CINXE.COM
Search results for: inverter-based amplifier
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inverter-based amplifier</title> <meta name="description" content="Search results for: inverter-based amplifier"> <meta name="keywords" content="inverter-based amplifier"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inverter-based amplifier" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inverter-based amplifier"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 111</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inverter-based amplifier</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> A CMOS D-Band Power Amplifier in 22FDSOI Technology for 6G Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karandeep%20Kaur">Karandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of power amplifier (PA) for mmWave communication systems. The designed amplifier uses GlobalFoundries 22 FDX technology and works at an operational frequency of 140 GHz in the D-Band. With a supply voltage of 0.8V for the super low threshold voltage transistors, the amplifier is biased in class AB and has a total current consumption of 50 mA. The measured saturated output power from the power amplifier is 5.6 dBm with an output-referred 1dB-compression point of 1.6dBm. The measured gain of PA is 19 dB with 3 dB-bandwidth ranging from 120 GHz to 140 GHz. The chip occupies an area of 795µm × 410µm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mmWave%20communication%20system" title="mmWave communication system">mmWave communication system</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20amplifiers" title=" power amplifiers"> power amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=22FDX" title=" 22FDX"> 22FDX</a>, <a href="https://publications.waset.org/abstracts/search?q=D-Band" title=" D-Band"> D-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-coupled%20capacitive%20neutralization" title=" cross-coupled capacitive neutralization"> cross-coupled capacitive neutralization</a> </p> <a href="https://publications.waset.org/abstracts/148830/a-cmos-d-band-power-amplifier-in-22fdsoi-technology-for-6g-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Doutreloigne">Jan Doutreloigne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audio%20amplifier" title="audio amplifier">audio amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20switching%20amplifier" title=" multi-level switching amplifier"> multi-level switching amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20efficiency" title=" power efficiency"> power efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-oscillating%20amplifier" title=" self-oscillating amplifier"> self-oscillating amplifier</a> </p> <a href="https://publications.waset.org/abstracts/82607/multi-level-pulse-width-modulation-to-boost-the-power-efficiency-of-switching-amplifiers-for-analog-signals-with-very-high-crest-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> 55 dB High Gain L-Band EDFA Utilizing Single Pump Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Al-Mansoori">M. H. Al-Mansoori</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Al-Ghaithi"> W. S. Al-Ghaithi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N.%20Hasoon"> F. N. Hasoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title="optical amplifiers">optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=EDFA" title=" EDFA"> EDFA</a>, <a href="https://publications.waset.org/abstracts/search?q=L-band" title=" L-band"> L-band</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20networks" title=" optical networks"> optical networks</a> </p> <a href="https://publications.waset.org/abstracts/11110/55-db-high-gain-l-band-edfa-utilizing-single-pump-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> A High Linear and Low Power with 71dB 35.1MHz/4.38GHz Variable Gain Amplifier in 180nm CMOS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faeze%20Noruzpur"> Faeze Noruzpur</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysuda%20Noruzpur"> Aysuda Noruzpur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a high linear, low power and wideband Variable Gain Amplifier (VGA) with a direct current (DC) gain range of -10.2dB to 60.7dB. By applying the proposed idea to the folded cascade amplifier, it is possible to achieve a 71dB DC gain, 35MHz (-3dB) bandwidth, accompanied by high linearity and low sensitivity as well. It is noteworthy that the proposed idea can be able to apply on every differential amplifier, too. Moreover, the total power consumption and unity gain bandwidth of the proposed VGA is 1.41mW with a power supply of 1.8 volts and 4.37GHz, respectively, and 0.8pF capacitor load is applied at the output nodes of the amplifier. Furthermore, the proposed structure is simulated in whole process corners and different temperatures in the region of -60 to +90 ºC. Simulations are performed for all corner conditions by HSPICE using the BSIM3 model of the 180nm CMOS technology and MATLAB software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variable%20gain%20amplifier" title="variable gain amplifier">variable gain amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power" title=" low power"> low power</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage" title=" low voltage"> low voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=folded%20cascade" title=" folded cascade"> folded cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=amplifier" title=" amplifier"> amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20gain" title=" DC gain"> DC gain</a> </p> <a href="https://publications.waset.org/abstracts/174867/a-high-linear-and-low-power-with-71db-351mhz438ghz-variable-gain-amplifier-in-180nm-cmos-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Inverter