable Integration Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuyang%20Peng">Fuyang Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghong%20Li"> Donghong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of information systems integration is to make all the data sources, applications and business flows integrated into the new environment so that unwanted redundancies are reduced and bottlenecks and mismatches are eliminated. Two issues have to be dealt with to meet such requirements: the software architecture that supports resource integration, and the adaptor development tool that help integration and migration of legacy applications. In this paper, a service-enabled dependable integration environment (SDIE), is presented, which has two key components, i.e., a dependable service integration platform and a legacy application integration tool. For the dependable platform for service integration, the service integration bus, the service management framework, the dependable engine for service composition, and the service registry and discovery components are described. For the legacy application integration tool, its basic organization, functionalities and dependable measures taken are presented. Due to its service-oriented integration model, the light-weight extensible container, the service component combination-oriented p-lattice structure, and other features, SDIE has advantages in openness, flexibility, performance-price ratio and feature support over commercial products, is better than most of the open source integration software in functionality, performance and dependability support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application%20integration" title="application integration">application integration</a>, <a href="https://publications.waset.org/abstracts/search?q=dependability" title=" dependability"> dependability</a>, <a href="https://publications.waset.org/abstracts/search?q=legacy" title=" legacy"> legacy</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a> </p> <a href="https://publications.waset.org/abstracts/56186/design-of-a-service-enabled-dependable-integration-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4503</span> The Effect of Supply Chain Integration on Information Sharing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khlif%20Hamadi">Khlif Hamadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supply chain integration has become a potentially valuable way of securing shared information and improving supply chain performance since competition is no longer between organizations but among supply chains. This research conceptualizes and develops three dimensions of supply chain integration (integration with customers, integration with suppliers, and the interorganizational integration) and tests the relationships between supply chain integration, information sharing, and supply chain performance. Furthermore, the four types of information sharing namely; information sharing with customers, information sharing with suppliers, inter-functional information sharing, and intra-organizational information sharing; and the four constructs of Supply Chain Performance represents expenses of costs, asset utilization, supply chain reliability, and supply chain flexibility and responsiveness. The theoretical and practical implications of the study, as well as directions for future research, are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20integration" title="supply chain integration">supply chain integration</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20sharing" title=" information sharing"> information sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20performance" title=" supply chain performance"> supply chain performance</a> </p> <a href="https://publications.waset.org/abstracts/90589/the-effect-of-supply-chain-integration-on-information-sharing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4502</span> Sustainable Manufacturing Framework for Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Deglurkar">Rajan Deglurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research carried out in this piece of work is on 'Framework of Sustainable Manufacturing for Small and Medium Enterprises'. It consists of elucidation of concepts about sustainable manufacturing and sustainable product development with critical review performed on seven techniques of sustainable manufacturing. The work also covers the survey about critical review of awareness in the market with respect to the manufacturers and the consumers. The factors and challenges for sustainable manufacturing implementation are reviewed and simple framework is constructed for the small and medium enterprise for successful implementation of sustainable manufacturing and sustainable product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manufacturing" title=" sustainable manufacturing"> sustainable manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=framework%20for%20sustainable%20manufacturing" title=" framework for sustainable manufacturing"> framework for sustainable manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/11856/sustainable-manufacturing-framework-for-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4501</span> Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Jong%20Tsai">Ming-Jong Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Cheng"> Y. L. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Kuo"> Y. L. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Hsiao"> S. Y. Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Chen"> J. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20H.%20Liu"> P. H. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Chen"> D. H. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist鈥檚 creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-curable" title=" photo-curable"> photo-curable</a>, <a href="https://publications.waset.org/abstracts/search?q=Piezo%20type%20ink-jet" title=" Piezo type ink-jet"> Piezo type ink-jet</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20Resin" title=" UV Resin "> UV Resin </a> </p> <a href="https://publications.waset.org/abstracts/24597/implementation-of-a-photo-curable-3d-additive-manufacturing-technology-with-grey-capability-by-using-piezo-ink-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4500</span> Manufacturing Facility Location Selection: A Numercal Taxonomy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seifoddini%20Hamid">Seifoddini Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardikoraeem%20Mahsa"> Mardikoraeem Mahsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorayshi%20Roya"> Ghorayshi Roya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20facility" title="manufacturing facility">manufacturing facility</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20sites" title=" manufacturing sites"> manufacturing sites</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20world%20data" title=" real world data"> real world data</a> </p> <a href="https://publications.waset.org/abstracts/25361/manufacturing-facility-location-selection-a-numercal-taxonomy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4499</span> Analyzing the Technology Affecting on the Social Integration of Students at University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20K.