CINXE.COM
Basiswechsel (Vektorraum) – Wikipedia
<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Basiswechsel (Vektorraum) – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"66c24fd6-4053-45e1-97c3-6b12d7b3f257","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Basiswechsel_(Vektorraum)","wgTitle":"Basiswechsel (Vektorraum)","wgCurRevisionId":221424393,"wgRevisionId":221424393,"wgArticleId":946517,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null, "wgUserGroups":["*"],"wgCategories":["Lineare Algebra"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Basiswechsel_(Vektorraum)","wgRelevantArticleId":946517,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":221424393,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader": false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q810255","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready", "ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&modules=codex-search-styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=de&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&modules=site.styles&only=styles&skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Basiswechsel (Vektorraum) – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Basiswechsel_(Vektorraum)"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Basiswechsel_(Vektorraum)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Basiswechsel_Vektorraum rootpage-Basiswechsel_Vektorraum skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Basiswechsel (Vektorraum)</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><p>Der <b>Basiswechsel</b> oder die <b>Basistransformation</b> ist ein Begriff aus dem <a href="/wiki/Teilgebiet_der_Mathematik" class="mw-redirect" title="Teilgebiet der Mathematik">mathematischen Teilgebiet</a> der <a href="/wiki/Lineare_Algebra" title="Lineare Algebra">linearen Algebra</a>. Man bezeichnet damit den Übergang zwischen zwei verschiedenen <a href="/wiki/Basis_(Vektorraum)" title="Basis (Vektorraum)">Basen</a> eines endlichdimensionalen <a href="/wiki/Vektorraum" title="Vektorraum">Vektorraums</a> über einem <a href="/wiki/K%C3%B6rper_(Algebra)" title="Körper (Algebra)">Körper</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Dadurch ändern sich im Allgemeinen die <a href="/wiki/Koordinate" class="mw-redirect" title="Koordinate">Koordinaten</a> der <a href="/wiki/Vektor" title="Vektor">Vektoren</a> und die <a href="/wiki/Abbildungsmatrix" title="Abbildungsmatrix">Abbildungsmatrizen</a> von <a href="/wiki/Lineare_Abbildung" title="Lineare Abbildung">linearen Abbildungen</a>. Ein Basiswechsel ist somit ein Spezialfall einer <a href="/wiki/Koordinatentransformation" title="Koordinatentransformation">Koordinatentransformation</a>. </p><p>Der Basiswechsel kann durch eine <a href="/wiki/Matrix_(Mathematik)" title="Matrix (Mathematik)">Matrix</a> beschrieben werden, die <b>Basiswechselmatrix</b>, <b>Transformationsmatrix</b> oder <b>Übergangsmatrix</b> genannt wird. Mit dieser lassen sich auch die Koordinaten bezüglich der neuen Basis ausrechnen. Stellt man die Basisvektoren der <i>alten</i> Basis als <a href="/wiki/Linearkombination" title="Linearkombination">Linearkombinationen</a> der Vektoren der <i>neuen</i> Basis dar, so bilden die Koeffizienten dieser Linearkombinationen die Einträge der Basiswechselmatrix. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Basiswechselmatrix"><span class="tocnumber">1</span> <span class="toctext">Basiswechselmatrix</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Spezialfälle"><span class="tocnumber">2</span> <span class="toctext">Spezialfälle</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Koordinatentransformation"><span class="tocnumber">3</span> <span class="toctext">Koordinatentransformation</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Basiswechsel_bei_Abbildungsmatrizen"><span class="tocnumber">4</span> <span class="toctext">Basiswechsel bei Abbildungsmatrizen</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Beispiel"><span class="tocnumber">5</span> <span class="toctext">Beispiel</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Basiswechsel_mit_Hilfe_der_dualen_Basis"><span class="tocnumber">6</span> <span class="toctext">Basiswechsel mit Hilfe der dualen Basis</span></a> <ul> <li class="toclevel-2 tocsection-7"><a href="#Wechsel_zur_dualen_Basis"><span class="tocnumber">6.1</span> <span class="toctext">Wechsel zur dualen Basis</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Wechsel_zu_einer_anderen_Basis"><span class="tocnumber">6.2</span> <span class="toctext">Wechsel zu einer anderen Basis</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#Anwendungen"><span class="tocnumber">7</span> <span class="toctext">Anwendungen</span></a> <ul> <li class="toclevel-2 tocsection-10"><a href="#In_der_Mathematik"><span class="tocnumber">7.1</span> <span class="toctext">In der Mathematik</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#In_der_Physik"><span class="tocnumber">7.2</span> <span class="toctext">In der Physik</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-12"><a href="#Literatur"><span class="tocnumber">8</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#Weblinks"><span class="tocnumber">9</span> <span class="toctext">Weblinks</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Basiswechselmatrix">Basiswechselmatrix</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=1" title="Abschnitt bearbeiten: Basiswechselmatrix" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=1" title="Quellcode des Abschnitts bearbeiten: Basiswechselmatrix"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Change_of_basis_square2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Change_of_basis_square2.svg/220px-Change_of_basis_square2.svg.png" decoding="async" width="220" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Change_of_basis_square2.svg/330px-Change_of_basis_square2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Change_of_basis_square2.svg/440px-Change_of_basis_square2.svg.png 2x" data-file-width="195" data-file-height="177" /></a><figcaption>Kommutatives Diagramm</figcaption></figure> <p>Es sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> ein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensionaler Vektorraum über dem Körper <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> (zum Beispiel dem Körper <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> der reellen Zahlen). In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> seien zwei geordnete Basen gegeben, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(b_{1},\ldots ,b_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(b_{1},\ldots ,b_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2868ee9456e6538fcb2888954590ce3c5abda3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.118ex; height:2.843ex;" alt="{\displaystyle B=(b_{1},\ldots ,b_{n})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'=(b_{1}',\ldots ,b_{n}')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'=(b_{1}',\ldots ,b_{n}')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e353326c4524f76491cb579cd0c0b1d950c053e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.803ex; height:3.176ex;" alt="{\displaystyle B'=(b_{1}',\ldots ,b_{n}')}"></span>. </p><p>Die Basiswechselmatrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb57134574715111f0c1c3dd85fd8d27a116d132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.369ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}}"></span> für den Basiswechsel von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> ist eine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>-Matrix. Es handelt sich um die <a href="/wiki/Abbildungsmatrix" title="Abbildungsmatrix">Abbildungsmatrix</a> der <a href="/wiki/Identische_Abbildung" title="Identische Abbildung">Identitätsabbildung</a> auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> bezüglich der Basen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> im Urbild und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> im Bild: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}=M_{B'}^{B}(\operatorname {id_{V}} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">i</mi> <msub> <mi mathvariant="normal">d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}=M_{B'}^{B}(\operatorname {id_{V}} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aacacd8609e75e7728a5a325ca602d8a2de2a36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.946ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}=M_{B'}^{B}(\operatorname {id_{V}} )}"></span></dd></dl> <p>Man erhält sie, indem man die Vektoren der alten Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> als Linearkombinationen der Vektoren der neuen Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B{}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B{}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0aae9e8342f879f2814f464e508ecba5f182e68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B{}'}"></span> darstellt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{j}=a_{1j}b_{1}{}'+a_{2j}b_{2}{}'+\dots +a_{nj}b_{n}{}'=\sum _{i=1}^{n}a_{ij}b_{i}{}',\qquad j=1,\dots ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>,</mo> <mspace