Based Gain-Boosting Fully Differential CMOS Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Agarwal">Alpana Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhil%20Sharma"> Akhil Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7<sup>o</sup> with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20amplifier" title="CMOS amplifier">CMOS amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20boosting" title=" gain boosting"> gain boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter-based%20amplifier" title=" inverter-based amplifier"> inverter-based amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=self-biased%20inverter" title=" self-biased inverter"> self-biased inverter</a> </p> <a href="https://publications.waset.org/abstracts/64250/inverter-based-gain-boosting-fully-differential-cmos-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Abata">Maryam Abata</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulhime%20El%20Bekkali"> Moulhime El Bekkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mazer"> Said Mazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Algani"> Catherine Algani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Mehdi"> Mahmoud Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15μm pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mm-wave%20band" title="Mm-wave band">Mm-wave band</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20oscillator" title=" local oscillator"> local oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrupler" title=" frequency quadrupler"> frequency quadrupler</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20amplifier" title=" buffer amplifier"> buffer amplifier</a> </p> <a href="https://publications.waset.org/abstracts/26079/design-of-a-phemt-buffer-amplifier-in-mm-wave-band-around-60-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Pradip%20Roy">Divya Pradip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahirul%20Alam%20%20Chowdhury"> Md. Zahirul Alam Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pass%20filter" title=" high pass filter"> high pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation%20amplifier" title=" instrumentation amplifier"> instrumentation amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=inverting%20amplifier" title=" inverting amplifier"> inverting amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20pass%20filter" title=" low pass filter"> low pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular" title=" neuromuscular"> neuromuscular</a> </p> <a href="https://publications.waset.org/abstracts/123161/development-of-electromyography-emg-signal-acquisition-system-by-simple-electronic-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiko%20Nakano"> Nobuhiko Nakano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20regulated%20cascode%20distributed%20amplifier" title="CMOS regulated cascode distributed amplifier">CMOS regulated cascode distributed amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20transformer%20modeling%20with%20polynomial" title=" silicon transformer modeling with polynomial"> silicon transformer modeling with polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20consumption" title=" low power consumption"> low power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=distribute%20amplification%20technique" title=" distribute amplification technique"> distribute amplification technique</a> </p> <a href="https://publications.waset.org/abstracts/24466/2-stage-cmos-regulated-cascode-distributed-amplifier-design-based-on-inductive-coupling-technique-in-submicron-cmos-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20ul%20Hassan">Moez ul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Noman"> Bushra Noman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarmad%20Hameed"> Sarmad Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Mehmood"> Shahab Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Bashir"> Asma Bashir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20current" title=" ionic current"> ionic current</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20amplifier" title=" operational amplifier"> operational amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20clamp" title=" patch clamp"> patch clamp</a> </p> <a href="https://publications.waset.org/abstracts/28042/indigenous-patch-clamp-technique-design-of-highly-sensitive-amplifier-circuit-for-measuring-and-monitoring-of-real-time-ultra-low-ionic-current-through-cellular-gates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> High Efficiency Class-F Power Amplifier Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Mohamed%20Eblabla">Abdalla Mohamed Eblabla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the high increase and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E, and F are the main techniques for realizing power amplifiers. An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Power%20Amplifier%20%28PA%29" title="Power Amplifier (PA)">Power Amplifier (PA)</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20nitride%20%28GaN%29" title=" gallium nitride (GaN)"> gallium nitride (GaN)</a>, <a href="https://publications.waset.org/abstracts/search?q=Agilent%E2%80%99s%20Advanced%20Design%20System%20%28ADS%29" title=" Agilent’s Advanced Design System (ADS)"> Agilent’s Advanced Design System (ADS)</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20elements" title=" lumped elements "> lumped elements </a> </p> <a href="https://publications.waset.org/abstracts/2508/high-efficiency-class-f-power-amplifier-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Realization of Hybrid Beams Inertial Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somya%20Ranjan%20Patro">Somya