%20Basak">Sujit K. Basak</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Collin"> Simon Collin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faculty" title="faculty">faculty</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=peer" title=" peer"> peer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20access%20and%20use" title=" technology access and use"> technology access and use</a> </p> <a href="https://publications.waset.org/abstracts/47248/analyzing-the-technology-affecting-on-the-social-integration-of-students-at-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4498</span> Distributed Manufacturing (DM)- Smart Units and Collaborative Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hermann%20Kuehnle">Hermann Kuehnle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20unit" title="autonomous unit">autonomous unit</a>, <a href="https://publications.waset.org/abstracts/search?q=networkability" title=" networkability"> networkability</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20manufacturing%20unit" title=" smart manufacturing unit"> smart manufacturing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a> </p> <a href="https://publications.waset.org/abstracts/19770/distributed-manufacturing-dm-smart-units-and-collaborative-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4497</span> Lean Environmental Management Integration System (LEMIS) Framework Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Puvanasvaran">A. P. Puvanasvaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20A.%20L.%20Vasu"> Suresh A. L. Vasu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Norazlin"> N. Norazlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lean Environmental Management Integration System (LEMIS) framework development is integration between lean core element and ISO 14001. The curiosity on the relationship between continuous improvement and sustainability of lean implementation has influenced this study toward LEMIS. Characteristic of ISO 14001 standard clauses and core elements of lean principles are explored from past studies and literature reviews. Survey was carried out on ISO 14001 certified companies to examine continual improvement by implementing the ISO 14001 standard. The study found that there is a significant and positive relationship between Lean Principles: value, value stream, flow, pull and perfection with the ISO 14001 requirements. LEMIS is significant to support the continuous improvement and sustainability. The integration system can be implemented to any manufacturing company. It gives awareness on the importance on why organizations need to sustain its Environmental management system. At the meanwhile, the lean principle can be adapted in order to streamline daily activities of the company. Throughout the study, it had proven that there is no sacrifice or trade-off between lean principles with ISO 14001 requirements. The framework developed in the study can be further simplified in the future, especially the method of crossing each sub requirements of ISO 14001 standard with the core elements of Lean principles in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEMIS" title="LEMIS">LEMIS</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2014001" title=" ISO 14001"> ISO 14001</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a> </p> <a href="https://publications.waset.org/abstracts/11535/lean-environmental-management-integration-system-lemis-framework-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4496</span> An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Moleke">Max Moleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruption" title="disruption">disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a> </p> <a href="https://publications.waset.org/abstracts/51225/an-advanced-method-of-minimizing-unforeseen-disruptions-within-a-manufacturing-system-a-case-study-of-amico-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4495</span> Effect of the Workpiece Position on the Manufacturing Tolerances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahou%20Mohamed">Rahou Mohamed </a>, <a href="https://publications.waset.org/abstracts/search?q=Sebaa%20Fethi"> Sebaa Fethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheikh%20Abdelmadjid"> Cheikh Abdelmadjid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing but also the manufacturing constraints, for example geometrical defects of the machine, vibration, and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach have been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=position" title=" position"> position</a> </p> <a href="https://publications.waset.org/abstracts/24541/effect-of-the-workpiece-position-on-the-manufacturing-tolerances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4494</span> A Risk Management Approach for Nigeria Manufacturing Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaniyi%20O.%20Omoyajowo">Olaniyi O. Omoyajowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To be successful in today’s competitive global environment, manufacturing industry must be able to respond quickly to changes in technology. These changes in technology introduce new risks and hazards. The management of risk/hazard in a manufacturing process recommends method through which the success rate of an organization can be increased. Thus, there is a continual need for manufacturing industries to invest significant amount of resources in risk management, which in turn optimizes the production output and profitability of any manufacturing industry (if implemented properly). To help improve the existing risk prevention and mitigation practices in Small and Medium Enterprise (SME) in Nigeria Manufacturing Industries (NMI), the researcher embarks on this research to develop a systematic Risk Management process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20management" title="manufacturing management">manufacturing management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a> </p> <a href="https://publications.waset.org/abstracts/49491/a-risk-management-approach-for-nigeria-manufacturing-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4493</span> Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Ibrahim%20Demir">Halil Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Caner%20Erden"> Caner Erden</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Ipek"> Mumtaz Ipek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozer%20Uygun"> Ozer Uygun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title="process planning">process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling" title=" weighted scheduling"> weighted scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20due-date%20assignment" title=" weighted due-date assignment"> weighted