CINXE.COM

Search results for: splitting N fertilizer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: splitting N fertilizer</title> <meta name="description" content="Search results for: splitting N fertilizer"> <meta name="keywords" content="splitting N fertilizer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="splitting N fertilizer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="splitting N fertilizer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 567</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: splitting N fertilizer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Effect of Time and Rate of Nitrogen Application on the Malting Quality of Barley Yield in Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Talaab">A. S. Talaab</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa"> Safaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahmoud"> A. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20S.%20Siam"> Hanan S. Siam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted during the winter season of 2013/2014 in the barley production area of Dakhala – New Valley Governorate, Egypt to assess the effect of nitrogen rate and time of N fertilizer application on barley grain yield, yield components and N use efficiency of barley and their association with grain yield. The treatments consisted of three levels of nitrogen (0, 70 and 100 kg N/acre) and five application times. The experiment was laid out as a randomized complete block design with three replication. Results revealed that barley grain yield and yield components increased significantly in response to N rate. Splitting N fertilizer amount at several times result in significant effect on grain yield, yield components, protein content and N uptake efficiency when compared with the entire N was applied at once. Application of N at rate of 100 kg N/acre resulted in accumulation of nitrate in the subsurface soil > 30cm. When N application timing considered, less NO3 was found in the soil profile with splitting N application compared with all preplans application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20use%20efficiency" title="nitrogen use efficiency">nitrogen use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer" title=" splitting N fertilizer"> splitting N fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=NO3" title=" NO3"> NO3</a> </p> <a href="https://publications.waset.org/abstracts/49548/effect-of-time-and-rate-of-nitrogen-application-on-the-malting-quality-of-barley-yield-in-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> A Forbidden-Minor Characterization for the Class of Co-Graphic Matroids Which Yield the Graphic Element-Splitting Matroids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Malavadkar">Prashant Malavadkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Dhotre"> Santosh Dhotre</a>, <a href="https://publications.waset.org/abstracts/search?q=Maruti%20Shikare"> Maruti Shikare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The n-point splitting operation on graphs is used to characterize 4-connected graphs with some more operations. Element splitting operation on binary matroids is a natural generalization of the notion of n-point splitting operation on graphs. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid. Characterization of graphic (cographic) matroids whose element splitting matroids are graphic (cographic) is known. The element splitting operation on a co-graphic matroid, in general may not yield a graphic matroid. In this paper, we give a necessary and sufficient condition for the cographic matroid to yield a graphic matroid under the element splitting operation. In fact, we prove that the element splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to M(K4); where K4 is the complete graph on 4 vertices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20matroids" title="binary matroids">binary matroids</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting" title=" splitting"> splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=element%20splitting" title=" element splitting"> element splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=forbidden%20minor" title=" forbidden minor"> forbidden minor</a> </p> <a href="https://publications.waset.org/abstracts/59445/a-forbidden-minor-characterization-for-the-class-of-co-graphic-matroids-which-yield-the-graphic-element-splitting-matroids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Geometrical Based Unequal Droplet Splitting Using Microfluidic Y-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Talebjedi">Bahram Talebjedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirmohammad%20Sattari"> Amirmohammad Sattari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zoher%20Sihorwala"> Ahmed Zoher Sihorwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hoorfar"> Mina Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among different droplet manipulations, controlled droplet-splitting is of great significance due to its ability to increase throughput and operational capability. Furthermore, unequal droplet-splitting can provide greater flexibility and a wider range of dilution factors. In this study, we developed two-dimensional, time-dependent complex fluid dynamics simulations to model droplet formation in a flow focusing device, followed by splitting in a Y-shaped junction with sub-channels of unequal widths. From the results obtained from the numerical study, we correlated the diameters of the droplets in the sub-channels to the Weber number, thereby demarcating the droplet splitting and non-splitting regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=unequal%20droplet%20splitting" title=" unequal droplet splitting"> unequal droplet splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device" title=" flow focusing device"> flow focusing device</a> </p> <a href="https://publications.waset.org/abstracts/133469/geometrical-based-unequal-droplet-splitting-using-microfluidic-y-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinomuvonga%20Manenji%20Zhou">Tinomuvonga Manenji Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Eubert%20Mahofa"> Eubert Mahofa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatenda%20Crispen%20Madzokere"> Tatenda Crispen Madzokere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPK%20hydroxyapatite%20nano%20hybrid%20fertilizer" title="NPK hydroxyapatite nano hybrid fertilizer">NPK hydroxyapatite nano hybrid fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20release" title=" low release"> low release</a> </p> <a href="https://publications.waset.org/abstracts/163701/nitrogen-phosphorus-potassium-npk-hydroxyapatite-nano-hybrid-slow-release-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mojaddam">M. Mojaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Araei"> M. Araei</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saki%20Nejad"> T. Saki Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Soltani%20Howyzeh"> M. Soltani Howyzeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications.) The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plan height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20phosphate%20fertilizer%20%28fertile%202%29" title="biological phosphate fertilizer (fertile 2)">biological phosphate fertilizer (fertile 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20super%20phosphate" title=" triple super phosphate"> triple super phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20traits" title=" morphological traits"> morphological traits</a> </p> <a href="https://publications.waset.org/abstracts/31865/the-effect-of-application-of-biological-phosphate-fertilizer-fertile-2-and-triple-super-phosphate-chemical-fertilizers-on-some-morphological-traits-of-corn-sc704" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sitti%20Nurani%20Sirajuddin">Sitti Nurani Sirajuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikrar%20Moh.%20Saleh"> Ikrar Moh. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasmiyati%20Kasim"> Kasmiyati Kasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20organic%20fertilizer" title="liquid organic fertilizer">liquid organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptions" title=" perceptions"> perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=beef%20cattle" title=" beef cattle"> beef cattle</a> </p> <a href="https://publications.waset.org/abstracts/34105/perceptions-of-farmers-against-liquid-fertilizer-benefits-of-beef-cattle-urine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Utilization of Silicon for Sustainable Rice Yield Improvement in Acid Sulfate Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bunjirtluk%20Jintaridth">Bunjirtluk Jintaridth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of silicon for sustainable rice cultivation in acid sulfate soils was studied for 2 years. The study was conducted on Rungsit soils in Amphoe Tanyaburi, Pathumtani Province. The objectives of this study were to assess the effect of high quality organic fertilizer in combination with silicon and chemical fertilizer on rice yield, chemical soil properties after using soil amendments, and also to assess the economic return. A Randomized Complete Block Design (RCBD) with 10 treatments and 3 replications were employed. The treatments were as follows: 1) control 2) chemical fertilizer (recommended by Land Development Department, LDD 3) silicon 312 kg/ha 4) high quality organic fertilizer at 1875 kg/ha (the recommendation rate by LDD) 5) silicon 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 6) silicon at the 312 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 7) silicon 156 kg/ha in combination with chemical fertilizer 8) silicon at the 312 kg/ha in combination with chemical fertilizer 9) silicon 156 kg/ha in combination with ½ chemical fertilizer rate, and 10) silicon 312 kg/ha in combination with ½ chemical fertilizer rate. The results of 2 years indicated the treatment tended to increase soil pH (from 5.1 to 4.7-5.5), percentage of organic matter (from 2.43 to 2.54 - 2.94%); avail. P (from 7.5 to 7-21 mg kg-1 P; ext. K (from 616 to 451-572 mg kg-1 K), ext Ca (from 1962 to 2042.3-4339.7 mg kg-1 Ca); ext Mg (from 1586 to 808.7-900 mg kg-1 Mg); but decrease the ext. Al (from 2.56 to 0.89-2.54 cmol kg-1 Al. Two years average of rice yield, the highest yield was obtained from silicon 156 kg/ha application in combination with high quality organic fertilizer 300 kg/rai (3770 kg/ha), or using silicon at the 312 kg/ha combination with high quality organic fertilizer 300 kg/rai. (3,750 kg/ha). It was noted that chemical fertilizer application with 156 and 312 kg/ha silicon gave only 3,260 และ 3,133 kg/ha, respectively. On the other hand, half rate of chemical fertilizer with 156 and 312 kg/ha with silicon gave the yield of 2,934 และ 3,218 kg/ha, respectively. While high quality organic fertilizer only can produce 3,318 kg/ha as compare to rice yield of 2,812 kg/ha from control. It was noted that the highest economic return was obtained from chemical fertilizer treated plots (886 dollars/ha). Silicon application at the rate of 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha gave the economic return of 846 dollars/ha, while 312 kg/ha of silicon with chemical fertilizer gave the lowest economic return (697 dollars/ha). