CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 379 results for author: <span class="mathjax">Hu, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hu%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hu, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hu%2C+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hu, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17895">arXiv:2411.17895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17895">pdf</a>, <a href="https://arxiv.org/format/2411.17895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exact spectral properties of Fermi polarons in one-dimensional lattices: Anomalous Fermi singularities and polaron quasiparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17895v1-abstract-short" style="display: inline;"> We calculate the exact spectral function of a single impurity repulsively interacting with a bath of fermions in one-dimensional lattices, by deriving the explicit expression of the form factor for both regular Bethe states and the irregular spin-flip state and $畏$-pairing state, based on the exactly solvable Lieb-Wu model. While at low impurity momentum $Q\sim0$ the spectral function is dominated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17895v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17895v1-abstract-full" style="display: none;"> We calculate the exact spectral function of a single impurity repulsively interacting with a bath of fermions in one-dimensional lattices, by deriving the explicit expression of the form factor for both regular Bethe states and the irregular spin-flip state and $畏$-pairing state, based on the exactly solvable Lieb-Wu model. While at low impurity momentum $Q\sim0$ the spectral function is dominated by two power-law Fermi singularities, at large momentum we observe that the two singularities develop into two-sided distributions and eventually become anomalous Fermi singularities at the boundary of the Brillouin zone (i.e., $Q=\pm蟺$), with the power-law tails extending towards low energy. Near the quarter filling of the Fermi bath, we also find two broad polaron peaks at large impurity momentum, collectively contributed by many excited many-body states with non-negligible form factors. Our exact results of those distinct features in one-dimensional Fermi polarons, which have no correspondences in two and three dimensions, could be readily probed in cold-atom laboratories by trapping highly imbalanced two-component fermionic atoms into one-dimensional optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17895v1-abstract-full').style.display = 'none'; document.getElementById('2411.17895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures; technical details will be separately presented in a long paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17185">arXiv:2411.17185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17185">pdf</a>, <a href="https://arxiv.org/format/2411.17185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quasiparticle interference in altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hao-Ran Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+X">Xiangang Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17185v1-abstract-short" style="display: inline;"> A novel collinear magnetic phase, termed ``altermagnetism,&#39;&#39; has recently been delimited, characterized by zero net magnetization and momentum-dependent collinear spin-splitting. To understand the intriguing physical effects of altermagnets and explore their potential applications, it is crucial to analyze both the geometric and spin configurations of altermagnetic Fermi surfaces. Here, we conduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17185v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17185v1-abstract-full" style="display: none;"> A novel collinear magnetic phase, termed ``altermagnetism,&#39;&#39; has recently been delimited, characterized by zero net magnetization and momentum-dependent collinear spin-splitting. To understand the intriguing physical effects of altermagnets and explore their potential applications, it is crucial to analyze both the geometric and spin configurations of altermagnetic Fermi surfaces. Here, we conduct a comprehensive study of the quasiparticle interference (QPI) effects induced by both nonmagnetic and magnetic impurities in metallic altermagnets, incorporating the influence of Zeeman splitting and spin-orbit coupling. By examining the QPI patterns for various spin polarizations of magnetic impurities and different spin-probe channels, we identify a series of distinctive signatures that can be used to characterize altermagnetic Fermi surfaces. These predicted signatures can be directly compared with experimental results obtained through spin-resolved scanning tunneling spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17185v1-abstract-full').style.display = 'none'; document.getElementById('2411.17185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13898">arXiv:2411.13898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of an Antiferromagnetic Topological Nodal-line Kondo Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+F">D. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y+F">Y. F. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H+Y">H. Y. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T+P">T. P. Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+H">Y. H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M+H">M. H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+J">J. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+H">Q. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F+Q">F. Q. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">B. Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">C. Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">A. Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+D">D. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+-">T. -L. Lee</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13898v1-abstract-short" style="display: inline;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we repo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13898v1-abstract-full" style="display: none;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we report on a unique topological Kondo lattice compound, CeCo2P2, where the Kondo effect - whose existence under the magnetic Co phase is protected by PT symmetry - coexists with antiferromagnetic order emerging from the flat bands associated with the Co atoms. Remarkably, this is the only known Kondo lattice compound where magnetic order occurs in non-heavy electrons, and puzzlingly, at a temperature significantly higher than that of the Kondo effect. Furthermore, at low temperatures, the emergence of the Kondo effect, in conjunction with a glide-mirror-z symmetry, results in a nodal line protected by bulk topology near the Fermi energy. These unusual properties, arising from the interplay between itinerant and correlated electrons from different constituent elements, lead to novel quantum phases beyond the celebrated topological Kondo insulators and Weyl Kondo semimetals. CeCo2P2 thus provides an ideal platform for investigating narrow bands, topology, magnetism, and the Kondo effect in strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'none'; document.getElementById('2411.13898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13647">arXiv:2411.13647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13647">pdf</a>, <a href="https://arxiv.org/format/2411.13647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> CeCo$_2$P$_2$: a unique Co-antiferromagnetic topological heavy-fermion system with $P\cdot\mathcal{T}$-protected Kondo effect and nodal-line excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Defa Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">Alexei M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13647v1-abstract-short" style="display: inline;"> Based on high-throughput screening and experimental data, we find that CeCo$_2$P$_2$ is unique in heavy-fermion materials: it has a Kondo effect at a high temperature which is nonetheless below a Co-antiferromagnetic ordering temperature. This begs the question: how is the Kondo singlet formed? All other magnetic Kondo materials do not first form magnetism on the atoms whose electrons are supposed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13647v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13647v1-abstract-full" style="display: none;"> Based on high-throughput screening and experimental data, we find that CeCo$_2$P$_2$ is unique in heavy-fermion materials: it has a Kondo effect at a high temperature which is nonetheless below a Co-antiferromagnetic ordering temperature. This begs the question: how is the Kondo singlet formed? All other magnetic Kondo materials do not first form magnetism on the atoms whose electrons are supposed to screen the local moments. We theoretically explain these observations and show the multifaceted uniqueness of CeCo$_2$P$_2$: a playground for Kondo, magnetism, flat band, and topological physics. At high temperatures, the itinerant Co $c$ electrons of the system form non-atomic bands with a narrow bandwidth, leading to a high antiferromagnetic transition temperature. We show that the quantum geometry of the bands promotes in-plane ferromagnetism, while the weak dispersion along the $z$ direction facilitates out-of-plane antiferromagnetism. At low temperatures, we uncover a novel phase that manifests the coexistence of Co-antiferromagnetism and the Kondo effect, linked to the $P\cdot \mathcal{T}$-protected Kramers&#39; doublets and the filling-enforced metallic nature of $c$ electrons in the antiferromagnetic phase. Subsequently, the emergence of the Kondo effect, in cooperation with glide-mirror-$z$ symmetry, creates nodal-line excitation near the Fermi energy. Our results emphasize the importance of lattice symmetry and quantum geometry, Kondo physics, and magnetism in the understanding of the correlation physics of this unique compound. We also test our theory on the structurally similar compound LaCo$_2$P$_2$ and show how we are able to understand its vastly different phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13647v1-abstract-full').style.display = 'none'; document.getElementById('2411.13647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10931">arXiv:2411.10931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10931">pdf</a>, <a href="https://arxiv.org/format/2411.10931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Competing phases in kagome magnet FeGe from functional renormalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+P+M">Pietro M. Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherer%2C+M+M">Michael M. Scherer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Classen%2C+L">Laura Classen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10931v1-abstract-short" style="display: inline;"> The discovery of a charge density wave in FeGe extends the discussion of the nature of charge order in kagome metals to a magnetic compound. Motivated by this observation, we combine density functional theory (DFT) and functional-renormalization-group calculations to study interaction-induced Fermi-surface instabilities of the magnetic state of FeGe. We argue that the leading intra-band contributi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10931v1-abstract-full" style="display: none;"> The discovery of a charge density wave in FeGe extends the discussion of the nature of charge order in kagome metals to a magnetic compound. Motivated by this observation, we combine density functional theory (DFT) and functional-renormalization-group calculations to study interaction-induced Fermi-surface instabilities of the magnetic state of FeGe. We argue that the leading intra-band contribution to electronic correlations are approximately 2D and come from Van Hove points at the projected $M$~points. By varying parameters around DFT values, we determine a phase diagram for the quasi-2D scenario as function of on-site and nearest-neighbor interactions. We discuss universal aspects in the electronic mechanisms for the resulting phases, as well as the role of SU(2) symmetry breaking. We find FeGe to be in a regime of strong competition between $p$-wave charge density wave, $f$-wave pairing, and $d$-wave spin Pomeranchuk instabilities. This interplay can be influenced in favor of superconducting pairing for slightly increased nearest-neighbor interaction, suggesting a potential to induce superconductivity in FeGe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10931v1-abstract-full').style.display = 'none'; document.getElementById('2411.10931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09741">arXiv:2411.09741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09741">pdf</a>, <a href="https://arxiv.org/format/2411.09741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> 2D Theoretically Twistable Material Database </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petralanda%2C+U">Urko Petralanda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skorupskii%2C+G">Grigorii Skorupskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qiaoling Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jiaze Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mustaf%2C+R+A">Rose Albu Mustaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6hn%2C+P">Peter H枚hn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haase%2C+V">Vicky Haase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kennes%2C+D+M">Dante M. Kennes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+L">Lede Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09741v1-abstract-short" style="display: inline;"> The study of twisted two-dimensional (2D) materials, where twisting layers create moir茅 superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09741v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09741v1-abstract-full" style="display: none;"> The study of twisted two-dimensional (2D) materials, where twisting layers create moir茅 superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define &#34;theoretically twistable materials&#34; as single- or multi-layer structures that allow for the construction of simple continuum models of their moir茅 structures. This excludes, for example, materials with a &#34;spaghetti&#34; of bands or those with numerous crossing points at the Fermi level, for which theoretical moir茅 modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moir茅 systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moir茅 heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moir茅 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09741v1-abstract-full').style.display = 'none'; document.getElementById('2411.09741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+81 pages, 5+187 figures, 4+104 tables. The Topological 2D Materials Database is available at https://topologicalquantumchemistry.com/topo2d/index.html . See also the accompanying paper &#34;Two-dimensional Topological Quantum Chemistry and Catalog of Topological Materials&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06843">arXiv:2411.06843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06843">pdf</a>, <a href="https://arxiv.org/ps/2411.06843">ps</a>, <a href="https://arxiv.org/format/2411.06843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Hidden self-duality in quasiperiodic network models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hai-Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiaoshui Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+A">Ai-Min Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zijin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06843v1-abstract-short" style="display: inline;"> Mobility edges (MEs), which separate the extended phases from the localized phases, are one of the most crucial concepts in Anderson localization. In one-dimensional quasiperiodic systems, only a few models with exact MEs can be constructed using the generalized self-dual theory, the Avila&#39;s global theory, or the renormalization groups method. Then, an intriguing question is that can we realize mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06843v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06843v1-abstract-full" style="display: none;"> Mobility edges (MEs), which separate the extended phases from the localized phases, are one of the most crucial concepts in Anderson localization. In one-dimensional quasiperiodic systems, only a few models with exact MEs can be constructed using the generalized self-dual theory, the Avila&#39;s global theory, or the renormalization groups method. Then, an intriguing question is that can we realize much