width="2em" /> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{j}=a_{1j}b_{1}{}'+a_{2j}b_{2}{}'+\dots +a_{nj}b_{n}{}'=\sum _{i=1}^{n}a_{ij}b_{i}{}',\qquad j=1,\dots ,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cac8cef7dc54bf7956858a8efc4711f3598c498" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:63.173ex; height:6.843ex;" alt="{\displaystyle b_{j}=a_{1j}b_{1}{}'+a_{2j}b_{2}{}'+\dots +a_{nj}b_{n}{}'=\sum _{i=1}^{n}a_{ij}b_{i}{}',\qquad j=1,\dots ,n}"></span></dd></dl> <p>Die Koeffizienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1j},\dots ,a_{nj}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1j},\dots ,a_{nj}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0019cc95fce4ca79a5c408cafded3eec6440193d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.265ex; height:2.343ex;" alt="{\displaystyle a_{1j},\dots ,a_{nj}}"></span> bilden die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>-te Spalte der Basiswechselmatrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}={\begin{pmatrix}a_{11}&\cdots &a_{1j}&\cdots &a_{1n}\\\vdots &&\vdots &&\vdots \\a_{n1}&\cdots &a_{nj}&\cdots &a_{nn}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}={\begin{pmatrix}a_{11}&\cdots &a_{1j}&\cdots &a_{1n}\\\vdots &&\vdots &&\vdots \\a_{n1}&\cdots &a_{nj}&\cdots &a_{nn}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7dddfbb3f8a1aeab0e0eba68323cf6ba585b62c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:35.853ex; height:10.843ex;" alt="{\displaystyle T_{B'}^{B}={\begin{pmatrix}a_{11}&\cdots &a_{1j}&\cdots &a_{1n}\\\vdots &&\vdots &&\vdots \\a_{n1}&\cdots &a_{nj}&\cdots &a_{nn}\end{pmatrix}}}"></span></dd></dl> <p>Diese Matrix ist quadratisch und <a href="/wiki/Regul%C3%A4re_Matrix" title="Reguläre Matrix">invertierbar</a> und somit ein Element der <a href="/wiki/Allgemeine_lineare_Gruppe" title="Allgemeine lineare Gruppe">allgemeinen linearen Gruppe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {GL} \left(n,K\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">L</mi> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>,</mo> <mi>K</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {GL} \left(n,K\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d231e7b1d10d7325eaa0cb0306cb1c7436a7b39d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.968ex; height:2.843ex;" alt="{\displaystyle \mathrm {GL} \left(n,K\right)}"></span>. Ihre <a href="/wiki/Inverse_Matrix" title="Inverse Matrix">Inverse</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(T_{B'}^{B}\right)^{-1}=T_{B}^{B'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(T_{B'}^{B}\right)^{-1}=T_{B}^{B'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e58e0fe36a2c7b41e90a14fb0d21a62ab63ee5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:14.661ex; height:3.843ex;" alt="{\displaystyle \left(T_{B'}^{B}\right)^{-1}=T_{B}^{B'}}"></span> beschreibt den Basiswechsel von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> zurück nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Spezialfälle"><span id="Spezialf.C3.A4lle"></span>Spezialfälle</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=2" title="Abschnitt bearbeiten: Spezialfälle" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=2" title="Quellcode des Abschnitts bearbeiten: Spezialfälle"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ein wichtiger Spezialfall ist der Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=K^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=K^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1bb33cc16379754d9606e92a9d5d60a094126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.198ex; height:2.343ex;" alt="{\displaystyle V=K^{n}}"></span>, der Vektorraum stimmt also mit dem <a href="/wiki/Koordinatenraum" title="Koordinatenraum">Koordinatenraum</a> überein. In diesem Fall sind die Basisvektoren Spaltenvektoren </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{1}={\begin{pmatrix}b_{11}\\\vdots \\b_{n1}\end{pmatrix}},\dots ,b_{j}={\begin{pmatrix}b_{1j}\\\vdots \\b_{nj}\end{pmatrix}},\dots ,b_{n}={\begin{pmatrix}b_{1n}\\\vdots \\b_{nn}\end{pmatrix}},\quad b_{1}'={\begin{pmatrix}b_{11}'\\\vdots \\b_{n1}'\end{pmatrix}},\dots ,b_{j}'={\begin{pmatrix}b_{1j}'\\\vdots \\b_{nj}'\end{pmatrix}},\dots ,b_{n}'={\begin{pmatrix}b_{1n}'\\\vdots \\b_{nn}'\end{pmatrix}},\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{1}={\begin{pmatrix}b_{11}\\\vdots \\b_{n1}\end{pmatrix}},\dots ,b_{j}={\begin{pmatrix}b_{1j}\\\vdots \\b_{nj}\end{pmatrix}},\dots ,b_{n}={\begin{pmatrix}b_{1n}\\\vdots \\b_{nn}\end{pmatrix}},\quad b_{1}'={\begin{pmatrix}b_{11}'\\\vdots \\b_{n1}'\end{pmatrix}},\dots ,b_{j}'={\begin{pmatrix}b_{1j}'\\\vdots \\b_{nj}'\end{pmatrix}},\dots ,b_{n}'={\begin{pmatrix}b_{1n}'\\\vdots \\b_{nn}'\end{pmatrix}},\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a44200c55db06003e6314019ffbba9509169d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:105.157ex; height:11.509ex;" alt="{\displaystyle b_{1}={\begin{pmatrix}b_{11}\\\vdots \\b_{n1}\end{pmatrix}},\dots ,b_{j}={\begin{pmatrix}b_{1j}\\\vdots \\b_{nj}\end{pmatrix}},\dots ,b_{n}={\begin{pmatrix}b_{1n}\\\vdots \\b_{nn}\end{pmatrix}},\quad b_{1}'={\begin{pmatrix}b_{11}'\\\vdots \\b_{n1}'\end{pmatrix}},\dots ,b_{j}'={\begin{pmatrix}b_{1j}'\\\vdots \\b_{nj}'\end{pmatrix}},\dots ,b_{n}'={\begin{pmatrix}b_{1n}'\\\vdots \\b_{nn}'\end{pmatrix}},\quad }"></span></dd></dl> <p>die sich zu Matrizen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B={\begin{pmatrix}b_{11}&\dots &b_{1j}&\dots &b_{1n}\\\vdots &&\vdots &&\vdots \\b_{i1}&\dots &b_{ij}&\dots &b_{in}\\\vdots &&\vdots &&\vdots \\b_{n1}&\dots &b_{nj}&\dots &b_{nn}\end{pmatrix}}\quad {\text{ und }}\quad B'={\begin{pmatrix}b_{11}'&\dots &b_{1j}'&\dots &b_{1n}'\\\vdots &&\vdots &&\vdots \\b_{i1}'&\dots &b_{ij}'&\dots &b_{in}'\\\vdots &&\vdots &&\vdots \\b_{n1}'&\dots &b_{nj}'&\dots &b_{nn}'\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext> und </mtext> </mrow> <mspace width="1em" /> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B={\begin{pmatrix}b_{11}&\dots &b_{1j}&\dots &b_{1n}\\\vdots &&\vdots &&\vdots \\b_{i1}&\dots &b_{ij}&\dots &b_{in}\\\vdots &&\vdots &&\vdots \\b_{n1}&\dots &b_{nj}&\dots &b_{nn}\end{pmatrix}}\quad {\text{ und }}\quad B'={\begin{pmatrix}b_{11}'&\dots &b_{1j}'&\dots &b_{1n}'\\\vdots &&\vdots &&\vdots \\b_{i1}'&\dots &b_{ij}'&\dots &b_{in}'\\\vdots &&\vdots &&\vdots \\b_{n1}'&\dots &b_{nj}'&\dots &b_{nn}'\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48c284c895e72e5552054572156a04443c0db668" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.338ex; width:77.471ex; height:19.843ex;" alt="{\displaystyle B={\begin{pmatrix}b_{11}&\dots &b_{1j}&\dots &b_{1n}\\\vdots &&\vdots &&\vdots \\b_{i1}&\dots &b_{ij}&\dots &b_{in}\\\vdots &&\vdots &&\vdots \\b_{n1}&\dots &b_{nj}&\dots &b_{nn}\end{pmatrix}}\quad {\text{ und }}\quad B'={\begin{pmatrix}b_{11}'&\dots &b_{1j}'&\dots &b_{1n}'\\\vdots &&\vdots &&\vdots \\b_{i1}'&\dots &b_{ij}'&\dots &b_{in}'\\\vdots &&\vdots &&\vdots \\b_{n1}'&\dots &b_{nj}'&\dots &b_{nn}'\end{pmatrix}}}"></span></dd></dl> <p>zusammenfassen lassen, die hier der Einfachheit halber mit den gleichen Buchstaben wie die zugehörigen Basen bezeichnet werden. Die Bedingung </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{j}=a_{1j}b_{1}{}'+a_{2j}b_{2}{}'+\dots +a_{nj}b_{n}{}'=\sum _{i=1}^{n}a_{ij}b_{i}{}',\qquad j=1,\dots ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>,</mo> <mspace width="2em" /> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{j}=a_{1j}b_{1}{}'+a_{2j}b_{2}{}'+\dots +a_{nj}b_{n}{}'=\sum _{i=1}^{n}a_{ij}b_{i}{}',\qquad j=1,\dots ,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cac8cef7dc54bf7956858a8efc4711f3598c498" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:63.173ex; height:6.843ex;" alt="{\displaystyle b_{j}=a_{1j}b_{1}{}'+a_{2j}b_{2}{}'+\dots +a_{nj}b_{n}{}'=\sum _{i=1}^{n}a_{ij}b_{i}{}',\qquad j=1,\dots ,n}"></span></dd></dl> <p>übersetzt sich dann zu </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{kj}=\sum _{i=1}^{n}a_{ij}b_{ki}{}'=\sum _{i=1}^{n}b_{ki}{}'a_{ij},\qquad k,j=1,\dots ,n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <mi>k</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{kj}=\sum _{i=1}^{n}a_{ij}b_{ki}{}'=\sum _{i=1}^{n}b_{ki}{}'a_{ij},\qquad k,j=1,\dots ,n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01ffbde0ec4448cd605df9d804bab7a04490c8e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.899ex; height:6.843ex;" alt="{\displaystyle b_{kj}=\sum _{i=1}^{n}a_{ij}b_{ki}{}'=\sum _{i=1}^{n}b_{ki}{}'a_{ij},\qquad k,j=1,\dots ,n,}"></span></dd></dl> <p>das heißt, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=B'\cdot T_{B'}^{B}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=B'\cdot T_{B'}^{B}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6a97fb812dbce5c3857acd52b4c88ca5508959d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.006ex; height:3.343ex;" alt="{\displaystyle B=B'\cdot T_{B'}^{B}.