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20quality%20organic%20fertilizer" title=" high quality organic fertilizer"> high quality organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20sulfate%20soil" title=" acid sulfate soil"> acid sulfate soil</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/104606/utilization-of-silicon-for-sustainable-rice-yield-improvement-in-acid-sulfate-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felora%20Rafiei">Felora Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Shoaei"> Shahram Shoaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title="biological fertilizer">biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20component" title=" yield component"> yield component</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a> </p> <a href="https://publications.waset.org/abstracts/33467/the-effect-of-biological-fertilizers-on-yield-and-yield-components-of-maize-with-different-levels-of-chemical-fertilizers-in-normal-and-difficit-irrigation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> Fertilizer Procurement and Distribution in Nigeria: Assessing Policy against Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Msughter%20Gwa">Jacob Msughter Gwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhys%20Williams"> Rhys Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is widely known that food security is a major concern in Sub-Saharan Africa. In many regions, including Nigeria, this is due to an agriculture-old problem of soil erosion beyond replacement levels. It seems that the use of fertilizer would be an immediate solution as it can boost agricultural productivity, and low agricultural productivity is attributed to the low use of fertilizers in Nigeria. The Government of Nigeria has been addressing the challenges of food shortage but with limited success. The utilisation of a practical and efficient subsidy programme in addressing this issue seems to be needed. However, the problem of procurement and distribution changes from one stage of subsidy to another. This paper looks at the difference between the ideal and the actual implementation of agricultural fertilizer policies in Nigeria, as it currently runs the risk of meeting required standards on paper but missing the desired real outcomes, and recognises the need to close the gap between the paper work and the realities on the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20productivity" title="agricultural productivity">agricultural productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20distribution" title=" fertilizer distribution"> fertilizer distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20procurement" title=" fertilizer procurement"> fertilizer procurement</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/59546/fertilizer-procurement-and-distribution-in-nigeria-assessing-policy-against-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Parallel Multisplitting Methods for DAE’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Machmoum">Ahmed Machmoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20El%20Kyal"> Malika El Kyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer" title="computer">computer</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-splitting%20methods" title=" multi-splitting methods"> multi-splitting methods</a>, <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20mode" title=" asynchronous mode"> asynchronous mode</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20algebraic%20systems" title=" differential algebraic systems "> differential algebraic systems </a> </p> <a href="https://publications.waset.org/abstracts/23813/parallel-multisplitting-methods-for-daes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Almohamadi">Hamad Almohamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20Alharthi"> Nabeel Alharthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majed%20Alamoudi"> Majed Alamoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title="water splitting">water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=biphasic%20design" title=" biphasic design"> biphasic design</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/165992/coppernickel-sulfide-catalyst-electrodeposited-on-nickel-foam-for-efficient-water-splitting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> A Study on the Iterative Scheme for Stratified Shields Gamma Ray Buildup Factors Using Layer-Splitting Technique in Double-Layer Shields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sari%20F.%20Alkhatib">Sari F. Alkhatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Je%20Park"> Chang Je Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyuhong%20Roh"> Gyuhong Roh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The iterative scheme which is used to treat buildup factors for stratified shields is being investigated here using the layer-splitting technique. A simple suggested formalism for the scheme based on the Kalos’ formula is introduced, based on which the implementation of the testing technique is carried out. The second layer in a double-layer shield was split into two equivalent layers and the scheme (with the suggested formalism) was implemented on the new “three-layer” shield configuration. The results of such manipulation on water-lead and water-iron shields combinations are presented here for 1 MeV photons. It was found that splitting the second layer introduces some deviation on the overall buildup factor value. This expected deviation appeared to be higher in the case of low Z layer followed by high Z. However, the overall performance of the iterative scheme