more physical models with exact solvable MEs? Here we uncover the hidden self-duality in a class of quasiperiodic network models constituted by periodic sites and quasiperiodic sites. While the original models do not have self-duality, after integrating out the periodic sites, the effective Hamiltonian with energy dependent potentials will have this duality, yielding MEs. The mosaic models studied in the literature are the simplest quasiperiodic netowork models. For a long time the MEs in these models are believed to come from the absent of self-duality, and we show that they actually come from the hidden self-duality. Finally, we extend this idea to more network models and explicitly determine their exact MEs with the hidden duality. The predictions in these models can be realized using optical and acoustic waveguide arrays and electric circuits in experiments. The new models presented in this work can greatly advance our understanding of MEs in Anderson transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06843v1-abstract-full').style.display = 'none'; document.getElementById('2411.06843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18339">arXiv:2410.18339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18339">pdf</a>, <a href="https://arxiv.org/format/2410.18339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53434-8">10.1038/s41467-024-53434-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scale-tailored localization and its observation in non-Hermitian electrical circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Cui-Xian Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+L">Luhong Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinzhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+X">Xinhui Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yanjing Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18339v1-abstract-short" style="display: inline;"> Anderson localization and non-Hermitian skin effect are two paradigmatic wave localization phenomena, resulting from wave interference and the intrinsic non-Hermitian point gap, respectively. In this study, we unveil a novel localization phenomenon associated with long-range asymmetric coupling, termed scale-tailored localization, where the number of induced localized modes and their localization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18339v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18339v1-abstract-full" style="display: none;"> Anderson localization and non-Hermitian skin effect are two paradigmatic wave localization phenomena, resulting from wave interference and the intrinsic non-Hermitian point gap, respectively. In this study, we unveil a novel localization phenomenon associated with long-range asymmetric coupling, termed scale-tailored localization, where the number of induced localized modes and their localization lengths scale exclusively with the coupling range. We show that the long-range coupling fundamentally reshapes the energy spectra and eigenstates by creating multiple connected paths on the lattice. Furthermore, we present experimental observations of scale-tailored localization in non-Hermitian electrical circuits utilizing adjustable voltage followers and switches. The circuit admittance spectra possess separate point-shaped and loop-shaped components in the complex energy plane, corresponding respectively to skin modes and scale-tailored localized states. Our findings not only expand and deepen the understanding of peculiar effects induced by non-Hermiticity but also offer a feasible experimental platform for exploring and controlling wave localizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18339v1-abstract-full').style.display = 'none'; document.getElementById('2410.18339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+16 pages, 5+11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9120 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16559">arXiv:2410.16559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16559">pdf</a>, <a href="https://arxiv.org/ps/2410.16559">ps</a>, <a href="https://arxiv.org/format/2410.16559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Breakdown of the single-mode description of ultradilute quantum droplets in binary Bose mixtures: A perspective from a microscopic bosonic pairing theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+H">Han Pu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16559v1-abstract-short" style="display: inline;"> In his seminal proposal of quantum droplets in binary Bose mixtures {[}Phys. Rev. Lett. \textbf{115}, 155302 (2015){]}, Dmitry Petrov suggested that the density ratio $n_{2}/n_{1}$ of the two bosonic components are locked to an optimal value, which is given by the square root of the ratio of the two intra-species scattering lengths, i.e., $\sqrt{a_{11}/a_{22}}$. Due to such a density locking, quan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16559v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16559v1-abstract-full" style="display: none;"> In his seminal proposal of quantum droplets in binary Bose mixtures {[}Phys. Rev. Lett. \textbf{115}, 155302 (2015){]}, Dmitry Petrov suggested that the density ratio $n_{2}/n_{1}$ of the two bosonic components are locked to an optimal value, which is given by the square root of the ratio of the two intra-species scattering lengths, i.e., $\sqrt{a_{11}/a_{22}}$. Due to such a density locking, quantum droplets can be efficiently described by using an extended Gross--Pitaevskii equation within the single-mode approximation. Here, we find that this single-mode description necessarily breaks down in the deep quantum droplet regime, when the attractive inter-species scattering length $a_{12}$ significantly deviates away from the threshold of mean-field collapse (i.e., $-\sqrt{a_{11}a_{22}}$). By applying a bosonic pairing theory, we show that the density ratio is allowed to fluctuate in a sizable interval. Most importantly, the optimal density ratio would be very different from $\sqrt{a_{11}/a_{22}}$, in the case of unequal intra-species scattering lengths ($a_{11}\neq a_{22}$). Our finding might provide a plausible microscopic explanation of the puzzling low critical particle number of quantum droplets, as experimentally observed. Our predicted interval of the density ratio, as a function of the inter-species scattering length, could also be experimentally examined in cold-atom laboratories in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16559v1-abstract-full').style.display = 'none'; document.getElementById('2410.16559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19748">arXiv:2409.19748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19748">pdf</a>, <a href="https://arxiv.org/format/2409.19748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity-Driven Metallicity and Magnetic Skyrmions in van der Waals Cr2Ge2Te6/Hf2Ge2Te6 Multiferroic Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hongliang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenjun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaoping Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Changsheng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19748v2-abstract-short" style="display: inline;"> Two-dimensional (2D) multiferroic heterostructures present a promising platform for advanced spin devices by leveraging the coexisting ferromagnetic (FM) and ferroelectric (FE) orders. Through first-principles calculations and micromagnetic simulations, we reveal non-volatile control of metallicity and topological spin textures in the Cr2Ge2Te6/Hf2Ge2Te6(CGT/HGT) heterostructure. Notably, manipula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19748v2-abstract-full').style.display = 'inline'; document.getElementById('2409.19748v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19748v2-abstract-full" style="display: none;"> Two-dimensional (2D) multiferroic heterostructures present a promising platform for advanced spin devices by leveraging the coexisting ferromagnetic (FM) and ferroelectric (FE) orders. Through first-principles calculations and micromagnetic simulations, we reveal non-volatile control of metallicity and topological spin textures in the Cr2Ge2Te6/Hf2Ge2Te6(CGT/HGT) heterostructure. Notably, manipulating ferroelectric polarization in HGT significantly modulates the magnetic anisotropy energy (MAE) and Dzyaloshinskii-Moriya interaction (DMI) of CGT/HGT, reversing the easy magnetization axis from in-plane to out-of-plane. By analyzing the atomic-resolved SOC energy (螖Esoc), it is found that the cause of the change comes from the Fert-Levy mechanism. Additionally, this polarization control enables the creation and annihilation of bimerons and skyrmions, with interlayer sliding further altering magnetic ordering. Our findings offer valuable insights into magnetoelectric coupling and spin texture manipulation in 2D magnets, highlighting their potential for next-generation spintronic and memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19748v2-abstract-full').style.display = 'none'; document.getElementById('2409.19748v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13078">arXiv:2409.13078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13078">pdf</a>, <a href="https://arxiv.org/format/2409.13078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Catalogue of Phonon Instabilities in Symmetry Group 191 Kagome MT$_6$Z$_6$ Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">D. C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">N. Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13078v1-abstract-short" style="display: inline;"> Kagome materials manifest rich physical properties due to the emergence of abundant electronic phases. Here, we carry out a high-throughput first-principles study of the kagome 1:6:6 family MT$_6$Z$_6$ materials in space group 191, focusing on their phonon instability and electronic flat bands. Different MT$_6$Z$_6$ kagome candidates reveal a remarkable variety of kagome flat bands ranging from un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13078v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13078v1-abstract-full" style="display: none;"> Kagome materials manifest rich physical properties due to the emergence of abundant electronic phases. Here, we carry out a high-throughput first-principles study of the kagome 1:6:6 family MT$_6$Z$_6$ materials in space group 191, focusing on their phonon instability and electronic flat bands. Different MT$_6$Z$_6$ kagome candidates reveal a remarkable variety of kagome flat bands ranging from unfilled, partially filled, to fully filled. Notably, the Mn/Fe-166 compounds exhibit partially filled flat bands with a pronounced sharp peak in the density of states near the Fermi level, leading to magnetic orders that polarize the bands and stabilize the otherwise unstable phonon. When the flat bands are located away from the Fermi level, we find a large number of phonon instabilities, which can be classified into three types, based on the phonon dispersion and vibrational modes. Type-I instabilities involve the in-plane distortion of kagome nets, while type-II and type-III present out-of-plane distortion of trigonal M and Z atoms. We take MgNi$_6$Ge$_6$ and HfNi$_6$In$_6$ as examples to illustrate the possible CDW structures derived from the emergent type-I and type-II instabilities. The type-I instability in MgNi$_6$Ge$_6$ suggests a nematic phase transition, governed by the local twisting of kagome nets. The type-II instability in HfNi$_6$In$_6$ may result in a hexagonal-to-orthorhombic transition, offering insight into the formation of MT$_6$Z$_6$ in other space groups. Additionally, the predicted ScNb$_6$Sn$_6$ is analyzed as an example of the type-III instability. Our predictions suggest a vast kagome family with rich properties induced by the flat bands, possible CDW transitions, and their interplay with magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13078v1-abstract-full').style.display = 'none'; document.getElementById('2409.13078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, with 1000 pages of additional supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12537">arXiv:2409.12537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12537">pdf</a>, <a href="https://arxiv.org/format/2409.12537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanocavities for Molecular Optomechanics: their fundamental description and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Roelli%2C+P">Philippe Roelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huatian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verhagen%2C+E">Ewold Verhagen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reich%2C+S">Stephanie Reich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galland%2C+C">Christophe Galland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12537v2-abstract-short" style="display: inline;"> Vibrational Raman scattering -- a process where light exchanges energy with a molecular vibration through inelastic scattering -- is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12537v2-abstract-full').style.display = 'inline'; document.getElementById('2409.12537v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12537v2-abstract-full" style="display: none;"> Vibrational Raman scattering -- a process where light exchanges energy with a molecular vibration through inelastic scattering -- is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the coupled system realizes an optomechanical cavity, where coherent and parametrically amplified light-vibration interaction becomes a resource for vibrational state engineering and nanoscale nonlinear optics. The purpose of this Perspective is to clarify the connection between the languages and parameters used in the fields of molecular cavity optomechanics (McOM) vs. its conventional, `macroscopic&#39; counterpart, and to summarize the main results achieved so far in McOM and the most pressing experimental and theoretical challenges. We aim to make the theoretical framework of molecular cavity optomechanics practically usable for the SERS and nanoplasmonics community at large. While quality factors ($Q$&#39;s) and mode volumes ($V$&#39;s) essentially describe the performance of a nanocavity in enhancing light-matter interaction, we point to the light-cavity coupling efficiencies ($畏$&#39;s) and optomechanical cooperativities ($\mathcal{C}$&#39;s) as the key parameters for molecular optomechanics. As an illustration of the significance of these quantities, we investigate the feasibility of observing optomechanically induced transparency with a molecular vibration -- a measurement that would allow for a direct estimate of the optomechanical cooperativity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12537v2-abstract-full').style.display = 'none'; document.getElementById('2409.12537v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes an Appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04325">arXiv:2409.04325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04325">pdf</a>, <a href="https://arxiv.org/format/2409.04325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure induced quasi-long-range $\sqrt{3} \times \sqrt{3}$ charge density wave and competing orders in the kagome metal FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kar%2C+A">A. Kar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+C+-">C. -Y. Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">J. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">D. C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">C. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">S. Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=T%C3%B6rm%C3%A4%2C+P">P. T枚rm盲</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04325v1-abstract-short" style="display: inline;"> Electronic ordering is prevalent in correlated systems, which commonly exhibit competing interactions. Here, we use x-ray diffraction to show that the charge density wave transition temperature of FeGe increases with pressure and evolves towards a $\sqrt{3}\times\sqrt{3}$ periodic lattice modulation, $\mathbf{q}$$^*$=$\left(\frac{1}{3}\ \frac{1}{3}\ \frac{1}{2}\right)$. In the pressure interval be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04325v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04325v1-abstract-full" style="display: none;"> Electronic ordering is prevalent in correlated systems, which commonly exhibit competing interactions. Here, we use x-ray diffraction to show that the charge density wave transition temperature of FeGe increases with pressure and evolves towards a $\sqrt{3}\times\sqrt{3}$ periodic lattice modulation, $\mathbf{q}$$^*$=$\left(\frac{1}{3}\ \frac{1}{3}\ \frac{1}{2}\right)$. In the pressure interval between 4$&lt;$$p$$&lt;$12 GPa both orders coexist and the spatial extent of the $\sqrt{3}\times\sqrt{3}$ order at high pressure becomes nearly long-range, $\sim$30 unit cells, while the correlation length of the 2$\times$2 phase remains shorter-ranged. The $\sqrt{3}\times\sqrt{3}$ phase is the ground state above 15 GPa, consistent with harmonic DFT calculations that predict a dimerization induced $\sqrt{3}\times\sqrt{3}$ order without phonon softening. The pressure dependence of the integrated intensities of $\mathbf{q}$$_\mathrm{CDW}=\left(\frac{1}{2}\ 0\ \frac{1}{2}\right)$ and $\mathbf{q}$$^*$ indicates a competition between the 2$\times$2 and $\sqrt{3}\times\sqrt{3}$ and demonstrates that the ground state of FeGe is characterized by a rich landscape of metastable/fragile phases. We discuss possible scenarios based on an order-disorder transformation and the formation of Friedel oscillations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04325v1-abstract-full').style.display = 'none'; document.getElementById('2409.04325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15007">arXiv:2408.15007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15007">pdf</a>, <a href="https://arxiv.org/ps/2408.15007">ps</a>, <a href="https://arxiv.org/format/2408.15007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exact Polaron-Polaron interactions in a Quantum Hall Fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15007v1-abstract-short" style="display: inline;"> We present an exact solution for effective polaron-polaron interactions between heavy impurities, mediated by a sea of non-interacting light fermions in the quantum Hall regime with highly degenerate Landau levels. For weak attraction between impurities and fermions, where only the manifold of lowest Landau levels is relevant, we obtain an analytical expression of mediated polaron-polaorn interact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15007v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15007v1-abstract-full" style="display: none;"> We present an exact solution for effective polaron-polaron interactions between heavy impurities, mediated by a sea of non-interacting light fermions in the quantum Hall regime with highly degenerate Landau levels. For weak attraction between impurities and fermions, where only the manifold of lowest Landau levels is relevant, we obtain an analytical expression of mediated polaron-polaorn interactions. Remarkably, polaron interactions are exactly zero when fermions in lowest Landau levels outnumber heavy impurities. For strong attraction, different manifolds of higher Landau levels come into play and we derive a set of equations that can be used to numerically solve the mediated polaron interaction potential. We find that the potential vanishes when the distance R between impurities is larger than the magnetic length, but strongly diverges at short range following a Coulomb form -1/R. Our exact results of polaron-polaron interactions might be examined in cold-atom setups, where a system of Fermi polarons in the quantum Hall regime is realized with synthetic gauge field or under fast rotation. Our predictions could also be useful to understand the effective interaction between exciton-polarons in electron-doped semiconductors under strong magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15007v1-abstract-full').style.display = 'none'; document.getElementById('2408.15007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04452">arXiv:2408.04452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04452">pdf</a>, <a href="https://arxiv.org/format/2408.04452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Frustrated charge density wave and quasi-long-range bond-orientational order in the magnetic kagome FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kar%2C+A">A. Kar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuller%2C+C+A">C. A. Fuller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMonagle%2C+C">C. McMonagle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">C. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">S. Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+A">A. Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">J. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tallarida%2C+M">M. Tallarida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosak%2C+A">A. Bosak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04452v1-abstract-short" style="display: inline;"> The intrinsic frustrated nature of a kagome lattice is amenable to the realization of exotic phases of matter, such as quantum spin liquids or spin ices, and more recently the multiple-$\mathrm{\textbf{q}}$ charge density waves (CDW) in the kagome metals. Despite intense efforts to understand the mechanism driving the electronic modulations, its origin is still unknown and hindered by competing in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04452v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04452v1-abstract-full" style="display: none;"> The intrinsic frustrated nature of a kagome lattice is amenable to the realization of exotic phases of matter, such as quantum spin liquids or spin ices, and more recently the multiple-$\mathrm{\textbf{q}}$ charge density waves (CDW) in the kagome metals. Despite intense efforts to understand the mechanism driving the electronic modulations, its origin is still unknown and hindered by competing interactions and intertwined orders. Here, we identify a dimerization-driven 2D hexagonal charge-diffuse precursor in the antiferromagnetic kagome metal FeGe and demonstrate that the fraction of dimerized/undimerized states is the relevant order parameter of the multiple-$\mathrm{\textbf{q}}$ CDW of a continuous phase transition. The pretransitional charge fluctuations with propagation vector $\mathrm{\textbf{q}=\textbf{q}_M}$ at T$_{\mathrm{CDW}}$$&lt;$T$&lt;$T$^*$(125 K) are anisotropic, hence holding a quasi-long-range bond-orientational order. The broken translational symmetry emerges from the anisotropic diffuse precursor, akin to the Ising scenario of antiferromagnetic triangular lattices. The temperature and momentum dependence of the critical scattering show parallels to the stacked hexatic $\mathrm{B}$-phases reported in liquid crystals and transient states of CDWs and highlight the key role of the topological defect-mediated melting of the CDW in FeGe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04452v1-abstract-full').style.display = 'none'; document.getElementById('2408.04452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02553">arXiv:2407.02553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02553">pdf</a>, <a href="https://arxiv.org/format/2407.02553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Large-scale quantum reservoir learning with an analog quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kornja%C4%8Da%2C+M">Milan Kornja膷a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hong-Ye Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurtz%2C+J">Jonathan Wurtz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weinberg%2C+P">Phillip Weinberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamdan%2C+M">Majd Hamdan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanov%2C+A">Andrii Zhdanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cantu%2C+S+H">Sergio H. Cantu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hengyun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bravo%2C+R+A">Rodrigo Araiza Bravo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bagnall%2C+K">Kevin Bagnall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basham%2C+J+I">James I. Basham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campo%2C+J">Joseph Campo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choukri%2C+A">Adam Choukri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeAngelo%2C+R">Robert DeAngelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frederick%2C+P">Paige Frederick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haines%2C+D">David Haines</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammett%2C+J">Julian Hammett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+N">Ning Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huber%2C+F">Florian Huber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jepsen%2C+P+N">Paul Niklas Jepsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+N">Ningyuan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karolyshyn%2C+T">Thomas Karolyshyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+M">Minho Kwon</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02553v1-abstract-short" style="display: inline;"> Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02553v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02553v1-abstract-full" style="display: none;"> Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02553v1-abstract-full').style.display = 'none'; document.getElementById('2407.02553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 + 14 pages, 4 + 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01296">arXiv:2407.01296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01296">pdf</a>, <a href="https://arxiv.org/format/2407.01296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian skin effect in arbitrary dimensions: non-Bloch band theory and classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuncheng Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Z">Ze-Yu Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01296v1-abstract-short" style="display: inline;"> Non-Hermitian skin effect (NHSE) is a distinctive phenomenon in non-Hermitian systems, characterized by a significant accumulation of eigenstates at system boundaries. While well-understood in one dimension via non-Bloch band theory, unraveling the NHSE in higher dimensions faces formidable challenges due to the diversity of open boundary conditions or lattice geometries and inevitable numerical e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01296v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01296v1-abstract-full" style="display: none;"> Non-Hermitian skin effect (NHSE) is a distinctive phenomenon in non-Hermitian systems, characterized by a significant accumulation of eigenstates at system boundaries. While well-understood in one dimension via non-Bloch band theory, unraveling the NHSE in higher dimensions faces formidable challenges due to the diversity of open boundary conditions or lattice geometries and inevitable numerical errors. Key issues, including higher-dimensional non-Bloch band theory, geometric dependency, spectral convergence and stability, and a complete classification of NHSE, remain elusive. In this work, we address these challenges by presenting a geometry-adaptive non-Bloch band theory in arbitrary dimensions, through the lens of spectral potential. Our formulation accurately determines the energy spectra, density of states, and generalized Brillouin zone for a given geometry in the thermodynamic limit (TDL), revealing their geometric dependencies. Furthermore, we systematically classify the NHSE into critical and non-reciprocal types using net winding numbers. In the critical case, we identify novel scale-free skin modes residing on the boundary. In the nonreciprocal case, the skin modes manifest in various forms, including normal or anomalous corner modes, boundary modes or scale-free modes. We reveal the non-convergence and instability of the non-Bloch spectra in the presence of scale-free modes and attribute it to the non-exchangeability of the zero-perturbation limit and the TDL. The instability drives the energy spectra towards the Amoeba spectra in the critical case. Our findings provide a unified non-Bloch band theory governing the energy spectra, density of states, and generalized Brillouin zone in the TDL, offering a comprehensive understanding of NHSE in arbitrary dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01296v1-abstract-full').style.display = 'none'; document.getElementById('2407.01296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07750">arXiv:2406.07750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07750">pdf</a>, <a href="https://arxiv.org/format/2406.07750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Low-power threshold optical bistability enabled by hydrodynamic Kerr nonlinearity of free-carriers in heavily doped semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huatian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%81lvarez-P%C3%A9rez%2C+G">Gonzalo 脕lvarez-P茅rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otomalo%2C+T+O">Tadele Orbula Otomalo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cirac%C3%AC%2C+C">Cristian Cirac矛</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07750v1-abstract-short" style="display: inline;"> We demonstrate nanoscale optical bistability at an exceptionally low power threshold of 1 mW by leveraging Kerr-type hydrodynamic nonlinearities due to the heavily doped semiconductor&#39;s free carriers. This high nonlinearity is enabled by a strong coupling between metallic nanopatch surface plasmons and longitudinal bulk plasmons (LBP) that arise in heavily doped semiconductors due to the nonlocali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07750v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07750v1-abstract-full" style="display: none;"> We demonstrate nanoscale optical bistability at an exceptionally low power threshold of 1 mW by leveraging Kerr-type hydrodynamic nonlinearities due to the heavily doped semiconductor&#39;s free carriers. This high nonlinearity is enabled by a strong coupling between metallic nanopatch surface plasmons and longitudinal bulk plasmons (LBP) that arise in heavily doped semiconductors due to the nonlocality. Through the coupling, an efficient, near-unity conversion of far-field energy into LBP states could be achieved. These findings offer a viable approach to experimentally probe LBPs and lay the groundwork for developing efficient and ultrafast all-optical nonlinear devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07750v1-abstract-full').style.display = 'none'; document.getElementById('2406.07750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02494">arXiv:2406.02494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02494">pdf</a>, <a href="https://arxiv.org/format/2406.02494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.183403">10.1103/PhysRevLett.133.183403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Velocity Scanning Tomography for Room-Temperature Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiefei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+R">Ruosong Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xingqi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yunzhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jianhao Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huizhu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shi-Yao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+H">Han Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02494v1-abstract-short" style="display: inline;"> Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02494v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02494v1-abstract-full" style="display: none;"> Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we invent and validate a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02494v1-abstract-full').style.display = 'none'; document.getElementById('2406.02494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13880">arXiv:2405.13880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13880">pdf</a>, <a href="https://arxiv.org/format/2405.13880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Heavy Fermions as an Efficient Representation of Atomistic Strain and Relaxation in Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Herzog-Arbeitman%2C+J">Jonah Herzog-Arbeitman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vafek%2C+O">Oskar Vafek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jian Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13880v1-abstract-short" style="display: inline;"> Although the strongly interacting flat bands in twisted bilayer graphene (TBG) have been approached using the minimal Bistritzer-MacDonald (BM) Hamiltonian, there is mounting evidence that strain and lattice relaxation are essential in correctly determining the order of the correlated insulator groundstates. These effects can be incorporated in an enhanced continuum model by introducing additional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13880v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13880v1-abstract-full" style="display: none;"> Although the strongly interacting flat bands in twisted