due-date assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20search" title=" genetic search"> genetic search</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meta-heuristics" title=" hybrid meta-heuristics"> hybrid meta-heuristics</a> </p> <a href="https://publications.waset.org/abstracts/57629/solving-weighted-number-of-operation-plus-processing-time-due-date-assignment-weighted-scheduling-and-process-planning-integration-problem-using-genetic-and-simulated-annealing-search-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4492</span> Rules in Policy Integration, Case Study: Victoria Catchment Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratri%20Werdiningtyas">Ratri Werdiningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongping%20Wei"> Yongping Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Western"> Andrew Western</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contributes to on-going attempts at bringing together land, water and environmental policy in catchment management. A tension remains in defining the boundaries of policy integration. Most of Integrated Water Resource Management is valued as rhetoric policy. It is far from being achieved on the ground because the socio-ecological system has not been understood and developed into complete and coherent problem representation. To clarify the feature of integration, this article draws on institutional fit for public policy integration and uses these insights in an empirical setting to identify the mechanism that can facilitate effective public integration for catchment management. This research is based on the journey of Victoria鈥檚 government from 1890-2016. A total of 274 Victorian Acts related to land, water, environment management published in those periods has been investigated. Four conditions of integration have been identified in their co-evolution: (1) the integration policy based on reserves, (2) the integration policy based on authority interest, (3) policy based on integrated information and, (4) policy based coordinated resource, authority and information. Results suggest that policy coordination among their policy instrument is superior rather than policy integration in the case of catchment management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment%20management" title="catchment management">catchment management</a>, <a href="https://publications.waset.org/abstracts/search?q=co-evolution" title=" co-evolution"> co-evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20integration" title=" policy integration"> policy integration</a>, <a href="https://publications.waset.org/abstracts/search?q=phase" title=" phase"> phase</a> </p> <a href="https://publications.waset.org/abstracts/101538/rules-in-policy-integration-case-study-victoria-catchment-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4491</span> Integration of Constraints Related to Composite Materials in the Design of Industrial Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumedine">A. Boumedine</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Benfriha"> K. Benfriha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it鈥檚 resistance, it鈥檚 cost, it鈥檚 resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printer" title=" 3D printer"> 3D printer</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a> </p> <a href="https://publications.waset.org/abstracts/109739/integration-of-constraints-related-to-composite-materials-in-the-design-of-industrial-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4490</span> Value Creation by Sustainable Supply Chain Horizontal Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananth%20Malali">Ananth Malali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohan%20Prasad"> Rohan Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananth%20Revankar"> Ananth Revankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiranth%20Hulgur"> Chiranth Hulgur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to show evidence that value creation by sustainable methods is achieved when a relation is shared with a sustainability attribute between two or more companies in every stage of the supply chain. The pillars of this paper, the value creation factors, attributes of sustainability and various relations that exist between firms in a horizontally integrated supply chain are defined. Further, a relational analysis was done using a simple analysis tool built based on research. Couple of case studies from the German manufacturing and Australian retail sectors were considered for the intra industry analysis and comparison. Taking the analysis ahead, for inter-industry comparison, the same cases were scrutinised in order to understand how the sustainability attributes change across each industry. Concluding, this paper gives an overview of how companies can plan their strategies to attain sustainability through horizontal integration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20integration" title="horizontal integration">horizontal integration</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20creation" title=" value creation"> value creation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20supply%20chain" title=" sustainable supply chain"> sustainable supply chain</a> </p> <a href="https://publications.waset.org/abstracts/29601/value-creation-by-sustainable-supply-chain-horizontal-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4489</span> Improvement of the Numerical Integration's Quality in Meshless Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Mougaida">Ahlem Mougaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedi%20Bel%20Hadj%20Salah"> Hedi Bel Hadj Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several methods are suggested to improve the numerical integration in Galerkin weak form for Meshless methods. In fact, integrating without taking into account the characteristics of the shape functions reproduced by Meshless methods (rational functions, with compact support etc.), causes a large integration error that influences the PDE鈥檚 approximate solution. Comparisons between different methods of numerical integration for rational functions are discussed and compared. The algorithms are implemented in Matlab. Finally, numerical results were presented to prove the efficiency of our algorithms in improving results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20methods" title="adaptive methods">adaptive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless" title=" meshless"> meshless</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20integration" title=" numerical integration"> numerical integration</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20quadrature" title=" rational quadrature"> rational quadrature</a> </p> <a href="https://publications.waset.org/abstracts/46442/improvement-of-the-numerical-integrations-quality-in-meshless-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=150">150</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=151">151</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>