showed a great consistency and strong coherence even with the introduced changes. The introduced layer-splitting testing technique shows the capability to be implemented in test the iterative scheme with a wide range of formalisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildup%20factor" title="buildup factor">buildup factor</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20scheme" title=" iterative scheme"> iterative scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20shields" title=" stratified shields"> stratified shields</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-splitting%20tecnique" title=" layer-splitting tecnique"> layer-splitting tecnique</a> </p> <a href="https://publications.waset.org/abstracts/8371/a-study-on-the-iterative-scheme-for-stratified-shields-gamma-ray-buildup-factors-using-layer-splitting-technique-in-double-layer-shields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hidayatul%20Fitri">Hidayatul Fitri</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20%C5%A0a%C5%99ec"> Petr Šařec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20organic%20fertilizer" title="liquid organic fertilizer">liquid organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=digestate" title=" digestate"> digestate</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/157208/systems-of-liquid-organic-fertilizer-application-with-respect-to-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> Effects of Chemical and Biological Fertilizer on, Yield, Nitrogen Uptake and Nitrogen Harvest Index of Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Nasrollah%20Zadeh">Azin Nasrollah Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A factorial experiment was applied to evaluate the effect of chemical and biological fertilizer on yield, total nitrogen uptake and NHI of rice. Four biological treatments including:(M1:no fertilizer),( M2:10 ton/ha cow dung ),(M3:20 ton/ha cow dung) and (M4:5 ton/ha azolla compost) and four chemical fertilizer treatments including: (S1: no fertilizer),(S2:40 kg N /ha),(S3:60 kg N /ha) and ( S4:80 kg N /ha ) were compared. Results showed that highest rate of yield (3387 kg/ha) and total nitrogen uptake (81.4 kg/ha) were reached the highest value at M4. Among the chemical fertilizers the highest grain yield (3373 kg/ha) and total nitrogen uptake (87.7) belonged to highest nitrogen level (S4).Also biological and chemical fertilizers were no significant on Harvest index (NHI). Interaction effect of chemical × biological fertilizers didn't show significant difference between all parameters except of yield, as the most grain yield were obtained in M4S4. So it can be concluded that using of bioilogical fertilizers at appropriate rate and type, considering plant requirement, may improve grain yield, nitrogen uptake and use efficiency in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azolla" title="azolla">azolla</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20uptake" title=" nitrogen uptake"> nitrogen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/28466/effects-of-chemical-and-biological-fertilizer-on-yield-nitrogen-uptake-and-nitrogen-harvest-index-of-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Elkyal">Malika Elkyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20methods" title="parallel methods">parallel methods</a>, <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20mode" title=" asynchronous mode"> asynchronous mode</a>, <a href="https://publications.waset.org/abstracts/search?q=multisplitting" title=" multisplitting"> multisplitting</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20algebraic%20equations" title=" differential algebraic equations"> differential algebraic equations</a> </p> <a href="https://publications.waset.org/abstracts/20673/parallel-asynchronous-multi-splitting-methods-for-differential-algebraic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> Microbiological Analysis of Soil from Onu-Ebonyi Contaminated with Inorganic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Alo">M. N. Alo</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20C.%20C.%20Egbule"> U. C. C. Egbule</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Orji"> J. O. Orji</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Aneke"> C. J. Aneke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbiological analysis of soil from Onu-Ebonyi Izzi local government area of Ebonyi State, Nigeria contaminated with inorganic fertilizer was carried out with a view to determine the effect of the fertilizer on the microbial flora of the soil. soil samples were analyzed for microbial burden. the result showed that the following organisms were isolated with their frequency of their occurrence as follows:pseudomonas species (33.3%) and aspergillus species (54.4%) had the highest frequncy of occurence in the whole sample of batches, while streptococcus species had 6.0% and Geotrichum species (5.3%) had the least and other predominant microorganism isolated: bacillus species,staphylococcus species and vibrio species, Escherichia species, rhzizopus species, mucor species and fusaruim species. From the result, it could be concluded that the soil was contaminated and this could affect adversely the fertility of the soil . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20fertilizer" title=" inorganic fertilizer"> inorganic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=Onu-%20Ebonyi" title=" Onu- Ebonyi "> Onu- Ebonyi </a> </p> <a href="https://publications.waset.org/abstracts/15269/microbiological-analysis-of-soil-from-onu-ebonyi-contaminated-with-inorganic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> Increasing Participation of KUD (Rural Unit Cooperative) Through &#039;Kemal Propuri&#039; System to Independence Farmers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikrima%20Zaleda%20Zia">Ikrima Zaleda Zia</a>, <a href="https://publications.waset.org/abstracts/search?q=Devi%20Fitri%20Kumalasari"> Devi Fitri Kumalasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosita%20Khusna"> Rosita Khusna</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Hidayati"> Farah Hidayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Fajrul%20Haq"> Ilham Fajrul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Yusuf%20Efendi"> Amin Yusuf Efendi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizer is one of the production factors that are important to agriculture. Fertilizers contribution to the agricultural sector improvement is quite high. Fertilizers scarcity on the society are giving effect to agricultural sector, that is decreasing farmers production. Through a system called Kemal Propuri, society will be taught how to be independent, especially in terms of supplying the fertilizer and how to earn extra income besides of relying on the agriculture production. This research aims to determine implementation measures of Kemal Propuri in realizing farmers independence. This research was designed to use descriptive research with a qualitative approach. In this case, writers are trying to make an illustration of the increasing role of KUD (rural unit cooperative) through Kemal Propuri system (Independence System Through Individual Fertilizer Production) towards farmer independence. It can be concluded that Kemal Propuri system can contribute in order to achieve farmers independence. Independence fertilizer production will overcome farmers dependence of the subsidized fertilizer from the government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Propuri" title="Kemal Propuri">Kemal Propuri</a>, <a href="https://publications.waset.org/abstracts/search?q=KUD%20%28Rural%20Unit%20Cooperative%29" title=" KUD (Rural Unit Cooperative)"> KUD (Rural Unit Cooperative)</a>, <a href="https://publications.waset.org/abstracts/search?q=independence%20farmers" title=" independence farmers"> independence farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20production" title=" fertilizer production"> fertilizer production</a> </p> <a href="https://publications.waset.org/abstracts/54169/increasing-participation-of-kud-rural-unit-cooperative-through-kemal-propuri-system-to-independence-farmers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">549</span> Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20equivalent%20ration" title="land equivalent ration">land equivalent ration</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title=" biological fertilizer"> biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20cropping%20systems" title=" mixed cropping systems"> mixed cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37487/land-equivalent-ration-of-chickpea-barley-as-affected-by-mixed-cropping-system-and-vermicompost-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">548</span> The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oqba%20Basal">Oqba Basal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Szab%C3%B3"> András Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (<em>Glycine max</em> (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar &#39;<em>Bogl&aacute;r</em>&#39;. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha<sup>-1</sup> of N-fertilizer (35 N) and 105 kg ha<sup>-1</sup> of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with <em>Bradyrhizobium japonicum</em> inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N<sub>2</sub>-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculation" title=" inoculation"> inoculation</a>, <a href="https://publications.waset.org/abstracts/search?q=N-fertilizer" title=" N-fertilizer"> N-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20physiology" title=" soybean physiology"> soybean physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/92750/the-effects-of-drought-and-nitrogen-on-soybean-glycine-max-l-merrill-physiology-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Productivity and Nutrient Uptake of Cotton as Influenced by Application of Organic Nitrification Inhibitors and Fertilizer Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemlata%20Chitte">Hemlata Chitte</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Chorey"> Anita Chorey</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Bhale"> V. M. Bhale</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Tijare"> Bharti Tijare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted during kharif season of 2013-14 at Agronomy research farm, Dr. PDKV, Akola, to study the productivity and nitrogen use efficiency in cotton using organic nitrification inhibitors. The experiment was laid out in factorial randomized block design with three replications each having nine treatment combinations comprising three fertilizer levels viz., 75% RDF (F1), 100% RDF (F2) and 125% RDF (F3) and three nitrification inhibitors viz., neem cake @ 300 kgha-1 (N1), karanj cake @ 300 kgha-1 (N2) and control (N3). The result showed that various growth attributes viz., plant height, number of functional leaves plant-1, monopodial and sympodial branches and leaf area plant-1(dm2) were maximum in fertilizer level 125% RDF over fertilizer level 75% RDF and which at par with 100% RDF. In case of yield attributes and yield, number of bolls per plant, Seed cotton yield and stalk yield kg ha-1 significantly higher in fertilizer level 125% RDF over 100% RDF and 