}"></span></dd></dl> <p>Die Transformationsmatrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb57134574715111f0c1c3dd85fd8d27a116d132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.369ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}}"></span> lässt sich somit durch </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}=(B')^{-1}\cdot B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}=(B')^{-1}\cdot B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c96559d73ff66d28d139fd96fceb7014deb5a53d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.501ex; height:3.509ex;" alt="{\displaystyle T_{B'}^{B}=(B')^{-1}\cdot B}"></span></dd></dl> <p>berechnen, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B')^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B')^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18c4556a916fbd325d9349254b741a23d7a0fd61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.591ex; height:3.176ex;" alt="{\displaystyle (B')^{-1}}"></span> die <a href="/wiki/Inverse_Matrix" title="Inverse Matrix">inverse Matrix</a> der Matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> ist. </p><p>Insbesondere gilt: Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> die <a href="/wiki/Standardbasis" title="Standardbasis">Standardbasis</a>, so gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}=(B')^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}=(B')^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f17f3981d7b4e9ed3fd981cc57700590e9d4c0a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.058ex; height:3.509ex;" alt="{\displaystyle T_{B'}^{B}=(B')^{-1}}"></span>. Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> die Standardbasis, so gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}=B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}=B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e347b15b6523004ba8d4d2e310dd1596ba176354" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.231ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}=B}"></span>. </p><p>Wie im Vorangehenden wird hier die Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> mit der Matrix identifiziert, die man erhält, indem man die Basisvektoren als Spaltenvektoren schreibt und diese zu einer Matrix zusammenfasst. </p> <div class="mw-heading mw-heading2"><h2 id="Koordinatentransformation">Koordinatentransformation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=3" title="Abschnitt bearbeiten: Koordinatentransformation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=3" title="Quellcode des Abschnitts bearbeiten: Koordinatentransformation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ein Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa374e20b2db7f6b8caa71ff1865f7f84f215c9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.958ex; height:2.176ex;" alt="{\displaystyle x\in V}"></span> habe bezüglich der Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(b_{1},\dots ,b_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(b_{1},\dots ,b_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f48a809b22c97353ab3da3c70e576a8f7b29c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.118ex; height:2.843ex;" alt="{\displaystyle B=(b_{1},\dots ,b_{n})}"></span> die Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\dots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\dots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5afdbc2d248d8fa9ba2c4f5188d946a0537e753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.11ex; height:2.009ex;" alt="{\displaystyle x_{1},\dots ,x_{n}}"></span>, d. h. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{1}b_{1}+x_{2}b_{2}+\dots +x_{n}b_{n}=\sum _{i}x_{i}\,b_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{1}b_{1}+x_{2}b_{2}+\dots +x_{n}b_{n}=\sum _{i}x_{i}\,b_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7136d8575314d5395e5b27f2fc764128a472ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.109ex; height:5.509ex;" alt="{\displaystyle x=x_{1}b_{1}+x_{2}b_{2}+\dots +x_{n}b_{n}=\sum _{i}x_{i}\,b_{i},}"></span></dd></dl> <p>und bezüglich der neuen Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'=(b_{1}',\dots ,b_{n}')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'=(b_{1}',\dots ,b_{n}')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f07871e5d1a9d0ceaf9ee8103a745f5c0ac010ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.803ex; height:3.176ex;" alt="{\displaystyle B'=(b_{1}',\dots ,b_{n}')}"></span> die Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}',\dots ,x_{n}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}',\dots ,x_{n}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7380746dcd6cd7b0533640f2b8716df087541c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.11ex; height:2.843ex;" alt="{\displaystyle x_{1}',\dots ,x_{n}'}"></span>, also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{1}{}'b_{1}{}'+x_{2}{}'b_{2}{}'+\dots +x_{n}{}'b_{n}{}'=\sum _{j}x_{j}{}'\,b_{j}{}'.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{1}{}'b_{1}{}'+x_{2}{}'b_{2}{}'+\dots +x_{n}{}'b_{n}{}'=\sum _{j}x_{j}{}'\,b_{j}{}'.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f46c24336778b2176b29ca88c9cdd9fb781a21b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:46.807ex; height:5.843ex;" alt="{\displaystyle x=x_{1}{}'b_{1}{}'+x_{2}{}'b_{2}{}'+\dots +x_{n}{}'b_{n}{}'=\sum _{j}x_{j}{}'\,b_{j}{}'.}"></span></dd></dl> <p>Stellt man wie oben die Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa56eff4488494085785b7b0d6e2069bd45a3ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.907ex; height:2.843ex;" alt="{\displaystyle b_{j}}"></span> der alten Basis als Linearkombination der neuen Basis dar, so erhält man </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\sum _{j}x_{j}b_{j}=\sum _{j}x_{j}\sum _{i}a_{ij}\,b_{i}{}'=\sum _{i}\left(\sum _{j}a_{ij}\,x_{j}\right)b_{i}{}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\sum _{j}x_{j}b_{j}=\sum _{j}x_{j}\sum _{i}a_{ij}\,b_{i}{}'=\sum _{i}\left(\sum _{j}a_{ij}\,x_{j}\right)b_{i}{}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbef3cc479852d8f1376a8cf4090ba3164ec7095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:53.568ex; height:7.676ex;" alt="{\displaystyle x=\sum _{j}x_{j}b_{j}=\sum _{j}x_{j}\sum _{i}a_{ij}\,b_{i}{}'=\sum _{i}\left(\sum _{j}a_{ij}\,x_{j}\right)b_{i}{}'}"></span></dd></dl> <p>Dabei sind die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebea6cd2813c330c798921a2894b358f7b643917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.707ex; height:2.343ex;" alt="{\displaystyle a_{ij}}"></span> die oben definierten Einträge der Basiswechselmatrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb57134574715111f0c1c3dd85fd8d27a116d132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.369ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}}"></span>. Durch Koeffizientenvergleich erhält man </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}{}'=\sum _{j=1}^{n}a_{ij}\,x_{j},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}{}'=\sum _{j=1}^{n}a_{ij}\,x_{j},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73aa1fc3b50900b9b2042340ae07654136bea3ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:15.635ex; height:7.176ex;" alt="{\displaystyle x_{i}{}'=\sum _{j=1}^{n}a_{ij}\,x_{j},}"></span></dd></dl> <p>bzw. in Matrizenschreibweise: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}x_{1}{}'\\\vdots \\x_{n}{}'\end{pmatrix}}={\begin{pmatrix}a_{11}&\dots &a_{1n}\\\vdots &\ddots &\vdots \\a_{n1}&\dots &a_{nn}\end{pmatrix}}{\begin{pmatrix}x_{1}\\\vdots \\x_{n}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>…<!-- … --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}x_{1}{}'\\\vdots \\x_{n}{}'\end{pmatrix}}={\begin{pmatrix}a_{11}&\dots &a_{1n}\\\vdots &\ddots &\vdots \\a_{n1}&\dots &a_{nn}\end{pmatrix}}{\begin{pmatrix}x_{1}\\\vdots \\x_{n}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02e049179b6ebe25fdab77a571329f7363b89e40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:37.663ex; height:11.009ex;" alt="{\displaystyle {\begin{pmatrix}x_{1}{}'\\\vdots \\x_{n}{}'\end{pmatrix}}={\begin{pmatrix}a_{11}&\dots &a_{1n}\\\vdots &\ddots &\vdots \\a_{n1}&\dots &a_{nn}\end{pmatrix}}{\begin{pmatrix}x_{1}\\\vdots \\x_{n}\end{pmatrix}}}"></span></dd></dl> <p>oder kurz: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x{}'=T_{B'}^{B}\,x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x{}'=T_{B'}^{B}\,x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb654d54be9843c4b7f710895c6a70cc4b2a3e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.198ex; height:3.343ex;" alt="{\displaystyle x{}'=T_{B'}^{B}\,x}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Basiswechsel_bei_Abbildungsmatrizen">Basiswechsel bei Abbildungsmatrizen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=4" title="Abschnitt bearbeiten: Basiswechsel bei Abbildungsmatrizen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=4" title="Quellcode des Abschnitts bearbeiten: Basiswechsel bei Abbildungsmatrizen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Abbildungsmatrix" title="Abbildungsmatrix">Darstellungsmatrix</a> einer linearen Abbildung hängt von der Wahl der Basen im Urbild- und im Zielraum ab. Wählt man andere Basen, so erhält man möglicherweise andere Abbildungsmatrizen. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Change_of_basis2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Change_of_basis2.svg/440px-Change_of_basis2.svg.png" decoding="async" width="440" height="183" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Change_of_basis2.svg/660px-Change_of_basis2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Change_of_basis2.svg/880px-Change_of_basis2.svg.png 2x" data-file-width="425" data-file-height="177" /></a><figcaption>Kommutatives Diagramm der beteiligten Abbildungen. Mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> wird hier die lineare Abbildung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d63366b3d00300e06eee81786182062b98775c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.312ex; height:2.343ex;" alt="{\displaystyle K^{n}}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> bezeichnet, die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},\dots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},\dots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56204ada1ecf9dd5c6beddfdfd0f341cd69ff632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.92ex; height:2.843ex;" alt="{\displaystyle (x_{1},\dots ,x_{n})}"></span> auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}a_{1}+\dots +x_{n}a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}a_{1}+\dots +x_{n}a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3487c522ae779241c34523dfda82c8b3dd1de7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.068ex; height:2.343ex;" alt="{\displaystyle x_{1}a_{1}+\dots +x_{n}a_{n}}"></span> abbildet, etc.</figcaption></figure> <p>Seien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> ein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensionaler und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> ein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>-dimensionaler Vektorraum über <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon V\to W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>V</mi> <mo stretchy="false">→<!-- → --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon V\to W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa58648b9aa9476995b2b41de27a9a591e631f56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.149ex; height:2.509ex;" alt="{\displaystyle f\colon V\to W}"></span> eine lineare Abbildung. In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> seien die geordneten Basen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{1},\dots ,a_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{1},\dots ,a_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b5dd46decd1d7047cdfd4e9b228283b5bdfcfd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.561ex; height:2.843ex;" alt="{\displaystyle A=(a_{1},\dots ,a_{n})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'=(a_{1}{}',\dots ,a_{n}{}')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'=(a_{1}{}',\dots ,a_{n}{}')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c2d08ffdacf9d7b4e26d0040c0b373e03ac139e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.616ex; height:3.009ex;" alt="{\displaystyle A'=(a_{1}{}',\dots ,a_{n}{}')}"></span> gegeben, in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> die geordneten Basen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(b_{1},\dots ,b_{m})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(b_{1},\dots ,b_{m})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00c3cc61328505fc90239458c23d180deae430fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.574ex; height:2.843ex;" alt="{\displaystyle B=(b_{1},\dots ,b_{m})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'=(b_{1}{}',\dots ,b_{m}{}')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'=(b_{1}{}',\dots ,b_{m}{}')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5cb215fcd5c3cf5dab0028803419c2084de3f26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.629ex; height:3.009ex;" alt="{\displaystyle B'=(b_{1}{}',\dots ,b_{m}{}')}"></span>. Dann gilt für die Darstellungsmatrizen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> bezüglich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> bzw. bezüglich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a12527148d6ed68adc91d9b419eb4b92d58ef6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.428ex; height:2.509ex;" alt="{\displaystyle A'}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{B'}^{A'}(f)=T_{B'}^{B}\cdot M_{B}^{A}(f)\cdot T_{A}^{A'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mo>′</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{B'}^{A'}(f)=T_{B'}^{B}\cdot M_{B}^{A}(f)\cdot T_{A}^{A'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7d6ffe1ae20fcef3b53d0e0ee4aa690bff04257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.176ex; height:3.676ex;" alt="{\displaystyle M_{B'}^{A'}(f)=T_{B'}^{B}\cdot M_{B}^{A}(f)\cdot T_{A}^{A'}}"></span></dd></dl> <p>Man erhält diese Darstellung, indem man </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\operatorname {id} _{W}\circ f\circ \operatorname {id} _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msub> <mo>∘<!-- ∘ --></mo> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\operatorname {id} _{W}\circ f\circ \operatorname {id} _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41ab704655ab5b30df65d26e537f9555dc05a501" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.729ex; height:2.509ex;" alt="{\displaystyle f=\operatorname {id} _{W}\circ f\circ \operatorname {id} _{V}}"></span></dd></dl> <p>schreibt. Die Abbildungsmatrix der Verkettung ist dann das <a href="/wiki/Matrizenprodukt" class="mw-redirect" title="Matrizenprodukt">Matrizenprodukt</a> der einzelnen Abbildungsmatrizen, wenn die Basen passend gewählt sind, das heißt: die Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a12527148d6ed68adc91d9b419eb4b92d58ef6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.428ex; height:2.509ex;" alt="{\displaystyle A'}"></span> im Urbild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {id} _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {id} _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b7dd7ccb7d8663c3f9cb1b53d125f38703416b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle \operatorname {id} _{V}}"></span>, die Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> im Bild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {id} _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {id} _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b7dd7ccb7d8663c3f9cb1b53d125f38703416b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.435ex; height:2.509ex;" alt="{\displaystyle \operatorname {id} _{V}}"></span> und im Urbild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, die Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> im Bild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> und im Urbild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {id} _{W}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {id} _{W}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fba343c71190adf383fdaa1d6c8cbdbef73ec225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.894ex; height:2.509ex;" alt="{\displaystyle \operatorname {id} _{W}}"></span>, und die Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> im Bild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {id} _{W}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {id} _{W}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fba343c71190adf383fdaa1d6c8cbdbef73ec225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.894ex; height:2.509ex;" alt="{\displaystyle \operatorname {id} _{W}}"></span>. Man erhält also: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{B'}^{A'}(f)=M_{B'}^{B}(\operatorname {id} _{W})\cdot M_{B}^{A}(f)\cdot M_{A}^{A'}(\operatorname {id} _{V})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{B'}^{A'}(f)=M_{B'}^{B}(\operatorname {id} _{W})\cdot M_{B}^{A}(f)\cdot M_{A}^{A'}(\operatorname {id} _{V})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d481c0d9e55779b983d4231d8ecb6d160f75ee1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:40.799ex; height:3.676ex;" alt="{\displaystyle M_{B'}^{A'}(f)=M_{B'}^{B}(\operatorname {id} _{W})\cdot M_{B}^{A}(f)\cdot M_{A}^{A'}(\operatorname {id} _{V})}"></span></dd></dl> <p>Ein wichtiger Spezialfall ist, wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon V\to V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>V</mi> <mo stretchy="false">→<!-- → --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon V\to V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdad235875fd740596e229f36847d469955d96c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.501ex; height:2.509ex;" alt="{\displaystyle f\colon V\to V}"></span> ein <a href="/wiki/Endomorphismus" title="Endomorphismus">Endomorphismus</a> ist und im Urbild und Bild jeweils dieselbe Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> benutzt wird. Dann gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{B'}^{B'}(f)=T_{B'}^{B}\cdot M_{B}^{B}(f)\cdot T_{B}^{B'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{B'}^{B'}(f)=T_{B'}^{B}\cdot M_{B}^{B}(f)\cdot T_{B}^{B'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3f7edabf80cd28bb045af84c702a0b6c7bff470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.221ex; height:3.509ex;" alt="{\displaystyle M_{B'}^{B'}(f)=T_{B'}^{B}\cdot M_{B}^{B}(f)\cdot T_{B}^{B'}}"></span></dd></dl> <p>Setzt man <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T:=T_{B'}^{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>:=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T:=T_{B'}^{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7957e52da88a7761ceeff83dc8190f20fe0691fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.75ex; height:3.343ex;" alt="{\displaystyle T:=T_{B'}^{B}}"></span>, so gilt also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{B'}^{B'}(f)=T\cdot M_{B}^{B}(f)\cdot T^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{B'}^{B'}(f)=T\cdot M_{B}^{B}(f)\cdot T^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d24ee13e63f710bab15464ae2cffcffea99d80f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:27.457ex; height:3.509ex;" alt="{\displaystyle M_{B'}^{B'}(f)=T\cdot M_{B}^{B}(f)\cdot T^{-1}.