bilayer graphene (TBG) have been approached using the minimal Bistritzer-MacDonald (BM) Hamiltonian, there is mounting evidence that strain and lattice relaxation are essential in correctly determining the order of the correlated insulator groundstates. These effects can be incorporated in an enhanced continuum model by introducing additional terms computed from the relaxation profile. To develop an analytical and physical understanding of these effects, we include strain and relaxation in the topological heavy fermion (HF) model of TBG. We find that strain and relaxation are very well captured in first order perturbation theory by projection onto the fully symmetric HF Hilbert space, and remarkably do not alter the interacting terms in the periodic Anderson model. Their effects are fully incorporated in the single-particle HF Hamiltonian, and can be reproduced in a minimal model with only 4 symmetry-breaking terms. Our results demonstrate that the heavy fermion framework of TBG is an efficient and robust representation of the perturbations encountered in experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13880v1-abstract-full').style.display = 'none'; document.getElementById('2405.13880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17675">arXiv:2404.17675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17675">pdf</a>, <a href="https://arxiv.org/format/2404.17675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Ideal noncrystals: A possible new class of ordered matter without apparent broken symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xinyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Ding Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P">Peng Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">Ning Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+H">Hajime Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+H">Hua Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17675v2-abstract-short" style="display: inline;"> Order and disorder constitute two fundamental and opposite themes in condensed matter physics and materials science. Crystals are considered the epitome of order, characterised by long-range translational order. The discovery of quasicrystals, which exhibit rotational symmetries forbidden in crystals and lack periodicity, led to a paradigm shift in solid-state physics. Moving one step forward, it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17675v2-abstract-full').style.display = 'inline'; document.getElementById('2404.17675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17675v2-abstract-full" style="display: none;"> Order and disorder constitute two fundamental and opposite themes in condensed matter physics and materials science. Crystals are considered the epitome of order, characterised by long-range translational order. The discovery of quasicrystals, which exhibit rotational symmetries forbidden in crystals and lack periodicity, led to a paradigm shift in solid-state physics. Moving one step forward, it is intriguing to ask whether ordered matter can exist without apparent symmetry breaking. The same question arises considering how ordered amorphous (noncrystalline) solids can be structured. Here, we present the discovery of ideal noncrystals in two dimensions, which are disordered in the conventional sense, lacking Bragg peaks, but exhibit high orderliness based on the steric order, i.e., they are ideally packed. A path-integral-like scheme reveals the underlying long-range structural correlation. We find that these ideal noncrystals are characterised by phononic vibrational modes following the Debye law, fully affine elastic responses, and suppressed density fluctuations at longer wavelengths, reminiscent of hyperuniformity -- all characteristics typically associated with crystals. Therefore, ideal noncrystals represent a peculiar form of matter with a mixed nature -- noncrystalline yet possessing crystal-like properties. Notably, these states are found to be thermodynamically favourable, indicating them as a possible new class of ordered matter without apparent symmetry breaking. Our findings significantly broaden the conceptualization of ordered states of matter and may contribute to a deeper understanding of entropy-driven ordering, particularly in generic amorphous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17675v2-abstract-full').style.display = 'none'; document.getElementById('2404.17675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15924">arXiv:2404.15924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15924">pdf</a>, <a href="https://arxiv.org/format/2404.15924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Emergent Topological Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kirschbaum%2C+D+M">D. M. Kirschbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zocco%2C+D+A">D. A. Zocco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazza%2C+F">F. Mazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez%2C+J+L">J. Larrea Jim茅nez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strydom%2C+A+M">A. M. Strydom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D">D. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">X. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokofiev%2C+A">A. Prokofiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Q. Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paschen%2C+S">S. Paschen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15924v1-abstract-short" style="display: inline;"> A material&#39;s electronic topology, which is generally described via its Bloch states and the associated bandstructure, will be enriched by the presence of interactions. In metallic settings, the interactions are usually treated through the concept of quasiparticles. Using the genuinely quantum critical heavy fermion compound CeRu$_4$Sn$_6$, we investigate what happens if no well-defined quasipartic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15924v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15924v1-abstract-full" style="display: none;"> A material&#39;s electronic topology, which is generally described via its Bloch states and the associated bandstructure, will be enriched by the presence of interactions. In metallic settings, the interactions are usually treated through the concept of quasiparticles. Using the genuinely quantum critical heavy fermion compound CeRu$_4$Sn$_6$, we investigate what happens if no well-defined quasiparticles are present. Surprisingly, we discover a topological semimetal phase that emerges from the material&#39;s quantum critical state and exhibits a dome structure as a function of magnetic field and pressure. To understand these results, we study a Weyl-Kondo semimetal model at a Kondo destruction quantum critical point. Indeed, it exhibits features in the spectral function that can define topological crossings beyond the quasiparticle picture. We expect our work to stimulate the search for other emergent topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15924v1-abstract-full').style.display = 'none'; document.getElementById('2404.15924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07253">arXiv:2404.07253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07253">pdf</a>, <a href="https://arxiv.org/format/2404.07253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Heavy Fermion Principle For Flat (Narrow) Bands With Concentrated Quantum Geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Herzog-Arbeitman%2C+J">Jonah Herzog-Arbeitman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chaoxing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vafek%2C+O">Oskar Vafek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coleman%2C+P">Piers Coleman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A">Alexei Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhi-da Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07253v2-abstract-short" style="display: inline;"> We propose a general principle for the low-energy theory of narrow bands with concentrated Berry curvature and Fubini-Study metric in the form of a map to Anderson-&#34;+&#34; models composed of heavy fermions hybridizing and interacting with semi-metallic modes. This map resolves the obstruction preventing topological bands from being realized in a local Hamiltonian acting on the low-energy degrees of fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07253v2-abstract-full').style.display = 'inline'; document.getElementById('2404.07253v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07253v2-abstract-full" style="display: none;"> We propose a general principle for the low-energy theory of narrow bands with concentrated Berry curvature and Fubini-Study metric in the form of a map to Anderson-&#34;+&#34; models composed of heavy fermions hybridizing and interacting with semi-metallic modes. This map resolves the obstruction preventing topological bands from being realized in a local Hamiltonian acting on the low-energy degrees of freedom. The concentrated quantum geometry is reproduced through band inversion with a dispersive semi-metal, leaving a nearly flat, trivial band which becomes the heavy fermion. This representation is natural when the narrow band is not energetically isolated on the scale of the interaction and an enlarged Hilbert space is inescapable, but also provides analytical insight into the projected-interaction limit. First exemplified in twisted bilayer graphene (TBG), we extend it to (1) the twisted checkerboard, which we find has a chiral symmetric stable anomaly that forbids a lattice realization at all energies, and (2) the Lieb lattice with gapless flat bands, where we show the heavy fermions can be obtained by minimizing a Euclidean instanton action to saturate its BPS bound. The heavy fermion approach is widely applicable and physically transparent: heavy electrons carry the strong correlations and dispersive electrons carry the topology. This simple picture unifies the dichotomous phenomena observed in TBG and points to connections between moir茅 and stoichiometric materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07253v2-abstract-full').style.display = 'none'; document.getElementById('2404.07253v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15148">arXiv:2403.15148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jlumin.2022.119445">10.1016/j.jlumin.2022.119445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Luminescence properties and phase transformation of broadband NIR emitting A2(WO4)3:Cr3+ (A=Al3+, Sc3+) phosphors toward NIR spectroscopy applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+G">Guotao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Sha Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+F">Faling Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huanhuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xianju Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suchocki%2C+A">Andrzej Suchocki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15148v1-abstract-short" style="display: inline;"> The synthesis, structural, and luminescence properties have been carried out for Cr3+-activated Al2(WO4)3 (AWO) and Sc2(WO4)3 (SWO) phosphors for application in pc-NIR LED. Upon blue excitation, these compounds are capable of exhibiting broadband NIR emission stems primarily from 4T2--&gt;4A2 transition in the range of 670-1200 nm (maxima ~808 nm, FWHM ~140 nm) for AWO:Cr and of 700-1300 nm (maxima ~&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15148v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15148v1-abstract-full" style="display: none;"> The synthesis, structural, and luminescence properties have been carried out for Cr3+-activated Al2(WO4)3 (AWO) and Sc2(WO4)3 (SWO) phosphors for application in pc-NIR LED. Upon blue excitation, these compounds are capable of exhibiting broadband NIR emission stems primarily from 4T2--&gt;4A2 transition in the range of 670-1200 nm (maxima ~808 nm, FWHM ~140 nm) for AWO:Cr and of 700-1300 nm (maxima ~870 nm, FWHM ~164 nm) for SWO:Cr. The significant shift of NIR emission is attributed to the substitution of AlO6 with larger ScO6 octahedrons. To gain insight into the luminescence the crystal field strength, Racah parameters, nephelauxetic effect, and electron-phonon coupling have been analyzed based on spectroscopic results. The electron-phonon coupling parameter S for SWO:Cr was determined to be 11.5, twice as large as that for AWO:Cr, which is in accordance with its strong thermal quenching. The abrupt changes occurring at 275 K in temperature-dependent luminescence spectra and decay lifetime of AWO:Cr is associated with temperature-driven phase transformation from low-temperature monoclinic to high-temperature orthorhombic phase. Pressure induced amorphization of AWO:Cr at pressures higher than 25 kbar was confirmed by employing high pressure evolution of Raman spectra. A high-power NIR pc-LED, fabricated by coating AWO:0.04Cr on a commercial 470 nm LED chip, shows good performance with an output power of 17.1 mW driven by a current of 320 mA, revealing potential application of studied materials for NIR light source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15148v1-abstract-full').style.display = 'none'; document.getElementById('2403.15148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09064">arXiv:2403.09064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09064">pdf</a>, <a href="https://arxiv.org/format/2403.09064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exact theory of the finite-temperature spectral function of Fermi polarons with multiple particle-hole excitations: Diagrammatic theory versus Chevy ansatz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09064v1-abstract-short" style="display: inline;"> By using both diagrammatic theory and Chevy ansatz approach, we derive an exact set of equations, which determines the spectral function of Fermi polarons with multiple particle-hole excitations at nonzero temperature. In the diagrammatic theory, we find out the complete series of Feynman diagrams for the multi-particle vertex functions, when the unregularized contact interaction strength becomes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09064v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09064v1-abstract-full" style="display: none;"> By using both diagrammatic theory and Chevy ansatz approach, we derive an exact set of equations, which determines the spectral function of Fermi polarons with multiple particle-hole excitations at nonzero temperature. In the diagrammatic theory, we find out the complete series of Feynman diagrams for the multi-particle vertex functions, when the unregularized contact interaction strength becomes infinitesimal, a typical situation occurring in two- or three- dimensional free space. The latter Chevy ansatz approach is more widely applicable, allowing a nonzero interaction strength. We clarify the equivalence of the two approaches for an infinitesimal interaction strength and show that the variational coefficients in the Chevy ansatz are precisely the on-shell multi-particle vertex functions divided by an excitation energy. Truncated to a particular order of particle-hole excitations, our exact set of equations can be used to numerically calculate the finite-temperature polaron spectral function, once the numerical singularities in the equations are appropriately treated. As a concrete example, we calculate the finite-temperature spectral function of Fermi polarons in one-dimensional lattices, taking into account all the two-particle-hole excitations. We show that the inclusion of two-particle-hole excitations quantitatively improve the predictions on the polaron spectral function. Our results provide a useful way to solve the challenge problem of accurately predicting the finite-temperature spectral function of Fermi polarons in three-dimensional free space. In addition, our clarification of the complete set of Feynman diagrams for the multi-particle polaron vertex functions may inspire the development of more accurate diagrammatic theories of population-imbalanced strongly interacting Fermi gases, beyond the conventional many-body $T$-matrix approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09064v1-abstract-full').style.display = 'none'; document.getElementById('2403.09064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures; for a brief summary of this work, see arXiv:2402.11805</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18552">arXiv:2402.18552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18552">pdf</a>, <a href="https://arxiv.org/format/2402.18552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Amplified entanglement witnessed in a quantum critical metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahankali%2C+M">Mounica