75% RDF. Uptake of NPK kg ha-1 after harvest of cotton crop was significantly higher in fertilizer level 125% RDF over 100% RDF and 75% RDF. Significantly highest nitrogen use efficiency was recorded with fertilizer level 75 % RDF as compared to 100 % RDF and lowest nitrogen use efficiency was recorded with 125% RDF level. Amongst nitrification inhibitors, karanj cake @ 300 kg ha-1 increases potentiality of growth characters, yield attributes, uptake of NPK and NUE as compared to control and at par with neem cake @ 300 kgha-1. Interaction effect between fertilizer level and nitrification inhibitors were found to be non significant at all growth attributes and uptake of nutrient but was significant in respect of seed cotton yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20level" title=" fertilizer level"> fertilizer level</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification%20inhibitor%20and%20nitrogen%20use%20efficiency" title=" nitrification inhibitor and nitrogen use efficiency"> nitrification inhibitor and nitrogen use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20uptake" title=" nutrient uptake "> nutrient uptake </a> </p> <a href="https://publications.waset.org/abstracts/19136/productivity-and-nutrient-uptake-of-cotton-as-influenced-by-application-of-organic-nitrification-inhibitors-and-fertilizer-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Operator Splitting Scheme for the Inverse Nagumo Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon-Yasotha%20Veerayah-Mcgregor">Sharon-Yasotha Veerayah-Mcgregor</a>, <a href="https://publications.waset.org/abstracts/search?q=Valipuram%20Manoranjan"> Valipuram Manoranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A backward or inverse problem is known to be an ill-posed problem due to its instability that easily emerges with any slight change within the conditions of the problem. Therefore, only a limited number of numerical approaches are available to solve a backward problem. This paper considers the Nagumo equation, an equation that describes impulse propagation in nerve axons, which also models population growth with the Allee effect. A creative operator splitting numerical scheme is constructed to solve the inverse Nagumo equation. Computational simulations are used to verify that this scheme is stable, accurate, and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%2Fbackward%20equation" title="inverse/backward equation">inverse/backward equation</a>, <a href="https://publications.waset.org/abstracts/search?q=operator-splitting" title=" operator-splitting"> operator-splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagumo%20equation" title=" Nagumo equation"> Nagumo equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-posed" title=" ill-posed"> ill-posed</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-difference" title=" finite-difference"> finite-difference</a> </p> <a href="https://publications.waset.org/abstracts/182287/operator-splitting-scheme-for-the-inverse-nagumo-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> Residual Affects of Humic Matter from Sub-Bituminous in Binding Aluminium at Oxisol to Increase Production of Upland Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herviyanti">Herviyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gusnidar"> Gusnidar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Harianti"> M. Harianti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research were: a) using low-rank coal (subbituminous) as main humate material sources because this material will not be anthracite, and cannot using to be an energy sources b) to examine residual effects of humic matter from subbituminous which was combined with P fertilizers to adsorp Al and Fe metal, improving soil fertility, and increasing P fertilizing efficiency and Oxisol productivity. Therefore, optimalization crop productivity of upland rice can be achieved. The experiment was designed using a 3 x 4 factorial with 3 replications in randomly groups design. The 1st factor was 3 ways incubating humate material with P-fertilizer, which are: I1 = Incubation of humate material 1 week, then incubation P-fertilizers 1 week; I2 = Incubation of humate materials and P fertilizers directly into the soil for 2 weeks; and I3 = humate material and P fertilizer mixed for 1 week, then incubation to the soil for 1 week. The 2nd factor was residual effects of humate material and P-fertilizer combination which are 4 doses H1 = 400 ppm (0.8 Mg/ha) + 100% R; H2 = 400 ppm + 75% R; H3 = 800 ppm (1.6 Mg/ha) + 100% R,; and H4 = 800 ppm + 75% R. The 2nd year research results showed that the best treatment was founded residue effect of 800 ppm humate material and 100% R P-fertilizer doses in I3 way incubation that is equal to 6.19 t ha-1 upland rice yield. However, this result is almost the same as residual effects of 800 ppm humate material + 75% R P-fertilizer doses and upland rice yield the 1st year. It was concluded that addition of humate material can given the efficiency of P-fertilizer using up to 25% until the 2nd season planted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humate%20materials" title="humate materials">humate materials</a>, <a href="https://publications.waset.org/abstracts/search?q=P-fertilizer" title=" P-fertilizer"> P-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=subbituminous" title=" subbituminous"> subbituminous</a>, <a href="https://publications.waset.org/abstracts/search?q=upland%20rice" title=" upland rice"> upland rice</a> </p> <a href="https://publications.waset.org/abstracts/23706/residual-affects-of-humic-matter-from-sub-bituminous-in-binding-aluminium-at-oxisol-to-increase-production-of-upland-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara">Heba M. Gobara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20M.