}"></span></dd></dl> <p>Die Abbildungsmatrizen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{B'}^{B'}(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{B'}^{B'}(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ed9a6e3113878ea403324de45c540cebfd9661" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.598ex; height:3.509ex;" alt="{\displaystyle M_{B'}^{B'}(f)}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{B}^{B}(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{B}^{B}(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecac2e8b3098f605a1c5651991c8eadf3015b17c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.066ex; height:3.176ex;" alt="{\displaystyle M_{B}^{B}(f)}"></span> sind also <a href="/wiki/%C3%84hnlichkeit_(Matrix)" title="Ähnlichkeit (Matrix)">ähnlich</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Beispiel">Beispiel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=5" title="Abschnitt bearbeiten: Beispiel" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=5" title="Quellcode des Abschnitts bearbeiten: Beispiel"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wir betrachten zwei Basen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(b_{1},b_{2},b_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(b_{1},b_{2},b_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be95af1343bc4075ba14bc1670719c2a696352be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.895ex; height:2.843ex;" alt="{\displaystyle B=(b_{1},b_{2},b_{3})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'=(b_{1}',b_{2}',b_{3}')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'=(b_{1}',b_{2}',b_{3}')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7019e90084f63fb408f22ffaacc90678cce39faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.58ex; height:3.176ex;" alt="{\displaystyle B'=(b_{1}',b_{2}',b_{3}')}"></span> des <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> mit </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{1}={\begin{pmatrix}1\\0\\2\end{pmatrix}},b_{2}={\begin{pmatrix}3\\1\\0\end{pmatrix}},b_{3}={\begin{pmatrix}2\\1\\1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{1}={\begin{pmatrix}1\\0\\2\end{pmatrix}},b_{2}={\begin{pmatrix}3\\1\\0\end{pmatrix}},b_{3}={\begin{pmatrix}2\\1\\1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50d5db642b3d4e743c49ccaec97ea592bc77acc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:35.461ex; height:9.176ex;" alt="{\displaystyle b_{1}={\begin{pmatrix}1\\0\\2\end{pmatrix}},b_{2}={\begin{pmatrix}3\\1\\0\end{pmatrix}},b_{3}={\begin{pmatrix}2\\1\\1\end{pmatrix}}}"></span></dd></dl> <p>und </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{1}'={\begin{pmatrix}1\\0\\1\end{pmatrix}},b_{2}'={\begin{pmatrix}0\\1\\1\end{pmatrix}},b_{3}'={\begin{pmatrix}1\\1\\0\end{pmatrix}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{1}'={\begin{pmatrix}1\\0\\1\end{pmatrix}},b_{2}'={\begin{pmatrix}0\\1\\1\end{pmatrix}},b_{3}'={\begin{pmatrix}1\\1\\0\end{pmatrix}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c31f3eb9ec1a903cecd0b869b110ccc987ec02fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:36.495ex; height:9.176ex;" alt="{\displaystyle b_{1}'={\begin{pmatrix}1\\0\\1\end{pmatrix}},b_{2}'={\begin{pmatrix}0\\1\\1\end{pmatrix}},b_{3}'={\begin{pmatrix}1\\1\\0\end{pmatrix}}\,,}"></span></dd></dl> <p>wobei die Koordinatendarstellung der Vektoren die Vektoren bezüglich der <a href="/wiki/Standardbasis" title="Standardbasis">Standardbasis</a> beschreibt. </p><p>Die Transformation der Koordinaten eines Vektors </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=x_{1}b_{1}+x_{2}b_{2}+x_{3}b_{3}=x_{1}'b_{1}'+x_{2}'b_{2}'+x_{3}'b_{3}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=x_{1}b_{1}+x_{2}b_{2}+x_{3}b_{3}=x_{1}'b_{1}'+x_{2}'b_{2}'+x_{3}'b_{3}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e13c7aa5b00c7e7b160d156f411be49f15c972a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.3ex; height:2.843ex;" alt="{\displaystyle v=x_{1}b_{1}+x_{2}b_{2}+x_{3}b_{3}=x_{1}'b_{1}'+x_{2}'b_{2}'+x_{3}'b_{3}'}"></span></dd></dl> <p>ergibt sich durch die Darstellung der alten Basisvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b_{1},b_{2},b_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b_{1},b_{2},b_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/facfe95205e32ef796c45ee4702e050de002f03e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.033ex; height:2.843ex;" alt="{\displaystyle (b_{1},b_{2},b_{3})}"></span> bezüglich der neuen Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b_{1}',b_{2}',b_{3}')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b_{1}',b_{2}',b_{3}')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67744823f83d2dffd26261986f559dcc12023d91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.033ex; height:3.009ex;" alt="{\displaystyle (b_{1}',b_{2}',b_{3}')}"></span> und deren Gewichtung mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},x_{2},x_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},x_{2},x_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c299961b19740135135d0ef0289b16b6095048d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.029ex; height:2.843ex;" alt="{\displaystyle (x_{1},x_{2},x_{3})}"></span>. </p><p>Um die Matrix der Basistransformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}=(a_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}=(a_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90dce48dfe26782354a35c7817b44638ee898fbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.983ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}=(a_{ij})}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> zu berechnen, müssen wir die drei <a href="/wiki/Lineares_Gleichungssystem" title="Lineares Gleichungssystem">linearen Gleichungssysteme</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{j}=a_{1j}x_{1}'+a_{2j}x_{2}'+a_{3j}x_{3}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>j</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{j}=a_{1j}x_{1}'+a_{2j}x_{2}'+a_{3j}x_{3}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/defa37e9dfe3ae5d9c678f8eb668e939cb5320d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.055ex; height:2.843ex;" alt="{\displaystyle x_{j}=a_{1j}x_{1}'+a_{2j}x_{2}'+a_{3j}x_{3}'}"></span></dd></dl> <p>nach den 9 Unbekannten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebea6cd2813c330c798921a2894b358f7b643917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.707ex; height:2.343ex;" alt="{\displaystyle a_{ij}}"></span> auflösen. </p><p>Dies kann mit dem <a href="/wiki/Gau%C3%9F-Jordan-Algorithmus" title="Gauß-Jordan-Algorithmus">Gauß-Jordan-Algorithmus</a> für alle drei Gleichungssysteme simultan erfolgen. Dazu wird folgendes lineares Gleichungssystem aufgestellt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\begin{array}{c c c | c c c}1&0&1&1&3&2\\0&1&1&0&1&1\\1&1&0&2&0&1\end{array}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center center center" rowspacing="4pt" columnspacing="1em" columnlines="none none solid none none"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\begin{array}{c c c | c c c}1&0&1&1&3&2\\0&1&1&0&1&1\\1&1&0&2&0&1\end{array}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7aab60fe811a88a587b5b862535205d60a74ffaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:25.264ex; height:10.176ex;" alt="{\displaystyle \left({\begin{array}{c c c | c c c}1&0&1&1&3&2\\0&1&1&0&1&1\\1&1&0&2&0&1\end{array}}\right)}"></span></dd></dl> <p>Durch Umformen mit elementaren Zeilenoperationen lässt sich die linke Seite auf die <a href="/wiki/Einheitsmatrix" title="Einheitsmatrix">Einheitsmatrix</a> bringen und auf der rechten Seite erhält man als Lösung des Systems die Transformationsmatrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}={\begin{pmatrix}{\frac {3}{2}}&1&1\\{\frac {1}{2}}&-1&0\\-{\frac {1}{2}}&2&1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}={\begin{pmatrix}{\frac {3}{2}}&1&1\\{\frac {1}{2}}&-1&0\\-{\frac {1}{2}}&2&1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ee3fac1c63481f5926f089255e4986400a430cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.012ex; margin-bottom: -0.326ex; width:23.53ex; height:11.843ex;" alt="{\displaystyle T_{B'}^{B}={\begin{pmatrix}{\frac {3}{2}}&1&1\\{\frac {1}{2}}&-1&0\\-{\frac {1}{2}}&2&1\end{pmatrix}}}"></span>.