Mahankali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paschen%2C+S">Silke Paschen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18552v4-abstract-short" style="display: inline;"> Strong correlations in matter promote a landscape of ground states and associated quantum critical points. For metallic systems, there is increasing recognition that the quantum criticality goes beyond the standard Landau framework and, thus, novel means are needed to characterize the quantum critical fluid. Here we do so by studying the entanglement properties near a quantum critical point of a s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18552v4-abstract-full').style.display = 'inline'; document.getElementById('2402.18552v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18552v4-abstract-full" style="display: none;"> Strong correlations in matter promote a landscape of ground states and associated quantum critical points. For metallic systems, there is increasing recognition that the quantum criticality goes beyond the standard Landau framework and, thus, novel means are needed to characterize the quantum critical fluid. Here we do so by studying the entanglement properties near a quantum critical point of a strongly correlated metal. We calculate the quantum Fisher information of an Anderson/Kondo lattice model across its Kondo destruction quantum critical point. The quantum Fisher information of the spin degree of freedom peaks at the quantum critical point and indicates a strongly entangled ground state. Our results are supported by the quantum Fisher information extracted from inelastic neutron scattering measurements in quantum critical heavy fermion metals. Our work opens a new avenue to advance the understanding of metallic quantum criticality in a broad range of strongly correlated systems, and points to a new regime of quantum matter to realize amplified entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18552v4-abstract-full').style.display = 'none'; document.getElementById('2402.18552v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17911">arXiv:2402.17911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17911">pdf</a>, <a href="https://arxiv.org/format/2402.17911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hong-Ye Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+A">Andi Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majumder%2C+S">Swarnadeep Majumder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yipei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D+S">Derek S. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minev%2C+Z">Zlatko Minev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yelin%2C+S+F">Susanne F. Yelin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seif%2C+A">Alireza Seif</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17911v1-abstract-short" style="display: inline;"> Extracting information efficiently from quantum systems is a major component of quantum information processing tasks. Randomized measurements, or classical shadows, enable predicting many properties of arbitrary quantum states using few measurements. While random single qubit measurements are experimentally friendly and suitable for learning low-weight Pauli observables, they perform poorly for no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17911v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17911v1-abstract-full" style="display: none;"> Extracting information efficiently from quantum systems is a major component of quantum information processing tasks. Randomized measurements, or classical shadows, enable predicting many properties of arbitrary quantum states using few measurements. While random single qubit measurements are experimentally friendly and suitable for learning low-weight Pauli observables, they perform poorly for nonlocal observables. Prepending a shallow random quantum circuit before measurements maintains this experimental friendliness, but also has favorable sample complexities for observables beyond low-weight Paulis, including high-weight Paulis and global low-rank properties such as fidelity. However, in realistic scenarios, quantum noise accumulated with each additional layer of the shallow circuit biases the results. To address these challenges, we propose the robust shallow shadows protocol. Our protocol uses Bayesian inference to learn the experimentally relevant noise model and mitigate it in postprocessing. This mitigation introduces a bias-variance trade-off: correcting for noise-induced bias comes at the cost of a larger estimator variance. Despite this increased variance, as we demonstrate on a superconducting quantum processor, our protocol correctly recovers state properties such as expectation values, fidelity, and entanglement entropy, while maintaining a lower sample complexity compared to the random single qubit measurement scheme. We also theoretically analyze the effects of noise on sample complexity and show how the optimal choice of the shallow shadow depth varies with noise strength. This combined theoretical and experimental analysis positions the robust shallow shadow protocol as a scalable, robust, and sample-efficient protocol for characterizing quantum states on current quantum computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17911v1-abstract-full').style.display = 'none'; document.getElementById('2402.17911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15443">arXiv:2402.15443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15443">pdf</a>, <a href="https://arxiv.org/format/2402.15443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Origin of optical nonlinearity in plasmonic semiconductor nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossetti%2C+A">Andrea Rossetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huatian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venanzi%2C+T">Tommaso Venanzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bousseksou%2C+A">Adel Bousseksou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Luca%2C+F">Federico De Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deckert%2C+T">Thomas Deckert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giliberti%2C+V">Valeria Giliberti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pea%2C+M">Marialilia Pea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sagnes%2C+I">Isabelle Sagnes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaudoin%2C+G">Gregoire Beaudoin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biagioni%2C+P">Paolo Biagioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ba%C3%B9%2C+E">Enrico Ba霉</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tittl%2C+A">Andreas Tittl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brida%2C+D">Daniele Brida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colombelli%2C+R">Raffaele Colombelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortolani%2C+M">Michele Ortolani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cirac%C3%AC%2C+C">Cristian Cirac矛</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15443v1-abstract-short" style="display: inline;"> The development of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which requires that the interacting waves propagate in transparent volumes for distances much longer than their wavelength. Here we present experimental evidence that optical nonlinearities in doped semiconductors are due to free-elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15443v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15443v1-abstract-full" style="display: none;"> The development of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which requires that the interacting waves propagate in transparent volumes for distances much longer than their wavelength. Here we present experimental evidence that optical nonlinearities in doped semiconductors are due to free-electron and their efficiency could exceed by several orders of magnitude that of conventional dielectric nonlinearities. Our experimental findings are supported by comprehensive computational results based on the hydrodynamic modeling, which naturally includes nonlocal effects, of the free-electron dynamics in heavily doped semiconductors. By studying third-harmonic generation from plasmonic nanoantenna arrays made out of heavily n-doped InGaAs with increasing levels of free-carrier density, we discriminate between hydrodynamic and dielectric nonlinearities. As a result, the value of maximum nonlinear efficiency as well as its spectral location can now be controlled by tuning the doping level. Having employed the common material platform InGaAs/InP that supports integrated waveguides, our findings pave the way for future exploitation of plasmonic nonlinearities in all-semiconductor photonic integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15443v1-abstract-full').style.display = 'none'; document.getElementById('2402.15443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14057">arXiv:2402.14057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14057">pdf</a>, <a href="https://arxiv.org/format/2402.14057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The Thermoelectric Effect and Its Natural Heavy Fermion Explanation in Twisted Bilayer and Trilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merino%2C+R+L">Rafael Luque Merino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14057v1-abstract-short" style="display: inline;"> We study the interacting transport properties of twisted bilayer graphene (TBG) using the topological heavy-fermion (THF) model. In the THF model, TBG comprises localized, correlated $f$-electrons and itinerant, dispersive $c$-electrons. We focus on the Seebeck coefficient, which quantifies the voltage difference arising from a temperature gradient. We find that the TBG&#39;s Seebeck coefficient shows&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14057v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14057v1-abstract-full" style="display: none;"> We study the interacting transport properties of twisted bilayer graphene (TBG) using the topological heavy-fermion (THF) model. In the THF model, TBG comprises localized, correlated $f$-electrons and itinerant, dispersive $c$-electrons. We focus on the Seebeck coefficient, which quantifies the voltage difference arising from a temperature gradient. We find that the TBG&#39;s Seebeck coefficient shows unconventional (strongly-interacting) traits: negative values with sawtooth oscillations at positive fillings, contrasting typical band-theory expectations. This behavior is naturally attributed to the presence of heavy (correlated, short-lived $f$-electrons) and light (dispersive, long-lived $c$-electrons) electronic bands. Their longer lifetime and stronger dispersion lead to a dominant transport contribution from the $c$-electrons. At positive integer fillings, the correlated TBG insulators feature $c$- ($f$-)electron bands on the electron (hole) doping side, leading to an overall negative Seebeck coefficient. Additionally, sawtooth oscillations occur around each integer filling due to gap openings. Our results highlight the essential importance of electron correlations in understanding the transport properties of TBG and, in particular, of the lifetime asymmetry between the two fermionic species (naturally captured by the THF model). Our findings are corroborated by new experiments in both twisted bilayer and trilayer graphene, and show the natural presence of strongly-correlated heavy and light carriers in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14057v1-abstract-full').style.display = 'none'; document.getElementById('2402.14057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+106 pages, 3+36 figures, 6 tables. See also the accompanying experimental papers arXiv:2402.11749 and arXiv:2402.12296. The accompanying Ref. 252 will be posted soon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12610">arXiv:2402.12610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12610">pdf</a>, <a href="https://arxiv.org/format/2402.12610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.146603">10.1103/PhysRevLett.133.146603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of Topological Phase Transition of Kitaev Quantum Spin Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huanzhi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%BCger%2C+F">Frank Kr眉ger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12610v2-abstract-short" style="display: inline;"> We investigate the nature of the topological quantum phase transition between the gapless and gapped Kitaev quantum spin liquid phases away from the exactly solvable point. The transition is driven by anisotropy of the Kitaev couplings. At the critical point the two Dirac points of the gapless Majorana modes merge, resulting in the formation of a semi-Dirac point with quadratic and linear band tou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12610v2-abstract-full').style.display = 'inline'; document.getElementById('2402.12610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12610v2-abstract-full" style="display: none;"> We investigate the nature of the topological quantum phase transition between the gapless and gapped Kitaev quantum spin liquid phases away from the exactly solvable point. The transition is driven by anisotropy of the Kitaev couplings. At the critical point the two Dirac points of the gapless Majorana modes merge, resulting in the formation of a semi-Dirac point with quadratic and linear band touching directions. We derive an effective Gross-Neveu-Yukawa type field theory that describes the topological phase transition in the presence of additional magnetic interactions. We obtain the infrared scaling form of the propagator of the dynamical Ising order parameter field and perform a renormalization-group analysis. The universality of the transition is found to be different to that of symmetry-breaking phase transitions of semi-Dirac electrons. However, as in the electronic case, the Majorana fermions acquire an anomalous dimension, indicative of the breakdown of the fractionalized quasiparticle description. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12610v2-abstract-full').style.display = 'none'; document.getElementById('2402.12610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 146603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12296">arXiv:2402.12296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12296">pdf</a>, <a href="https://arxiv.org/format/2402.12296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Cryo-Near-Field Photovoltage Microscopy of Heavy-Fermion Twisted Symmetric Trilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Batlle-Porro%2C+S">Sergi Batlle-Porro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calugaru%2C+D">Dumitru Calugaru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+R+K">Roshan Krishna Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesp%2C+N+C+H">Niels C. H. Hesp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koppens%2C+F+H+L">Frank H. L. Koppens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12296v2-abstract-short" style="display: inline;"> Ever since the initial experimental observation of correlated insulators and superconductivity in the flat Dirac bands of magic angle twisted bilayer graphene, a search for the microscopic description that explains its strong electronic interactions has begun. While the seemingly disagreeing electronic transport and scanning tunneling microscopy experiments suggest a dichotomy between local and ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12296v2-abstract-full').style.display = 'inline'; document.getElementById('2402.12296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12296v2-abstract-full" style="display: none;"> Ever since the initial experimental observation of correlated insulators and superconductivity in the flat Dirac bands of magic angle twisted bilayer graphene, a search for the microscopic description that explains its strong electronic interactions has begun. While the seemingly disagreeing electronic transport and scanning tunneling microscopy experiments suggest a dichotomy between local and extended electronic orbitals, definitive experimental evidence merging the two patterns together has been much sought after. Here, we report on the local photothermoelectric measurements in the flat electronic bands of twisted symmetric trilayer graphene (TSTG). We use a cryogenic scanning near-field optical microscope with an oscillating atomic force microscopy (AFM) tip irradiated by the infrared photons to create a nanoscopic hot spot in the planar samples, which generates a photocurrent that we probe globally. We observe a breakdown of the non-interacting Mott formalism at low temperatures (10K), signaling the importance of the electronic interactions. Our measurements reveal an overall negative offset of the Seebeck coefficient and significant peaks of the local photovoltage values at all positive integer fillings of the TSTG&#39;s moir茅 superlattice, further indicating a substantial deviation from the classical two-band semiconductor Seebeck response. We explain these observations using the interacting topological heavy-fermion model. In addition, our data reveal a spatial variation of the relative interaction strength dependent on the measured local twist angle (1.2掳 - 1.6掳). Our findings provide experimental evidence of heavy fermion behaviour in the topological flat bands of moir茅 graphene and epitomize an avenue to apply local thermoelectric measurements to other strongly correlated materials in the disorder-free limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12296v2-abstract-full').style.display = 'none'; document.getElementById('2402.12296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11805">arXiv:2402.11805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11805">pdf</a>, <a href="https://arxiv.org/format/2402.11805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.083403">10.1103/PhysRevLett.133.083403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of the spectral function of Fermi polarons at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11805v3-abstract-short" style="display: inline;"> We develop a general theory of Fermi polarons at nonzero temperature, including particle-hole excitations of the Fermi sea shake-up to arbitrarily high orders. The exact set of equations of the spectral function is derived by using both Chevy ansatz and diagrammatic approach, and their equivalence is clarified to hold in free space only, with an unregularized infinitesimal interaction strength. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11805v3-abstract-full').style.display = 'inline'; document.getElementById('2402.11805v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11805v3-abstract-full" style="display: none;"> We develop a general theory of Fermi polarons at nonzero temperature, including particle-hole excitations of the Fermi sea shake-up to arbitrarily high orders. The exact set of equations of the spectral function is derived by using both Chevy ansatz and diagrammatic approach, and their equivalence is clarified to hold in free space only, with an unregularized infinitesimal interaction strength. The correction to the polaron spectral function arising from two-particle-hole excitations is explicitly examined, for an exemplary case of Fermi polarons in one-dimensional optical lattices. We find quantitative improvements at low temperatures with the inclusion of two-particle-hole excitations, in both polaron energies and decay rates. Our exact theory of Fermi polarons with arbitrary orders of particle-hole excitations might be used to better understand the intriguing polaron dynamical responses in two or three dimensions, whether in free space or within lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11805v3-abstract-full').style.display = 'none'; document.getElementById('2402.11805v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures; for the long version of the work, see arXiv:2403.09064</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 133, 083403 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11749">arXiv:2402.11749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11749">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence of heavy fermion physics in the thermoelectric transport of magic angle twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Merino%2C+R+L">Rafael Luque Merino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calugaru%2C+D">Dumitru Calugaru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diez-Merida%2C+J">Jaime Diez-Merida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diez-Carlon%2C+A">Andres Diez-Carlon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seifert%2C+P">Paul Seifert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11749v1-abstract-short" style="display: inline;"> It has been recently postulated, that the strongly correlated flat bands of magicangle twisted bilayer graphene (MATBG) can host coexisting heavy and light carriers. While transport and spectroscopic measurements have shown hints of this behavior, a more direct experimental proof is still lacking. Here, we explore the thermoelectric response of MATBG through the photo-thermoelectric (PTE) effect i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11749v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11749v1-abstract-full" style="display: none;"> It has been recently postulated, that the strongly correlated flat bands of magicangle twisted bilayer graphene (MATBG) can host coexisting heavy and light carriers. While transport and spectroscopic measurements have shown hints of this behavior, a more direct experimental proof is still lacking. Here, we explore the thermoelectric response of MATBG through the photo-thermoelectric (PTE) effect in gate-defined MATBG pn-junctions. At low temperatures, we observe sign-preserving, fillingdependent oscillations of the Seebeck coefficient at non-zero integer fillings of the moir茅 lattice, which suggest the preponderance of one carrier type despite tuning the Fermi level from hole to electron doping of the correlated insulator. Furthermore, at higher temperatures, the thermoelectric response provides distinct evidence of the strong electron correlations in the unordered, normal state. We show that our observations are naturally accounted for by the interplay of light and long-lived and heavy and short-lived electron bands near the Fermi level at non-zero integer fillings. Our observations firmly establish the electron and hole asymmetry of the correlated gaps in MATBG, and shows excellent qualitative agreement with the recently developed topological heavy fermion model (THF). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11749v1-abstract-full').style.display = 'none'; document.getElementById('2402.11749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15614">arXiv:2401.15614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15614">pdf</a>, <a href="https://arxiv.org/format/2401.15614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Liouvillian skin effect in a one-dimensional open many-body quantum system with generalized boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+L">Liang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xuanpu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+M">Ming-Jie Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15614v2-abstract-short" style="display: inline;"> Non-Hermitian skin effect (NHSE), namely that eigenstates of non-Hermitian Hamiltonains are localized at one boundary in the open boundary condition, attracts great interest recently.In this paper, we investigate the skin effect in one-dimensional dissipative quantum many-body systems, which we call the Liouvillian skin effect (LSE). We rigorously identify the existence of LSE for generalized boun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15614v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15614v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15614v2-abstract-full" style="display: none;"> Non-Hermitian skin effect (NHSE), namely that eigenstates of non-Hermitian Hamiltonains are localized at one boundary in the open boundary condition, attracts great interest recently.In this paper, we investigate the skin effect in one-dimensional dissipative quantum many-body systems, which we call the Liouvillian skin effect (LSE). We rigorously identify the existence of LSE for generalized boundary conditions by solving the Liouvillian superoperator of an exactly solvable model with the advantage of Bethe ansatz. The LSE is sensitive to boundary conditions where the signature is reflected in eigenfunctions of the system. We confirm that the LSE is fragile to a tiny co-flow boundary hopping with non-Hermitian current but can survive for a counter-flow boundary hopping in the thermodynamic limit. Our work provides a prototypical example of exactly solvable dissipative quantum many-body lattice systems exhibiting LSE for generalized boundary conditions. It can be further extended to other integrable open quantum many-body models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15614v2-abstract-full').style.display = 'none'; document.getElementById('2401.15614v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12156">arXiv:2401.12156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12156">pdf</a>, <a href="https://arxiv.org/format/2401.12156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dirac zeros in an orbital selective Mott phase: Green&#39;s function Berry curvature and flux quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12156v1-abstract-short" style="display: inline;"> How electronic topology develops in strongly correlated systems represents a fundamental challenge in the field of quantum materials. Recent studies have advanced the characterization and diagnosis of topology in Mott insulators whose underlying electronic structure is topologically nontrivial, through ``Green&#39;s function zeros&#34;. However, their counterparts in metallic systems have yet to be explor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12156v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12156v1-abstract-full" style="display: none;"> How electronic topology develops in strongly correlated systems represents a fundamental challenge in the field of quantum materials. Recent studies have advanced the characterization and diagnosis of topology in Mott insulators whose underlying electronic structure is topologically nontrivial, through ``Green&#39;s function zeros&#34;. However, their counterparts in metallic systems have yet to be explored. Here, we address this problem in an orbital-selective Mott phase (OSMP), which is of extensive interest to a variety of strongly correlated systems with a short-range Coulomb repulsion. We demonstrate symmetry protected crossing of the zeros in an OSMP. Utilizing the concept of Green&#39;s function Berry curvature, we show that the zero crossing has a quantized Berry flux. The resulting notion of Dirac zeros provides a window into the largely hidden landscape of topological zeros in strongly correlated metallic systems and, moreover, opens up a means to diagnose strongly correlated topology in new materials classes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12156v1-abstract-full').style.display = 'none'; document.getElementById('2401.12156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05719">arXiv:2401.05719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05719">pdf</a>, <a href="https://arxiv.org/format/2401.05719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> High-topological-number skyrmions and phase transition in two-dimensional frustrated $J_1$-$J_2$ magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hongliang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhong Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaoping Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+T">Tingting Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Changsheng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05719v3-abstract-short" style="display: inline;"> With the rapidly expanded field of two-dimensional(2D) magnetic materials, the frustrated magnetic skyrmions are attracting growing interest recently. Here, based on hexagonal close-packed (HCP) lattice of $J_1$-$J_2$ Heisenberg spins model, we systematically investigate the frustrated skyrmions and phase transition by micromagnetic simulations and first-principles calculations. The results show t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05719v3-abstract-full').style.display = 'inline'; document.getElementById('2401.05719v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05719v3-abstract-full" style="display: none;"> With the rapidly expanded field of two-dimensional(2D) magnetic materials, the frustrated magnetic skyrmions are attracting growing interest recently. Here, based on hexagonal close-packed (HCP) lattice of $J_1$-$J_2$ Heisenberg spins model, we systematically investigate the frustrated skyrmions and phase transition by micromagnetic simulations and first-principles calculations. The results show that four spin phases of antiferromagnetic, labyrinth domain, skyrmion and ferromagnetic textures are determined by the identified ranges of $J_1$-$J_2$. Importantly, skyrmion phase with an increasing topological number ($Q$) covers a wider $J_1$-$J_2$ area. Then, the diameter of skyrmions can be tuned by the frustration strength ($|J_2/J_1|$) or external magnetic field. Besides, a phase transition from N$\acute{e}$el to Bloch type skyrmion is observed due to the change of the helicity with the variation of $|J_2/J_1|$. Furthermore, as increasing magnetic field, the skyrmions with high $Q$ ($\ge 3$) tend to split into the ones with $Q=1$, thereby achieving a lower systematic energy. Additionally, we find that the CoCl$_2$ monolayer satisfies the requirement of the frustrated $J_1$-$J_2$ magnet, and the related magnetic behaviors agree with the above conclusions. The frustration-induced skyrmions are stable without the manipulation of temperature and magnetic field. Our results may open a possible way toward spintronic applications based on High-topological-number and nanoscale topological spin textures of skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05719v3-abstract-full').style.display = 'none'; document.getElementById('2401.05719v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11857">arXiv:2312.11857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11857">pdf</a>, <a href="https://arxiv.org/format/2312.11857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01848-7">10.1038/s42005-024-01848-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anderson transition and mobility edges on hyperbolic lattices with randomly connected boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11857v2-abstract-short" style="display: inline;"> Hyperbolic lattices, formed by tessellating the hyperbolic plane with regular polygons, exhibit a diverse range of exotic physical phenomena beyond conventional Euclidean lattices. Here, we investigate the impact of disorder on hyperbolic lattices and reveal that the Anderson localization occurs at strong disorder strength, accompanied by the presence of mobility edges. Taking the hyperbolic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11857v2-abstract-full').style.display = 'inline'; document.getElementById('2312.11857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11857v2-abstract-full" style="display: none;"> Hyperbolic lattices, formed by tessellating the hyperbolic plane with regular polygons, exhibit a diverse range of exotic physical phenomena beyond conventional Euclidean lattices. Here, we investigate the impact of disorder on hyperbolic lattices and reveal that the Anderson localization occurs at strong disorder strength, accompanied by the presence of mobility edges. Taking the hyperbolic $\{p,q\}=\{3,8\}$ and $\{p,q\}=\{4,8\}$ lattices as examples, we employ finite-size scaling of both spectral statistics and the inverse participation ratio to pinpoint the transition point and critical exponents. Our findings indicate that the transition points tend to increase with larger values of $\{p,q\}$ or curvature. In the limiting case of $\{\infty, q\}$, we further determine its Anderson transition using the cavity method, drawing parallels with the random regular graph. Our work lays the cornerstone for a comprehensive understanding of Anderson transition and mobility edges on hyperbolic lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11857v2-abstract-full').style.display = 'none'; document.getElementById('2312.11857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+6 pages, 5+5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 7, 371 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00385">arXiv:2312.00385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00385">pdf</a>, <a href="https://arxiv.org/format/2312.00385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.023314">10.1103/PhysRevA.110.023314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Super Fermi polaron and Nagaoka ferromagnetism in a two-dimesnional square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00385v1-abstract-short" style="display: inline;"> We consider the Fermi polaron problem of an impurity hopping around a two-dimensional square lattice and interacting with a sea of