%20El-Naggar"> Ahmed A. M. El-Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20S.%20El-Sayed"> Rasha S. El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20AlKahlawy"> Amal A. AlKahlawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Graphene" title=" Graphene"> Graphene</a> </p> <a href="https://publications.waset.org/abstracts/89204/titania-assisted-metal-organic-framework-matrix-for-elevated-hydrogen-generation-combined-with-the-production-of-graphene-sheets-through-water-splitting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> Nitrogen and Potassium Fertilizer Response on Growth and Yield of Hybrid Luffa –Naga F1 Variety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20T.%20N.%20K.%20Dissanayake">D. R. T. N. K. Dissanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20S.%20K.%20Herath"> H. M. S. K. Herath</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20S.%20G.%20Gunadasa"> H. K. S. G. Gunadasa</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Weerasinghe"> P. Weerasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luffa is a tropical and subtropical vegetable, belongs to family Cucurbiteceae. It is predominantly monoecious in sex expression and provides an ample scope for utilization of hybrid vigor. Hybrid varieties develop through open pollination, produce higher yields due to its hybrid vigor. Naga F1 hybrid variety consists number of desirable traits other than higher yield such as strong and vigorous plants, fruits with long deep ridges, attractive green color fruits ,better fruit weight, length and early maturity compared to the local Luffa cultivars. Unavailability of fertilizer recommendations for hybrid cucurbit vegetables leads to an excess fertilizer application causing a vital environmental issue that creates undesirable impacts on nature and the human health. Main Objective of this research is to determine effect of different nitrogen and potassium fertilizer rates on growth and yield of Naga F1 Variety. Other objectives are, to evaluate specific growth parameters and yield, to identify the optimum nitrogen and potassium fertilizer levels based on growth and yield of hybrid Luffa variety. As well as to formulate the general fertilizer recommendation for hybrid Luffa -Naga F1 variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid" title="hybrid">hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorous" title=" phosphorous"> phosphorous</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a> </p> <a href="https://publications.waset.org/abstracts/28263/nitrogen-and-potassium-fertilizer-response-on-growth-and-yield-of-hybrid-luffa-naga-f1-variety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> Increasing Yam Production as a Means of Solving the Problem of Hunger in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samual%20Ayeni">Samual Ayeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Akinbani"> A. S. Akinbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present when the price of petroleum is going down beyond bearable level, there is a need to diversify the economy towards arable crop production since Nigeria is an agrarian country. Yam plays prominent role in solving the problem of hunger in Nigeria. There is scarcity of information on the effect of fertilizers in increasing the yield of yam and maintaining soil properties in South Western Nigeria. This study was therefore set up to determine fertilizer effect on properties and yield of yam. The experiment was conducted at Adeyemi College of Education Teaching and Research Farm to compare the effect of organic, Organomineral and mineral fertilizers on yield of yam. Ten treatments were used 10t/ha Wood Ash, 10t/ha Cattle Dung, 10t/ha Poultry Manure, 10t/ha Manufactured Organic, 10t/ha Organomineral Fertilizer, 400kg/ha NPK, 400kg/ha SSP, 400kg/ha Urea and control with treatment. The treatments were laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Compared with control, Organomineral fertilizer significantly (P < 0.05) increased the soil moisture content, poultry manure, wood ash significantly decreased (< 0.05) the bulk density. Application of 10t/ha Organomineral fertilizer recorded the highest increase in the yield of yam among the treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organomineral%20fertilizer" title="organomineral fertilizer">organomineral fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=SSP" title=" SSP"> SSP</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a> </p> <a href="https://publications.waset.org/abstracts/51321/increasing-yam-production-as-a-means-of-solving-the-problem-of-hunger-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> Reducing The Frequency of Flooding Accompanied by Low pH Wastewater In 100/200 Unit of Phosphate Fertilizer 1 Plant by Implementing The 3R Program (Reduce, Reuse and Recycle)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Risang%20Ratna%20Sambawa">Pradipta Risang Ratna Sambawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Driya%20Herseta"> Driya Herseta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Fajri%20Nugraha"> Mahendra Fajri Nugraha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2020, PT Petrokimia Gresik implemented a program to increase the ROP (Run Of Pile) production rate at the Phosphate Fertilizer 1 plant, causing an increase in scrubbing water consumption in the 100/200 area unit. This increase in water consumption causes a higher discharge of wastewater, which can further cause local flooding, especially