Ranjan Patro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhigna%20Bhatt"> Abhigna Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20amplifier" title="inertial amplifier">inertial amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title=" fast fourier transform"> fast fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorbers" title=" vibration absorbers"> vibration absorbers</a> </p> <a href="https://publications.waset.org/abstracts/153357/realization-of-hybrid-beams-inertial-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maninder%20Kaur%20Gill">Maninder Kaur Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Agarwal"> Alpana Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Device%20Under%20Test%20%28DUT%29" title="Device Under Test (DUT)">Device Under Test (DUT)</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20voltage%20gain" title=" open loop voltage gain"> open loop voltage gain</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20amplifier" title=" operational amplifier"> operational amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20circuit" title=" test circuit"> test circuit</a> </p> <a href="https://publications.waset.org/abstracts/63309/a-test-methodology-to-measure-the-open-loop-voltage-gain-of-an-operational-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udayan%20Patankar">Udayan Patankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashwati%20Bhagat"> Shashwati Bhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Vilas%20Nitneware"> Vilas Nitneware</a>, <a href="https://publications.waset.org/abstracts/search?q=Ants%20Koel"> Ants Koel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFIC" title="RFIC">RFIC</a>, <a href="https://publications.waset.org/abstracts/search?q=PAE" title=" PAE"> PAE</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20CMOS" title=" RF CMOS"> RF CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20matching" title=" impedance matching"> impedance matching</a> </p> <a href="https://publications.waset.org/abstracts/75933/24-ghz-013m-multi-biased-cascode-power-amplifier-for-ism-band-wireless-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Design of a 28-nm CMOS 2.9-64.9-GHz Broadband Distributed Amplifier with Floating Ground CPW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian-Wei%20Huang">Tian-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Bai"> Wei-Ting Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Tung%20Cheng"> Yu-Tung Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Han%20Tsai"> Jeng-Han Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a 1-stage 6-section conventional distributed amplifier (CDA) structure distributed power amplifier (DPA) fabricated in a 28-nm HPC+ 1P9M CMOS process is proposed. The transistor size selection is introduced to achieve broadband power matching and thus remains a high flatness output power and power added efficiency (PAE) within the bandwidth. With the inductive peaking technique, the high-frequency pole appears and the high-frequency gain is increased; the gain flatness becomes better as well. The inductive elements used to form an artificial transmission line are built up with a floating ground coplanar waveguide plane (CPWFG) rather than a microstrip line, coplanar waveguide (CPW), or spiral inductor to get better performance. The DPA achieves 12.6 dB peak gain at 52.5 GHz with 2.9 to 64.9 GHz 3-dB bandwidth. The Psat is 11.4 dBm with PAEMAX of 10.6 % at 25 GHz. The output 1-dB compression point power is 9.8 dBm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20power%20amplifier%20%28DPA%29" title="distributed power amplifier (DPA)">distributed power amplifier (DPA)</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20bandwidth%20%28GBW%29" title=" gain bandwidth (GBW)"> gain bandwidth (GBW)</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20ground%20CPW" title=" floating ground CPW"> floating ground CPW</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20peaking" title=" inductive peaking"> inductive peaking</a>, <a href="https://publications.waset.org/abstracts/search?q=28-nm" title=" 28-nm"> 28-nm</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOS" title=" CMOS"> CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=5G." title=" 5G."> 5G.</a> </p> <a href="https://publications.waset.org/abstracts/161176/design-of-a-28-nm-cmos-29-649-ghz-broadband-distributed-amplifier-with-floating-ground-cpw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo-Ming%20Sung">Guo-Ming Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramavath%20Naga%20Raju%20Naik"> Ramavath Naga Raju Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed" title="high-speed">high-speed</a>, <a href="https://publications.waset.org/abstracts/search?q=low-power" title=" low-power"> low-power</a>, <a href="https://publications.waset.org/abstracts/search?q=flip-flop" title=" flip-flop"> flip-flop</a>, <a href="https://publications.waset.org/abstracts/search?q=sense-amplifier" title=" sense-amplifier"> sense-amplifier</a> </p> <a href="https://publications.waset.org/abstracts/144462/a-low-power-and-high-speed-conditional-precharge-sense-amplifier-based-flip-flop-using-single-ended-latch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahmani">F. Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Razaghian"> F. Razaghian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Kashaninia"> A. R. Kashaninia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ~72% PAE and output power of > 39 dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5 GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The load- and source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20amplifier%20%28PA%29" title="power amplifier (PA)">power amplifier (PA)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power" title=" high power"> high power</a>, <a href="https://publications.waset.org/abstracts/search?q=class-J%20and%20%20%20class-E" title=" class-J and class-E"> class-J and class-E</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency" title=" high efficiency "> high efficiency </a> </p> <a href="https://publications.waset.org/abstracts/25917/novel-approach-to-design-of-a-class-ej-power-amplifier-using-high-power-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadam%20Bhambri">Kadam Bhambri</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Gupta"> Neena Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all%20optical%20wavelength%20conversion" title="all optical wavelength conversion">all optical wavelength conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20managed%20solitons" title=" dispersion managed solitons"> dispersion managed solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20optical%20amplifier" title=" semiconductor optical amplifier"> semiconductor optical amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20gain%20modultation" title=" cross gain modultation"> cross gain modultation</a> </p> <a href="https://publications.waset.org/abstracts/46267/wavelength-conversion-of-dispersion-managed-solitons-at-100-gbps-through-semiconductor-optical-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20Al%20Majid">Noha Al Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mazer"> Said Mazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulhime%20El%20Bekkali"> Moulhime El Bekkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Algani"> Catherine Algani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Mehdi"> Mahmoud Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20noise%20amplifier" title="low noise amplifier">low noise amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=V-band" title=" V-band"> V-band</a>, <a href="https://publications.waset.org/abstracts/search?q=MMIC%20technology" title=" MMIC technology"> MMIC technology</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=amplifier" title=" amplifier"> amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=cascode" title=" cascode"> cascode</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomorphic%20high%20electron%20mobility%20transistor%20%28PHEMT%29" title=" pseudomorphic high electron mobility transistor (PHEMT)"> pseudomorphic high electron mobility transistor (PHEMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20linearity" title=" high linearity"> high linearity</a> </p> <a href="https://publications.waset.org/abstracts/26198/a-low-power-low-noise-and-high-linearity-60-ghz-lna-for-wpan-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumption <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounded%20active%20inductor" title="grounded active inductor">grounded active inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20active%20inductor" title=" floating active inductor"> floating active inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier" title=" fully differential bandpass amplifier "> fully differential bandpass amplifier </a> </p> <a href="https://publications.waset.org/abstracts/2174/symbolic-analysis-of-input-impedance-of-cmos-floating-active-inductors-with-application-in-fully-differential-bandpass-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Experimental Demonstration of Broadband Erbium-Doped Fiber Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belloui%20Bouzid">Belloui Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, broadband design of erbium doped fiber amplifier (EDFA) is demonstrated and proved experimentally. High and broad gain is covered in C and L bands. The used technique combines, in one configuration, two double passes with split band structure for the amplification of two traveled signals one for the C band and the other for L band. This new topology is to investigate the trends of high gain and wide amplification at different status of pumping power, input wavelength, and input signal power. The presented paper is to explore the performance of EDFA gain using what it can be called double pass double branch wide band amplification configuration. The obtained results show high gain and wide broadening range of 44.24 dB and 80 nm amplification respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erbium%20doped%20fiber%20amplifier" title="erbium doped fiber amplifier">erbium doped fiber amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=erbium%20doped%20fiber%20laser" title=" erbium doped fiber laser"> erbium doped fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20amplification" title=" optical amplification"> optical amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title=" fiber laser"> fiber laser</a> </p> <a href="https://publications.waset.org/abstracts/80047/experimental-demonstration-of-broadband-erbium-doped-fiber-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ow%20Tze%20Weng">Ow Tze Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhaila%20Isaak"> Suhaila Isaak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusmeeraz%20Yusof"> Yusmeeraz Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=amplifier" title=" amplifier"> amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power" title=" low power"> low power</a> </p> <a href="https://publications.waset.org/abstracts/78090/low-power-cmos-amplifier-design-for-wearable-electrocardiogram-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Srinivas%20Rangan">Shreyas Srinivas Rangan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurgis%20Porins"> Jurgis Porins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raman%20amplifier" title="Raman