</dd></dl> <p>Wir betrachten den Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=2b_{1}-b_{2}+3b_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mn>2</mn> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=2b_{1}-b_{2}+3b_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82eba19b2e76f7f11191c30586132dc22391158d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.387ex; height:2.509ex;" alt="{\displaystyle v=2b_{1}-b_{2}+3b_{3}}"></span>, also den Vektor der bezüglich der Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> die Koordinaten </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}={\begin{pmatrix}2\\-1\\3\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}={\begin{pmatrix}2\\-1\\3\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80ade2000efa2f653a5a3b701b749dd90538953e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.09ex; height:9.176ex;" alt="{\displaystyle {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}={\begin{pmatrix}2\\-1\\3\end{pmatrix}}}"></span></dd></dl> <p>besitzt. Um nun die Koordinaten bezüglich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b144e466a3757b4706daf24a45d4f1266700016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.509ex;" alt="{\displaystyle B'}"></span> zu berechnen, müssen wir die Transformationsmatrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{B'}^{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{B'}^{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb57134574715111f0c1c3dd85fd8d27a116d132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.369ex; height:3.343ex;" alt="{\displaystyle T_{B'}^{B}}"></span> mit diesem Spaltenvektor multiplizieren: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}x_{1}'\\x_{2}'\\x_{3}'\end{pmatrix}}={\begin{pmatrix}{\frac {3}{2}}&1&1\\{\frac {1}{2}}&-1&0\\-{\frac {1}{2}}&2&1\end{pmatrix}}{\begin{pmatrix}2\\-1\\3\end{pmatrix}}={\begin{pmatrix}5\\2\\0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}x_{1}'\\x_{2}'\\x_{3}'\end{pmatrix}}={\begin{pmatrix}{\frac {3}{2}}&1&1\\{\frac {1}{2}}&-1&0\\-{\frac {1}{2}}&2&1\end{pmatrix}}{\begin{pmatrix}2\\-1\\3\end{pmatrix}}={\begin{pmatrix}5\\2\\0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5d0c841788cdbca3f497a26689c0ab9ae6d39e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.012ex; margin-bottom: -0.326ex; width:44.232ex; height:11.843ex;" alt="{\displaystyle {\begin{pmatrix}x_{1}'\\x_{2}'\\x_{3}'\end{pmatrix}}={\begin{pmatrix}{\frac {3}{2}}&1&1\\{\frac {1}{2}}&-1&0\\-{\frac {1}{2}}&2&1\end{pmatrix}}{\begin{pmatrix}2\\-1\\3\end{pmatrix}}={\begin{pmatrix}5\\2\\0\end{pmatrix}}}"></span>.</dd></dl> <p>Also ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=5b_{1}'+2b_{2}'+0b_{3}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mn>5</mn> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <mn>0</mn> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=5b_{1}'+2b_{2}'+0b_{3}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b6c0992adcc11fb09d74b28953c6f94e9919893" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.55ex; height:2.843ex;" alt="{\displaystyle v=5b_{1}'+2b_{2}'+0b_{3}'}"></span>. </p><p>In der Tat rechnet man als Probe leicht nach, dass </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2b_{1}-b_{2}+3b_{3}=5b_{1}'+2b_{2}'+0b_{3}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <mn>0</mn> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2b_{1}-b_{2}+3b_{3}=5b_{1}'+2b_{2}'+0b_{3}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38d38e8dfc3c3ea3c93e0a07ca2b6488ab1d6f9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.583ex; height:2.843ex;" alt="{\displaystyle 2b_{1}-b_{2}+3b_{3}=5b_{1}'+2b_{2}'+0b_{3}'}"></span></dd></dl> <p>gilt. </p> <div class="mw-heading mw-heading2"><h2 id="Basiswechsel_mit_Hilfe_der_dualen_Basis">Basiswechsel mit Hilfe der dualen Basis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=6" title="Abschnitt bearbeiten: Basiswechsel mit Hilfe der dualen Basis" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=6" title="Quellcode des Abschnitts bearbeiten: Basiswechsel mit Hilfe der dualen Basis"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Im wichtigen und anschaulichen Spezialfall des <a href="/wiki/Euklidischer_Vektorraum" class="mw-redirect" title="Euklidischer Vektorraum">euklidischen Vektorraums</a> (V, ·) kann der Basiswechsel elegant mit der <a href="/wiki/Duale_Basis" title="Duale Basis">dualen Basis</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {b}}^{1},\ldots ,{\vec {b}}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {b}}^{1},\ldots ,{\vec {b}}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57643d5c1c804a50d7d4a750cef29b8e4c6b8e2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.448ex; height:3.843ex;" alt="{\displaystyle ({\vec {b}}^{1},\ldots ,{\vec {b}}^{n})}"></span> einer Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {b}}_{1},\ldots ,{\vec {b}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {b}}_{1},\ldots ,{\vec {b}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f260ce39585cf8fbf2f2f1c11ae32444306f9fd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.448ex; height:3.343ex;" alt="{\displaystyle ({\vec {b}}_{1},\ldots ,{\vec {b}}_{n})}"></span> durchgeführt werden. Für die Basisvektoren gilt dann </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}_{i}\cdot {\vec {b}}^{j}=\delta _{i}^{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}_{i}\cdot {\vec {b}}^{j}=\delta _{i}^{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5665b28f06ebe9fdc8a810a6019518448bd9856e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.285ex; height:4.009ex;" alt="{\displaystyle {\vec {b}}_{i}\cdot {\vec {b}}^{j}=\delta _{i}^{j}.}"></span></dd></dl> <p>mit dem <a href="/wiki/Kronecker-Delta" title="Kronecker-Delta">Kronecker-Delta</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span>. Skalare Multiplikation eines Vektors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span> mit den Basisvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f29f4c2e0e44e24a2984f299c73fc13adc32ab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.894ex; height:3.343ex;" alt="{\displaystyle {\vec {b}}^{i}}"></span>, Multiplikation dieser Skalarprodukte mit den Basisvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b8d268dde2fbd9df47a558bb7723895939fb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.894ex; height:3.176ex;" alt="{\displaystyle {\vec {b}}_{i}}"></span> und Addition aller Gleichungen ergibt einen Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {w}}:=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>:=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {w}}:=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad5836c2cfa0c240cbc877d81f2c58c109cb7736" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.507ex; height:3.843ex;" alt="{\displaystyle {\vec {w}}:=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}.}"></span> Hier wie im Folgenden ist die <a href="/wiki/Einsteinsche_Summenkonvention" title="Einsteinsche Summenkonvention">Einsteinsche Summenkonvention</a> anzuwenden, der zufolge über in einem Produkt doppelt vorkommende Indizes, im vorhergehenden Satz beispielsweise nur <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, von eins bis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> zu summieren ist. Skalare Multiplikation von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6c48cdaecf8d81481ea21b1d0c046bf34b68ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:2.343ex;" alt="{\displaystyle {\vec {w}}}"></span> mit irgendeinem Basisvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e03e92f2f2f5535e30879f8e9fd10ec9c7cfbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.183ex; height:3.509ex;" alt="{\displaystyle {\vec {b}}^{k}}"></span> ergibt wegen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {w}}\cdot {\vec {b}}^{k}=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}\cdot {\vec {b}}^{k}=({\vec {b}}^{i}\cdot {\vec {v}})\delta _{i}^{k}={\vec {b}}^{k}\cdot {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {w}}\cdot {\vec {b}}^{k}=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}\cdot {\vec {b}}^{k}=({\vec {b}}^{i}\cdot {\vec {v}})\delta _{i}^{k}={\vec {b}}^{k}\cdot {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6ed4c49b2b30efc21212aa0006da3388303867d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.871ex; height:4.176ex;" alt="{\displaystyle {\vec {w}}\cdot {\vec {b}}^{k}=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}\cdot {\vec {b}}^{k}=({\vec {b}}^{i}\cdot {\vec {v}})\delta _{i}^{k}={\vec {b}}^{k}\cdot {\vec {v}}}"></span></dd></dl> <p>dasselbe Ergebnis wie die skalare Multiplikation von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span> mit diesem Basisvektor, weswegen die beiden Vektoren identisch sind: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}=:v^{i}{\vec {b}}_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=:</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}=:v^{i}{\vec {b}}_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b1c6999b27b62c7c55bc1d5ccd3df80f7a713b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.938ex; height:3.843ex;" alt="{\displaystyle {\vec {v}}=({\vec {b}}^{i}\cdot {\vec {v}}){\vec {b}}_{i}=:v^{i}{\vec {b}}_{i}.