fermions at given filling factor. When the interaction is attractive, we find standard Fermi polaron quasiparticles, categorized as attractive polarons and repulsive polarons. When the interaction becomes repulsive, interestingly, we observe an unconventional highly-ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00385v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00385v1-abstract-full" style="display: none;"> We consider the Fermi polaron problem of an impurity hopping around a two-dimensional square lattice and interacting with a sea of fermions at given filling factor. When the interaction is attractive, we find standard Fermi polaron quasiparticles, categorized as attractive polarons and repulsive polarons. When the interaction becomes repulsive, interestingly, we observe an unconventional highly-excited polaron quasiparticle, sharply peaked at the corner of the first Brillouin zone with momentum \mathbf{k}=(\pm蟺,\pm蟺). This super Fermi polaron branch arises from the dressing of the impurity&#39;s motion with holes, instead of particles of fermions. We show that super Fermi polarons become increasingly well-defined with increasing impurity-fermion repulsions and might be considered as a precursor of Nagaoka ferromagnetism, which would appear at sufficiently large repulsions and at large filling factors. We also investigate the temperature-dependence of super Fermi polarons and find that they are thermally robust against the significant increase in temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00385v1-abstract-full').style.display = 'none'; document.getElementById('2312.00385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 023314 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16695">arXiv:2311.16695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16695">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin-Orbital Coupling in All-Inorganic Metal-Halide Perovskites: the Hidden Force that Matters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Anandan%2C+P+R">Pradeep Raja Anandan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nadeem%2C+M">Muhammad Nadeem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chun-Ho Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Simrjit Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+X">Xinwei Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jiyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shahroki%2C+S">Shamim Shahroki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahaman%2C+M+Z">Md Zahidur Rahaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+X">Xun Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jing-Kai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+H">Hien Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hanlin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+P">Pankaj Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seidel%2C+J">Jan Seidel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tom Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16695v1-abstract-short" style="display: inline;"> Highlighted with improved long-term thermal and environmental stability, all-inorganic metal halide perovskites exhibit tunable physical properties, cost-effective synthesis, and satisfactory optoelectronic performance, attracting increasing research interests worldwide. However, a less explored feature of these materials is their strong spin-orbit coupling (SOC), which is the hidden force influen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16695v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16695v1-abstract-full" style="display: none;"> Highlighted with improved long-term thermal and environmental stability, all-inorganic metal halide perovskites exhibit tunable physical properties, cost-effective synthesis, and satisfactory optoelectronic performance, attracting increasing research interests worldwide. However, a less explored feature of these materials is their strong spin-orbit coupling (SOC), which is the hidden force influencing not only band structure but also properties including magnetoresistance, spin lifetime and singlet-triplet splitting. This review provides an overview of the fundamental aspects and the latest progress of the SOC and debate regarding Rashba effects in all-inorganic metal halide perovskites, providing critical insights into the physical phenomena and potential applications. Meanwhile, crystal structures and photophysics of all-inorganic perovskite are discussed in the context of SOC, along with the related experimental and characterization techniques. Furthermore, a recent understanding of the band topology in the all-inorganic halide perovskites is introduced to push the boundary even further for the novel applications of all-inorganic halide perovskites. Finally, an outlook is given on the potential directions of breakthroughs via leveraging the SOC in halide perovskites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16695v1-abstract-full').style.display = 'none'; document.getElementById('2311.16695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14921">arXiv:2311.14921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14921">pdf</a>, <a href="https://arxiv.org/format/2311.14921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Graph Morphology of Non-Hermitian Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuncheng Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14921v1-abstract-short" style="display: inline;"> Non-Hermitian systems exhibit diverse graph patterns of energy spectra under open boundary conditions. Here we present an algebraic framework to comprehensively characterize the spectral geometry and graph topology of non-Bloch bands. Using a locally defined potential function, we unravel the spectral-collapse mechanism from Bloch to non-Bloch bands, delicately placing the spectral graph at the tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14921v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14921v1-abstract-full" style="display: none;"> Non-Hermitian systems exhibit diverse graph patterns of energy spectra under open boundary conditions. Here we present an algebraic framework to comprehensively characterize the spectral geometry and graph topology of non-Bloch bands. Using a locally defined potential function, we unravel the spectral-collapse mechanism from Bloch to non-Bloch bands, delicately placing the spectral graph at the troughs of the potential landscape. The potential formalism deduces non-Bloch band theory and generates the density of states via Poisson equation. We further investigate the Euler-graph topology by classifying spectral vertices based on their multiplicities and projections onto the generalized Brillouin zone. Through concrete models, we identify three elementary graph-topology transitions (UVY, PT-like, and self-crossing), accompanied by the emergence of singularities in the generalized Brillouin zone. Lastly, we unveil how to generally account for isolated edge states outside the spectral graph. Our work lays the cornerstone for exploring the versatile spectral geometry and graph topology of non-Hermitian non-Bloch bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14921v1-abstract-full').style.display = 'none'; document.getElementById('2311.14921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+8 pages, 4+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11554">arXiv:2311.11554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11554">pdf</a>, <a href="https://arxiv.org/ps/2311.11554">ps</a>, <a href="https://arxiv.org/format/2311.11554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.063313">10.1103/PhysRevA.109.063313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral function of Fermi polarons at finite temperature from a self-consistent many-body $T$-matrix approach in real frequency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11554v1-abstract-short" style="display: inline;"> We theoretically examine the finite-temperature spectral function of Fermi polarons in three dimensions, by using a self-consistent many-body $T$-matrix theory in real frequency. In comparison with the previous results from a non-self-consistent many-body $T$-matrix approach, we show that the treatment of self-consistency in the impurity Green function leads to notable changes in almost all the dy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11554v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11554v1-abstract-full" style="display: none;"> We theoretically examine the finite-temperature spectral function of Fermi polarons in three dimensions, by using a self-consistent many-body $T$-matrix theory in real frequency. In comparison with the previous results from a non-self-consistent many-body $T$-matrix approach, we show that the treatment of self-consistency in the impurity Green function leads to notable changes in almost all the dynamical quantities, including the vertex function, impurity self-energy and spectral function. Eventually, it gives rise to quantitatively different predictions for the measurable radio-frequency spectrum and Raman spectrum at finite temperature. Using the recent spectroscopic measurements as a benchmark, we find that the self-consistent many-body $T$-matrix theory somehow provides a better explanation for the experimental data. The notable difference in the predictions from the non-self-consistent and self-consistent theories suggests that more accurate theoretical descriptions are needed, in order to fully account for the current spectroscopic observations on Fermi polarons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11554v1-abstract-full').style.display = 'none'; document.getElementById('2311.11554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 109, 063313 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10238">arXiv:2311.10238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10238">pdf</a>, <a href="https://arxiv.org/format/2311.10238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s43673-023-00100-8">10.1007/s43673-023-00100-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermally stable p-wave repulsive Fermi polaron without a two-body bound state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xia-Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10238v1-abstract-short" style="display: inline;"> We theoretically investigate the polaron physics of an impurity immersed in a two-dimensional Fermi sea, interacting via a p-wave interaction at finite temperature. In the unitary limit with a divergent scattering area, we find a well-defined repulsive Fermi polaron at short interaction range, which shows a remarkable thermal stability with increasing temperature. The appearance of such a stable r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10238v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10238v1-abstract-full" style="display: none;"> We theoretically investigate the polaron physics of an impurity immersed in a two-dimensional Fermi sea, interacting via a p-wave interaction at finite temperature. In the unitary limit with a divergent scattering area, we find a well-defined repulsive Fermi polaron at short interaction range, which shows a remarkable thermal stability with increasing temperature. The appearance of such a stable repulsive Fermi polaron in the resonantly interacting limit can be attributed to the existence of a quasi-bound dressed molecule state hidden in the two-particle continuum, although there is no bound state in the two-particle limit. We show that the repulsive Fermi polaron disappears when the interaction range increases or when the scattering area is tuned to the weakly-interacting regime. The large interaction range and small scattering area instead stabilize attractive Fermi polarons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10238v1-abstract-full').style.display = 'none'; document.getElementById('2311.10238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AAPPS Bulletin 33, 27 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09290">arXiv:2311.09290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09290">pdf</a>, <a href="https://arxiv.org/format/2311.09290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Kagome Materials II: SG 191: FeGe as a LEGO Building Block for the Entire 1:6:6 series: hidden d-orbital decoupling of flat band sectors, effective models and interaction Hamiltonians </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">Santiago Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09290v1-abstract-short" style="display: inline;"> The electronic structure and interactions of kagome materials such as 1:1 (FeGe class) and 1:6:6 (MgFe$_6$Ge$_6$ class) are complicated and involve many orbitals and bands at the Fermi level. Current theoretical models treat the systems in an $s$-orbital kagome representation, unsuited and incorrect both quantitatively and qualitatively to the material realities. In this work, we lay the basis of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09290v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09290v1-abstract-full" style="display: none;"> The electronic structure and interactions of kagome materials such as 1:1 (FeGe class) and 1:6:6 (MgFe$_6$Ge$_6$ class) are complicated and involve many orbitals and bands at the Fermi level. Current theoretical models treat the systems in an $s$-orbital kagome representation, unsuited and incorrect both quantitatively and qualitatively to the material realities. In this work, we lay the basis of a faithful framework of the electronic model for this large class of materials. We show that the complicated ``spaghetti&#34; of electronic bands near the Fermi level can be decomposed into three groups of $d$-Fe orbitals coupled to specific Ge orbitals. Such decomposition allows for a clear analytical understanding (leading to different results than the simple $s$-orbital kagome models) of the flat bands in the system based on the $S$-matrix formalism of generalized bipartite lattices. Our three minimal Hamiltonians can reproduce the quasi-flat bands, van Hove singularities, topology, and Dirac points close to the Fermi level, which we prove by extensive ab initio studies. We also obtain the interacting Hamiltonian of $d$ orbitals in FeGe using the constraint random phase approximation (cRPA) method. We then use this as a fundamental ``LEGO&#34;-like building block for a large family of 1:6:6 kagome materials, which can be obtained by doubling and perturbing the FeGe Hamiltonian. We applied the model to its kagome siblings FeSn and CoSn, and also MgFe$_6$Ge$_6$. Our work serves as the first complete framework for the study of the interacting phase diagram of kagome compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09290v1-abstract-full').style.display = 'none'; document.getElementById('2311.09290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+50 pages, 3+16 figures, previously submitted. This is the second paper of a series on kagome materials. See also the first paper: arXiv:2305.15469</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03466">arXiv:2311.03466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03466">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Spatial Correlation at the Boson Peak Frequency in Amorphous Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+Y">X. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+P">H. P. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+S">S. Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D+L">D. L. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C+H">C. H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+L+R">L. R. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+Z">M. Z. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+-">X. -L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03466v1-abstract-short" style="display: inline;"> The Boson peak (BP), an excess of vibrational density of states, is ubiquitous for amorphous materials and is believed to hold the key to understanding the dynamics of glass and glass transition. Previous studies have established an energy scale for the BP, which is ~1-10 meV or ~THz in frequency. However, so far, little is known about the momentum dependence or spatial correlation of the BP. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03466v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03466v1-abstract-full" style="display: none;"> The Boson peak (BP), an excess of vibrational density of states, is ubiquitous for amorphous materials and is believed to hold the key to understanding the dynamics of glass and glass transition. Previous studies have established an energy scale for the BP, which is ~1-10 meV or ~THz in frequency. However, so far, little is known about the momentum dependence or spatial correlation of the BP. Here, we report the observation of the BP in model Zr-Cu-Al metallic glasses over a wide range of momentum transfer, using inelastic neutron scattering, heat capacity, Raman scattering measurements, and molecular dynamics (MD) simulations. The BP energy is largely dispersionless; however, the BP intensity was found to scale with the static structure factor. Additional MD simulations with a generic Lennard-Jones potential confirmed the same. Based on these results, an analytical expression for the dynamic structure factor was formulated for the BP excitation. Further analysis of the simulated disordered structures suggests that the BP is related to local structure fluctuations (e.g., in shear strain). Our results offered insights into the nature of the BP and provide guidance for the development of theories of amorphous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03466v1-abstract-full').style.display = 'none'; document.getElementById('2311.03466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01259">arXiv:2311.01259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01259">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-023-00400-4">10.1038/s43246-023-00400-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advantages and developments of Raman spectroscopy for electroceramics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deluca%2C+M">Marco Deluca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hailong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popov%2C+M+N">Maxim N. Popov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spitaler%2C+J">J眉rgen Spitaler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dieing%2C+T">Thomas Dieing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01259v1-abstract-short" style="display: inline;"> Despite being applied with success in many fields of materials science, Raman spectroscopy is not yet determinant in the study of electroceramics. Recent experimental and theoretical developments, however, should increase the popularity of Raman spectroscopy in this class of materials. In this Review, we outline the fields of application of Raman spectroscopy and microscopy in various electroceram&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01259v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01259v1-abstract-full" style="display: none;"> Despite being applied with success in many fields of materials science, Raman spectroscopy is not yet determinant in the study of electroceramics. Recent experimental and theoretical developments, however, should increase the popularity of Raman spectroscopy in this class of materials. In this Review, we outline the fields of application of Raman spectroscopy and microscopy in various electroceramic systems, defining current key bottlenecks and explaining promising recent developments. We focus our attention to recent experimental developments, including coupling Raman spectroscopy with other methodologies, and modelling approaches involving both the model-based data interpretation and the ab initio calculation of realistic Raman spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01259v1-abstract-full').style.display = 'none'; document.getElementById('2311.01259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Mater 4, 78 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17272">arXiv:2310.17272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17272">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202301326">10.1002/advs.202301326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain effects in twisted spiral antimonene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Ding-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Ye-Liang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H+Q">H. Q. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17272v1-abstract-short" style="display: inline;"> van der Waals (vdW) layered materials exhibit fruitful novel physical properties. The energy band of such materials depends strongly on their structures and a tremendous variation in their physical properties can be deduced from a tiny change in inter-layer spacing, twist angle, or in-plane strain. In this work, a kind of vdW layered material of spiral antimonene is constructed, and the strain eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17272v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17272v1-abstract-full" style="display: none;"> van der Waals (vdW) layered materials exhibit fruitful novel physical properties. The energy band of such materials depends strongly on their structures and a tremendous variation in their physical properties can be deduced from a tiny change in inter-layer spacing, twist angle, or in-plane strain. In this work, a kind of vdW layered material of spiral antimonene is constructed, and the strain effects in the material are studied. The spiral antimonene is grown on a germanium (Ge) substrate and is induced by a helical dislocation penetrating through few-atomic-layers of antimonene (\b{eta}-phase). The as-grown spiral is intrinsically strained and the lattice distortion is found to be pinned around the dislocation. Both spontaneous inter-layer twist and in-plane anisotropic strain are observed in scanning tunneling microscope (STM) measurements. The strain in the spiral antimonene can be significantly modified by STM tip interaction, leading to a variation in the surface electronic density of states (DOS) and a large modification in the work function of up to a few hundreds of milli-electron-volts (meV). Those strain effects are expected to have potential applications in building up novel piezoelectric devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17272v1-abstract-full').style.display = 'none'; document.getElementById('2310.17272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, Supporting Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Science 10, 2301326 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17016">arXiv:2310.17016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17016">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Boosting output performance of contact-separation mode triboelectric nanogenerators by adopting discontinuity and fringing effect: experiment and modelling studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+T">Teresa Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Han Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valizadeh%2C+N">Navid Valizadeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bittner%2C+F">Florian Bittner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Ling Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabczuk%2C+T">Timon Rabczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiaoning Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+X">Xiaoying Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17016v1-abstract-short" style="display: inline;"> Triboelectric nanogenerators (TENGs) are promising self-powering supplies for a diverse range of intelligent sensing and monitoring devices, especially due to their capability of harvesting electric energy from low frequency and small-scale mechanical motions. Inspired by the fact that contact-separation mode TENGs with small contact areas harvest high electrical outputs due to fringing effect, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17016v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17016v1-abstract-full" style="display: none;"> Triboelectric nanogenerators (TENGs) are promising self-powering supplies for a diverse range of intelligent sensing and monitoring devices, especially due to their capability of harvesting electric energy from low frequency and small-scale mechanical motions. Inspired by the fact that contact-separation mode TENGs with small contact areas harvest high electrical outputs due to fringing effect, this study employed discontinuity on the dielectric side of contact-separation mode TENGs to promote fringing electric fields for the enhancement of electrical outputs. The results reveal that the TENGs with more discontinuities show higher overall electric performance. Compared to pristine TENGs, the TENGs with cross discontinuities increased the surface charge by 50% and the power density by 114%. However, one should avoid generating discontinuities on tribonegative side of TENGs using metal blade within a positive-ion atmosphere due to the neutralization through electrically conductive metal blade. The computational simulation validated that the TENGs with discontinuities obtained higher electrical outputs, and further investigated the effect of discontinuity gap size and array distance on TENGs performance. This study has provided a promising method for the future design of TENGs using discontinuous structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17016v1-abstract-full').style.display = 'none'; document.getElementById('2310.17016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14024">arXiv:2310.14024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14024">pdf</a>, <a href="https://arxiv.org/format/2310.14024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation and quantification of pseudogap in unitary Fermi gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yu-Yang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+K">Ke Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Hong-Chi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Yu-Zhao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qijin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">Xing-Can Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14024v1-abstract-short" style="display: inline;"> The nature of pseudogap lies at the heart of strongly-interacting superconductivity and superfluidity. With known pairing interactions, unitary Fermi gases provide an ideal testbed to verify whether a pseudogap can arise from many-body pairing. Here we report the observation of the long-sought pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14024v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14024v1-abstract-full" style="display: none;"> The nature of pseudogap lies at the heart of strongly-interacting superconductivity and superfluidity. With known pairing interactions, unitary Fermi gases provide an ideal testbed to verify whether a pseudogap can arise from many-body pairing. Here we report the observation of the long-sought pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the spectral function through momentum-resolved microwave spectroscopy without the serious effects of final-state effect. We find a large pseudogap above the superfluid transition. The inverse pair lifetime exhibits a thermally-activated exponential behavior, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, T-independent single-particle scattering rate is comparable with that set by the Planckian limit. Our findings quantitatively characterize the pseudogap in strongly-interacting Fermi gases, highlighting the role of preformed pairing as a precursor to superfluidity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14024v1-abstract-full').style.display = 'none'; document.getElementById('2310.14024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10230">arXiv:2310.10230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10230">pdf</a>, <a href="https://arxiv.org/format/2310.10230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.014407">10.1103/PhysRevB.109.014407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana Fermion Mean-Field Theories of Kitaev Quantum Spin Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saheli%2C+S+G">Shahnam Ghanbari Saheli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jennifer Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huanzhi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%BCger%2C+F">Frank Kr眉ger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10230v2-abstract-short" style="display: inline;"> We determine the phase diagrams of anisotropic Kitaev-Heisenberg models on the honeycomb lattice using parton mean-field theories based on different Majorana fermion representations of the $S=1/2$ spin operators. Firstly, we use a two-dimensional Jordan-Wigner transformation (JWT) involving a semi-infinite snake string operator. In order to ensure that the fermionized Hamiltonian remains local we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10230v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10230v2-abstract-full" style="display: none;"> We determine the phase diagrams of anisotropic Kitaev-Heisenberg models on the honeycomb lattice using parton mean-field theories based on different Majorana fermion representations of the $S=1/2$ spin operators. Firstly, we use a two-dimensional Jordan-Wigner transformation (JWT) involving a semi-infinite snake string operator. In order to ensure that the fermionized Hamiltonian remains local we consider the limit of extreme Ising exchange anisotropy in the Heisenberg sector. Secondly, we use the conventional Kitaev representation in terms of four Majorana fermions subject to local constraints, which we enforce through Lagrange multipliers. For both representations we self-consistently decouple the interaction terms in the bond and magnetization channels and determine the phase diagrams as a function of the anisotropy of the Kitaev couplings and the relative strength of the Ising exchange. While both mean-field theories produce identical phase boundaries for the topological phase transition between the gapless and gapped Kitaev quantum spin liquids, the JWT fails to correctly describe the the magnetic instability and finite-temperature behavior. Our results show that the magnetic phase transition is first order at low temperatures but becomes continuous above a certain temperature. At this energy scale we also observe a finite temperature crossover on the quantum spin-liquid side, from a fractionalized paramagnet at low temperatures, in which gapped flux excitations are frozen out, to a conventional paramagnet at high temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10230v2-abstract-full').style.display = 'none'; document.getElementById('2310.10230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 014407 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08819">arXiv:2310.08819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08819">pdf</a>, <a href="https://arxiv.org/format/2310.08819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42139-z">10.1038/s41467-023-42139-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Non-Abelian Topological Insulator and Multifold Bulk-Edge Correspondence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haiping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08819v1-abstract-short" style="display: inline;"> Topological phases characterized by non-Abelian charges are beyond the scope of the paradigmatic tenfold way and have gained increasing attention recently. Here we investigate topological insulators with multiple tangled gaps in Floquet settings and identify uncharted Floquet non-Abelian topological insulators without any static or Abelian analog. We demonstrate that the bulk-edge correspondence i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08819v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08819v1-abstract-full" style="display: none;"> Topological phases characterized by non-Abelian charges are beyond the scope of the paradigmatic tenfold way and have gained increasing attention recently. Here we investigate topological insulators with multiple tangled gaps in Floquet settings and identify uncharted Floquet non-Abelian topological insulators without any static or Abelian analog. We demonstrate that the bulk-edge correspondence is multifold and follows the multiplication rule of the quaternion group $Q_8$. The same quaternion charge corresponds to several distinct edge-state configurations that are fully determined by phase-band singularities of the time evolution. In the anomalous non-Abelian phase, edge states appear in all bandgaps despite trivial quaternion charge. Furthermore, we uncover an exotic swap effect -- the emergence of interface modes with swapped driving, which is a signature of the non-Abelian dynamics and absent in Floquet Abelian systems. Our work, for the first time, presents Floquet topological insulators characterized by non-Abelian charges and opens up exciting possibilities for exploring the rich and uncharted territory of non-equilibrium topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08819v1-abstract-full').style.display = 'none'; document.getElementById('2310.08819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 6418 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hu%2C+H&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10