amplifier">Raman amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=erbium%20doped%20fibre%20amplifier" title=" erbium doped fibre amplifier"> erbium doped fibre amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=bit%20error%20rate" title=" bit error rate"> bit error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20optical%20amplifiers" title=" hybrid optical amplifiers"> hybrid optical amplifiers</a> </p> <a href="https://publications.waset.org/abstracts/181551/performance-improvement-of-long-reach-optical-access-systems-using-hybrid-optical-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonis%20Constantinides">Antonis Constantinides</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Yiallouras"> Christos Yiallouras</a>, <a href="https://publications.waset.org/abstracts/search?q=Christakis%20Damianou"> Christakis Damianou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDMOS" title="LDMOS">LDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=amplifier" title=" amplifier"> amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=back-off" title=" back-off"> back-off</a>, <a href="https://publications.waset.org/abstracts/search?q=bias%20circuit" title=" bias circuit"> bias circuit</a> </p> <a href="https://publications.waset.org/abstracts/11313/improving-the-ldmos-temperature-compensation-bias-circuit-to-optimize-back-off" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Multicasting Characteristics of All-Optical Triode Based on Negative Feedback Semiconductor Optical Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Aisyah%20Azizan">S. Aisyah Azizan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Syafiq%20Azmi"> M. Syafiq Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuki%20Harada"> Yuki Harada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshinobu%20Maeda"> Yoshinobu Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Takaomi%20Matsutani"> Takaomi Matsutani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We introduced an all-optical multi-casting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multi-casting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multi-casting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20gain%20modulation" title="cross gain modulation">cross gain modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multicasting" title=" multicasting"> multicasting</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20feedback%20optical%20amplifier" title=" negative feedback optical amplifier"> negative feedback optical amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20optical%20amplifier" title=" semiconductor optical amplifier"> semiconductor optical amplifier</a> </p> <a href="https://publications.waset.org/abstracts/18462/multicasting-characteristics-of-all-optical-triode-based-on-negative-feedback-semiconductor-optical-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">684</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Design Of High Sensitivity Transceiver for WSN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anitha">A. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aishwariya"> M. Aishwariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20detector" title=" envelope detector"> envelope detector</a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%20band" title=" ISM band"> ISM band</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20electronics" title=" low power electronics"> low power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=PA" title=" PA"> PA</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20transceiver" title=" wireless transceiver"> wireless transceiver</a> </p> <a href="https://publications.waset.org/abstracts/29995/design-of-high-sensitivity-transceiver-for-wsn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> HPA Pre-Distorter Based on Neural Networks for 5G Satellite Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Louliej">Abdelhamid Louliej</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Jabrane"> Younes Jabrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents EVM improvement by 95.26%. NMSE and ACPR were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellites" title="satellites">satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=5G" title=" 5G"> 5G</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=HPA" title=" HPA"> HPA</a>, <a href="https://publications.waset.org/abstracts/search?q=TWTA" title=" TWTA"> TWTA</a>, <a href="https://publications.waset.org/abstracts/search?q=SSPA" title=" SSPA"> SSPA</a>, <a href="https://publications.waset.org/abstracts/search?q=EVM" title=" EVM"> EVM</a>, <a href="https://publications.waset.org/abstracts/search?q=NMSE" title=" NMSE"> NMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=ACPR" title=" ACPR"> ACPR</a> </p> <a href="https://publications.waset.org/abstracts/170447/hpa-pre-distorter-based-on-neural-networks-for-5g-satellite-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiang-Hwua%20Yu">Shiang-Hwua Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsun%20Wu"> Po-Hsun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-oscillation" title="self-oscillation">self-oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma-delta%20modulator" title=" sigma-delta modulator"> sigma-delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20clock" title=" pendulum clock"> pendulum clock</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title=" Coulomb friction"> Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=class-D%20amplifier" title=" class-D amplifier"> class-D amplifier</a> </p> <a href="https://publications.waset.org/abstracts/9932/two-kinds-of-self-oscillating-circuits-mechanically-demonstrated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> A