}"></span></dd></dl> <p>Analog zeigt sich: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}=({\vec {b}}_{i}\cdot {\vec {v}}){\vec {b}}^{i}=:v_{i}{\vec {b}}^{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=:</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}=({\vec {b}}_{i}\cdot {\vec {v}}){\vec {b}}^{i}=:v_{i}{\vec {b}}^{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/866a555043a589228407b37454185bd3a52bfd53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.938ex; height:3.843ex;" alt="{\displaystyle {\vec {v}}=({\vec {b}}_{i}\cdot {\vec {v}}){\vec {b}}^{i}=:v_{i}{\vec {b}}^{i}.}"></span></dd></dl> <p>Dieser Zusammenhang zwischen den Basisvektoren und einem Vektor, seinen Komponenten und Koordinaten, gilt für jeden Vektor im gegebenen Vektorraum. </p> <div class="mw-heading mw-heading3"><h3 id="Wechsel_zur_dualen_Basis">Wechsel zur dualen Basis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=7" title="Abschnitt bearbeiten: Wechsel zur dualen Basis" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=7" title="Quellcode des Abschnitts bearbeiten: Wechsel zur dualen Basis"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Skalare Multiplikation beider Gleichungen mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e03e92f2f2f5535e30879f8e9fd10ec9c7cfbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.183ex; height:3.509ex;" alt="{\displaystyle {\vec {b}}^{k}}"></span> liefert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{i}{\vec {b}}_{i}\cdot {\vec {b}}^{k}=v_{i}{\vec {b}}^{i}\cdot {\vec {b}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{i}{\vec {b}}_{i}\cdot {\vec {b}}^{k}=v_{i}{\vec {b}}^{i}\cdot {\vec {b}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5854dde6a8c143e7350cb019af7b779afea98658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.464ex; height:3.843ex;" alt="{\displaystyle v^{i}{\vec {b}}_{i}\cdot {\vec {b}}^{k}=v_{i}{\vec {b}}^{i}\cdot {\vec {b}}^{k}}"></span> oder </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{k}=b^{ki}v_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msup> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{k}=b^{ki}v_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1981e389aa562d2c7d620315fd5d8eb5d8810cda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.543ex; height:3.009ex;" alt="{\displaystyle v^{k}=b^{ki}v_{i}.}"></span></dd></dl> <p>Die Umkehroperation mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b92656c7a8794ce34ee3e686d1cc6501aa67efa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.183ex; height:3.176ex;" alt="{\displaystyle {\vec {b}}_{k}}"></span> ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{k}=v^{i}{\vec {b}}_{i}\cdot {\vec {b}}_{k}=b_{ki}v^{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{k}=v^{i}{\vec {b}}_{i}\cdot {\vec {b}}_{k}=b_{ki}v^{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda09e27d499b0ff9c7874d504085b2f47a6aca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.324ex; height:3.176ex;" alt="{\displaystyle v_{k}=v^{i}{\vec {b}}_{i}\cdot {\vec {b}}_{k}=b_{ki}v^{i}.}"></span></dd></dl> <p>Für die oben benutzten Skalarprodukte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{ij}:={\vec {b}}_{i}\cdot {\vec {b}}_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>:=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{ij}:={\vec {b}}_{i}\cdot {\vec {b}}_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37f2faf7bbf19c22751518e1bd3af4d7d6a60a65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.796ex; height:3.509ex;" alt="{\displaystyle b_{ij}:={\vec {b}}_{i}\cdot {\vec {b}}_{j}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{kl}:={\vec {b}}^{k}\cdot {\vec {b}}^{l}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msup> <mo>:=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{kl}:={\vec {b}}^{k}\cdot {\vec {b}}^{l}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd5726bde8439a6ebce52098041abbebc5fccac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12ex; height:3.509ex;" alt="{\displaystyle b^{kl}:={\vec {b}}^{k}\cdot {\vec {b}}^{l}}"></span> gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{ik}b^{kj}=b^{jk}b_{ki}=({\vec {b}}^{j}\cdot {\vec {b}}^{k})({\vec {b}}_{k}\cdot {\vec {b}}_{i})=[({\vec {b}}^{j}\cdot {\vec {b}}^{k}){\vec {b}}_{k}]\cdot {\vec {b}}_{i}={\vec {b}}^{j}\cdot {\vec {b}}_{i}=\delta _{i}^{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>j</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{ik}b^{kj}=b^{jk}b_{ki}=({\vec {b}}^{j}\cdot {\vec {b}}^{k})({\vec {b}}_{k}\cdot {\vec {b}}_{i})=[({\vec {b}}^{j}\cdot {\vec {b}}^{k}){\vec {b}}_{k}]\cdot {\vec {b}}_{i}={\vec {b}}^{j}\cdot {\vec {b}}_{i}=\delta _{i}^{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a815ee39140c3225dfbedb0eef1b4cd7ca2bd05a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:64.477ex; height:4.176ex;" alt="{\displaystyle b_{ik}b^{kj}=b^{jk}b_{ki}=({\vec {b}}^{j}\cdot {\vec {b}}^{k})({\vec {b}}_{k}\cdot {\vec {b}}_{i})=[({\vec {b}}^{j}\cdot {\vec {b}}^{k}){\vec {b}}_{k}]\cdot {\vec {b}}_{i}={\vec {b}}^{j}\cdot {\vec {b}}_{i}=\delta _{i}^{j}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Wechsel_zu_einer_anderen_Basis">Wechsel zu einer anderen Basis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=8" title="Abschnitt bearbeiten: Wechsel zu einer anderen Basis" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=8" title="Quellcode des Abschnitts bearbeiten: Wechsel zu einer anderen Basis"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gegeben sei ein Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span>, der von einer Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {a}}_{1},\ldots ,{\vec {a}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {a}}_{1},\ldots ,{\vec {a}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8783917e26ded4cfc81c4d0493e14ed66911d4af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.72ex; height:2.843ex;" alt="{\displaystyle ({\vec {a}}_{1},\ldots ,{\vec {a}}_{n})}"></span> zur Basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {b}}_{1},\ldots ,{\vec {b}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {b}}_{1},\ldots ,{\vec {b}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f260ce39585cf8fbf2f2f1c11ae32444306f9fd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.448ex; height:3.343ex;" alt="{\displaystyle ({\vec {b}}_{1},\ldots ,{\vec {b}}_{n})}"></span> wechseln soll. Das gelingt, indem jeder Basisvektor gemäß <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}_{j}=({\vec {b}}^{i}\cdot {\vec {a}}_{j}){\vec {b}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}_{j}=({\vec {b}}^{i}\cdot {\vec {a}}_{j}){\vec {b}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b43b88852d132941bec00445aa1eeda305e7b71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.653ex; height:4.009ex;" alt="{\displaystyle {\vec {a}}_{j}=({\vec {b}}^{i}\cdot {\vec {a}}_{j}){\vec {b}}_{i}}"></span> durch die neue Basis ausgedrückt wird: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}=x_{j}{\vec {a}}_{j}=x_{j}({\vec {b}}^{i}\cdot {\vec {a}}_{j}){\vec {b}}_{i}=x_{i}^{\prime }{\vec {b}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}=x_{j}{\vec {a}}_{j}=x_{j}({\vec {b}}^{i}\cdot {\vec {a}}_{j}){\vec {b}}_{i}=x_{i}^{\prime }{\vec {b}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e405eb0fd9c6dd46bfcf0c1b2e58b1a5fbc6c00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.527ex; height:4.009ex;" alt="{\displaystyle {\vec {v}}=x_{j}{\vec {a}}_{j}=x_{j}({\vec {b}}^{i}\cdot {\vec {a}}_{j}){\vec {b}}_{i}=x_{i}^{\prime }{\vec {b}}_{i}}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}^{\prime }:=({\vec {b}}^{i}\cdot {\vec {a}}_{j})x_{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <mo>:=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}^{\prime }:=({\vec {b}}^{i}\cdot {\vec {a}}_{j})x_{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5bee74ba1308e32ceae22083a59d5f45153ec10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.282ex; height:4.009ex;" alt="{\displaystyle x_{i}^{\prime }:=({\vec {b}}^{i}\cdot {\vec {a}}_{j})x_{j}.}"></span></dd></dl> <p>Die Umkehrung davon ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}:=({\vec {b}}_{i}\cdot {\vec {a}}^{j})x_{j}^{\prime }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>:=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}:=({\vec {b}}_{i}\cdot {\vec {a}}^{j})x_{j}^{\prime }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3ad6913a8f27bbd72c86e3ba88f0a249996f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:16.282ex; height:3.843ex;" alt="{\displaystyle x_{i}:=({\vec {b}}_{i}\cdot {\vec {a}}^{j})x_{j}^{\prime }.}"></span> Der Basiswechsel bei Tensoren zweiter Stufe wird analog durchgeführt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} :=M_{ij}{\vec {a}}_{i}\otimes {\vec {b}}_{j}:=M_{ij}[({\vec {c}}^{k}\cdot {\vec {a}}_{i}){\vec {c}}_{k}]\otimes [({\vec {d}}^{l}\cdot {\vec {b}}_{j}){\vec {d}}_{l}]:=M_{kl}^{\prime }{\vec {c}}_{k}\otimes {\vec {d}}_{l}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mo>:=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⊗<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>:=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>⊗<!