during the rainy season. The 100/200 area of the Phosphate Fertilizer 1 plant is close to the warehouse and is often a passing area for trucks transporting raw materials. This causes the pH in the wastewater to become acidic (the worst point is up to pH 1). The problem of flooding and exposure to acidic wastewater in the 100/200 area of Phosphate Fertilizer Plant 1 was then resolved by PT Petrokimia Gresik through wastewater optimization steps called the 3R program (Reduce, Reuse, and Recycle). The 3R (Reduce, reuse, and recycle) program consists of an air consumption reduction program by considering the liquid/gas ratio in scrubbing unit of 100/200 Phosphate Fertilizer 1 plant, creating a wastewater interconnection line so that wastewater from unit 100/200 can be used as scrubbing water in the Phonska 1, Phonska 2, Phonska 3 and unit 300 Phosphate Fertilizer 1 plant and increasing scrubbing effectiveness through scrubbing effectiveness simulations. Through a series of wastewater optimization programs, PT Petrokimia Gresik has succeeded in reducing NaOH consumption for neutralization up to 2,880 kg/day or equivalent in saving up to 314,359.76 dollars/year and reducing process water consumption up to 600 m3/day or equivalent in saving up to 63,739.62 dollars/year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title="fertilizer">fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20fertilizer" title=" phosphate fertilizer"> phosphate fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a> </p> <a href="https://publications.waset.org/abstracts/188842/reducing-the-frequency-of-flooding-accompanied-by-low-ph-wastewater-in-100200-unit-of-phosphate-fertilizer-1-plant-by-implementing-the-3r-program-reduce-reuse-and-recycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Yarahmadi">Anahita Yarahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Mahboobi"> Nazanin Mahboobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Sadat%20Rahmatpour%20Nori"> Nahid Sadat Rahmatpour Nori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Bijeh%20Keshavarzi"> Mohammad Hossein Bijeh Keshavarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Shakori"> Mohammad Javad Shakori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20annua%20L" title="Artemisia annua L">Artemisia annua L</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fertilizer" title=" bio-fertilizer"> bio-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/66492/influence-of-biological-and-chemical-fertilizers-on-quantitative-characteristics-of-sweet-wormwood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ya-Li%20Tsai">Ya-Li Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20fertilizer%20management" title="intelligent fertilizer management">intelligent fertilizer management</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20top%20and%20ear%20dressing%20fertilizer" title=" nitrogen top and ear dressing fertilizer"> nitrogen top and ear dressing fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20optimization" title=" yield optimization"> yield optimization</a> </p> <a href="https://publications.waset.org/abstracts/183405/optimizing-nitrogen-fertilizer-application-in-rice-cultivation-a-decision-model-for-top-and-ear-dressing-dosages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Effect of Salicylic Acid and Nitrogen Fertilizer on Wheat Growth and Yield </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ibrahim">Omar Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aly%20A.%20Gaafar"> Aly A. Gaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ratib"> K. A. Ratib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two field experiments in micro plots were carried out during the winter seasons of 2012/2013 and 2013/2014, Soil Salinity Laboratory, Alexandria, Egypt, to study the effect of three levels of salicylic acid (SA) as a growth regulator (0, 50, 100 ppm) and three rates of nitrogen fertilizer (75, 100, 125 kg N/feddan) on growth and yield of a spring wheat (Giza 168). The experimental design was a split plot with the main plots in randomized complete block design (RCBD) and four replicates. The results indicated that increasing nitrogen fertilizer rates resulted in insignificant effect on both plant height (cm) and grain weight/spike only. However, a significant effect was observed in all the other studied characters due to the increase in nitrogen fertilizer. On the other hand, increasing salicylic acid rates resulted in insignificant effect in all the studied characters except for chlorophyll a, chlorophyll b, number of grain/spike, and grain yield (gm/ plot). The highest effects on grain yield in wheat were obtained by the rate of 125 kg/feddan of nitrogen fertilizer and 100 ppm of salicylic acid. In conclusion, the data indicated that a high grain yield could be obtained by adding 100 kg/feddan of nitrogen fertilizer and spraying of 50 ppm of salicylic acid with no significant difference with the highest rates. Finally, the interaction had no significant effect on all the studied characters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20regulator" title="growth regulator">growth regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fertilizer" title=" nitrogen fertilizer"> nitrogen fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20wheat" title=" spring wheat"> spring wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a> </p> <a href="https://publications.waset.org/abstracts/92520/effect-of-salicylic-acid-and-nitrogen-fertilizer-on-wheat-growth-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=splitting%20N%20fertilizer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10