Novel Design in the Use of Planar Transformers for LDMOS Based Amplifiers in Bands II, III, DRM+, DVB-T and DAB+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonis%20Constantinides">Antonis Constantinides</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Yiallouras"> Christos Yiallouras</a>, <a href="https://publications.waset.org/abstracts/search?q=Christakis%20Damianou"> Christakis Damianou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coaxial transformer-coupled push-pull circuitry has been used widely in HF and VHF amplifiers for many decades without significant changes in the topology of the transformers. Basic changes over the years concerned the construction and turns ratio of the transformers as has been imposed upon the newer technologies active devices demands. The balun transmission line transformers applied in push-pull amplifiers enable input/output impedance transformation, but are mainly used to convert the balanced output into unbalanced and the input unbalanced into balanced. A simple and affordable alternative solution over the traditional coaxial transformer is the coreless planar balun. A key advantage over the traditional approach lies in the high specifications repeatability; simplifying the amplifier construction requirements as the planar balun constitutes an integrated part of the PCB copper layout. This paper presents the performance analysis of a planar LDMOS MRFE6VP5600 Push-Pull amplifier that enables robust operation in Band III, DVB-T, DVB-T2 standards but functions equally well in Band II, for DRM+ new generation transmitters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplifier" title="amplifier">amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=balun" title=" balun"> balun</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20impedance" title=" complex impedance"> complex impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=LDMOS" title=" LDMOS"> LDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=planar-transformers" title=" planar-transformers"> planar-transformers</a> </p> <a href="https://publications.waset.org/abstracts/30154/a-novel-design-in-the-use-of-planar-transformers-for-ldmos-based-amplifiers-in-bands-ii-iii-drm-dvb-t-and-dab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Theory of Gyrotron Amplifier in a Vane-Loaded Waveguide with Inner Dielectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhaneh%20Hashemi">Reyhaneh Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrooz%20Saviz"> Shahrooz Saviz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In his study, we have survey the theory of gyrotron amplifier in a vane-loaded waveguide with inner dielectric material. Dispersion relation for electromagnetic waves emitted by a cylindrical waveguide that provided with wedge-shaped metal vanes projecting radially inward from the wall of the guide and exited in the transverse-electric mode was analysed. From numerical analysis of this dispersion relation, it is shown that the stability behavior of the fast-wave mode is dependent of the dielectric constant. With a small axial momentum spreed, a super bandwidth is shown to be attainable by a mixed mode operation. Also, with the utilization from the numeric analysis of relation dispersion. We show that in the –speed mode, the constant is independent de-electric. With the ratio of dispersion of smell, high –bandwith was obtained for the combined mode. And at the end, we were comparing the result of our work (vane-loaded) by the waveguide with a smooth wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gyrotron%20amplifier" title="gyrotron amplifier">gyrotron amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=vane-loaded%20waveguide" title=" vane-loaded waveguide"> vane-loaded waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20material" title=" dielectric material"> dielectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20relation" title=" dispersion relation"> dispersion relation</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20waveguide" title=" cylindrical waveguide"> cylindrical waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-wave%20mode" title=" fast-wave mode"> fast-wave mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20mode%20operation" title=" mixed mode operation"> mixed mode operation</a> </p> <a href="https://publications.waset.org/abstracts/151063/theory-of-gyrotron-amplifier-in-a-vane-loaded-waveguide-with-inner-dielectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guiheng%20Zhang">Guiheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhang"> Wei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Fu"> Jun Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yudong%20Wang"> Yudong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20gain%20power%20amplifier" title="high gain power amplifier">high gain power amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=linearization%20bias%20circuit" title=" linearization bias circuit"> linearization bias circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe%20HBT%20model" title=" SiGe HBT model"> SiGe HBT model</a>, <a href="https://publications.waset.org/abstracts/search?q=Volterra%20series" title=" Volterra series"> Volterra series</a> </p> <a href="https://publications.waset.org/abstracts/62323/design-of-900-mhz-high-gain-sige-power-amplifier-with-linearity-improved-bias-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inverter-based%20amplifier&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inverter-based%20amplifier&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inverter-based%20amplifier&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inverter-based%20amplifier&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>