-- ⊗ --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>:=</mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⊗<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} :=M_{ij}{\vec {a}}_{i}\otimes {\vec {b}}_{j}:=M_{ij}[({\vec {c}}^{k}\cdot {\vec {a}}_{i}){\vec {c}}_{k}]\otimes [({\vec {d}}^{l}\cdot {\vec {b}}_{j}){\vec {d}}_{l}]:=M_{kl}^{\prime }{\vec {c}}_{k}\otimes {\vec {d}}_{l}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10badc3f0706b8fb6e32a1a7d01844d6fdab7267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:64.965ex; height:4.176ex;" alt="{\displaystyle \mathbf {M} :=M_{ij}{\vec {a}}_{i}\otimes {\vec {b}}_{j}:=M_{ij}[({\vec {c}}^{k}\cdot {\vec {a}}_{i}){\vec {c}}_{k}]\otimes [({\vec {d}}^{l}\cdot {\vec {b}}_{j}){\vec {d}}_{l}]:=M_{kl}^{\prime }{\vec {c}}_{k}\otimes {\vec {d}}_{l}}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{kl}^{\prime }=({\vec {c}}^{k}\cdot {\vec {a}}_{i})M_{ij}({\vec {d}}^{l}\cdot {\vec {b}}_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{kl}^{\prime }=({\vec {c}}^{k}\cdot {\vec {a}}_{i})M_{ij}({\vec {d}}^{l}\cdot {\vec {b}}_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2c1816e426b07fbac8a0b0c61f30221a441554" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.254ex; height:4.176ex;" alt="{\displaystyle M_{kl}^{\prime }=({\vec {c}}^{k}\cdot {\vec {a}}_{i})M_{ij}({\vec {d}}^{l}\cdot {\vec {b}}_{j})}"></span></dd></dl> <p>was sich ohne weiteres auf Tensoren höherer Stufe verallgemeinern lässt. Das Rechenzeichen „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊗<!-- ⊗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }"></span>“ bildet das <a href="/wiki/Dyadisches_Produkt" title="Dyadisches Produkt">dyadische Produkt</a>. </p><p>Der Zusammenhang zwischen den Koordinaten </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}^{\prime }:=({\vec {b}}^{i}\cdot {\vec {a}}_{j})x_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <mo>:=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}^{\prime }:=({\vec {b}}^{i}\cdot {\vec {a}}_{j})x_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad6c62a0e8e42528956be1b8faa045504c0f73b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.636ex; height:4.009ex;" alt="{\displaystyle x_{i}^{\prime }:=({\vec {b}}^{i}\cdot {\vec {a}}_{j})x_{j}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{kl}^{\prime }=({\vec {c}}^{k}\cdot {\vec {a}}_{i})M_{ij}({\vec {d}}^{l}\cdot {\vec {b}}_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{kl}^{\prime }=({\vec {c}}^{k}\cdot {\vec {a}}_{i})M_{ij}({\vec {d}}^{l}\cdot {\vec {b}}_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2c1816e426b07fbac8a0b0c61f30221a441554" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.254ex; height:4.176ex;" alt="{\displaystyle M_{kl}^{\prime }=({\vec {c}}^{k}\cdot {\vec {a}}_{i})M_{ij}({\vec {d}}^{l}\cdot {\vec {b}}_{j})}"></span></dd></dl> <p>kann kompakt mit Basiswechselmatrizen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{Q}^{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{Q}^{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3030c9546b3643759d65a7bce2f103112b79bbf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.186ex; height:3.509ex;" alt="{\displaystyle T_{Q}^{P}}"></span> mit den Komponenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (T_{Q}^{P})_{ij}={\vec {q}}^{i}\cdot {\vec {p}}_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (T_{Q}^{P})_{ij}={\vec {q}}^{i}\cdot {\vec {p}}_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d68bb30210e1038d44551828aa87a183a538b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.594ex; height:3.843ex;" alt="{\displaystyle (T_{Q}^{P})_{ij}={\vec {q}}^{i}\cdot {\vec {p}}_{j}}"></span> bei einem Basiswechsel von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {p}}_{1},\ldots ,{\vec {p}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {p}}_{1},\ldots ,{\vec {p}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b5b026a98ed225f2f62e8eca5ebe72bbd09306a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.911ex; height:2.843ex;" alt="{\displaystyle ({\vec {p}}_{1},\ldots ,{\vec {p}}_{n})}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {q}}_{1},\ldots ,{\vec {q}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\vec {q}}_{1},\ldots ,{\vec {q}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d9421bfcbcc3929e7495a93b023ce33dd1a72e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.877ex; height:2.843ex;" alt="{\displaystyle ({\vec {q}}_{1},\ldots ,{\vec {q}}_{n})}"></span> und ihren dualen Partnern dargestellt werden. Die <a href="/wiki/Inverse_Matrix" title="Inverse Matrix">Inverse</a> der Basiswechselmatrix hat, wie oben angedeutet, die Komponenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (T_{Q}^{P})_{ij}^{-1}={\vec {p}}^{i}\cdot {\vec {q}}_{j},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (T_{Q}^{P})_{ij}^{-1}={\vec {p}}^{i}\cdot {\vec {q}}_{j},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65b0f0598a3ff91d41991e9aeeacfecd70b7e5fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:17.096ex; height:3.843ex;" alt="{\displaystyle (T_{Q}^{P})_{ij}^{-1}={\vec {p}}^{i}\cdot {\vec {q}}_{j},}"></span> denn bei der Matrizenmultiplikation ergibt sich für Komponenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ij}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ij}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53fcc7b57da64979c370eb150eb5a61a625a08e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.761ex; height:2.509ex;" alt="{\displaystyle ij}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [T_{Q}^{P}\cdot (T_{Q}^{P})^{-1}]_{ij}=({\vec {q}}^{i}\cdot {\vec {p}}_{k})({\vec {p}}^{k}\cdot {\vec {q}}_{j})=[({\vec {q}}^{i}\cdot {\vec {p}}_{k}){\vec {p}}^{k}]\cdot {\vec {q}}_{j}={\vec {q}}^{i}\cdot {\vec {q}}_{j}=\delta _{j}^{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [T_{Q}^{P}\cdot (T_{Q}^{P})^{-1}]_{ij}=({\vec {q}}^{i}\cdot {\vec {p}}_{k})({\vec {p}}^{k}\cdot {\vec {q}}_{j})=[({\vec {q}}^{i}\cdot {\vec {p}}_{k}){\vec {p}}^{k}]\cdot {\vec {q}}_{j}={\vec {q}}^{i}\cdot {\vec {q}}_{j}=\delta _{j}^{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7b992074529b432635274ebffaae3a6f9cd5cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:67.7ex; height:3.843ex;" alt="{\displaystyle [T_{Q}^{P}\cdot (T_{Q}^{P})^{-1}]_{ij}=({\vec {q}}^{i}\cdot {\vec {p}}_{k})({\vec {p}}^{k}\cdot {\vec {q}}_{j})=[({\vec {q}}^{i}\cdot {\vec {p}}_{k}){\vec {p}}^{k}]\cdot {\vec {q}}_{j}={\vec {q}}^{i}\cdot {\vec {q}}_{j}=\delta _{j}^{i}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Anwendungen">Anwendungen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=9" title="Abschnitt bearbeiten: Anwendungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=9" title="Quellcode des Abschnitts bearbeiten: Anwendungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Basiswechselmatrizen besitzen vielfältige Anwendungsmöglichkeiten in der Mathematik und Physik. </p> <div class="mw-heading mw-heading3"><h3 id="In_der_Mathematik">In der Mathematik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=10" title="Abschnitt bearbeiten: In der Mathematik" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=10" title="Quellcode des Abschnitts bearbeiten: In der Mathematik"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Anwendung von Basiswechselmatrizen in der Mathematik ist die Veränderung der Gestalt der Abbildungsmatrix einer linearen Abbildung, um die Rechnung zu vereinfachen. </p><p>Möchte man zum Beispiel die Potenz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/531f6b3fa540ff52e0b045dabf6d14d0be92247c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.802ex; height:2.343ex;" alt="{\displaystyle A^{p}}"></span> einer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>-Matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> mit einem Exponenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f127e7a5f2449ddf3edb8164c2d2439120641f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p>1}"></span> berechnen, so ist die Zahl der benötigten Matrizenmultiplikationen von der Größenordnung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(\log p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(\log p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dd864c9c3116369675faa60061e985e0ec11760" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.111ex; height:2.843ex;" alt="{\displaystyle O(\log p)}"></span>. Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> diagonalisierbar, so existieren eine <a href="/wiki/Diagonalmatrix" title="Diagonalmatrix">Diagonalmatrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> und eine Basiswechselmatrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\in Gl\left(n,K\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>∈<!-- ∈ --></mo> <mi>G</mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>,</mo> <mi>K</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\in Gl\left(n,K\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e001847c95dd0d9243c2092e7c77b0fb8073ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.688ex; height:2.843ex;" alt="{\displaystyle T\in Gl\left(n,K\right)}"></span>, sodass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=T\cdot D\cdot T^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>D</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=T\cdot D\cdot T^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1183ba4192dd415f611f822c0043be867bb81b6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.813ex; height:2.676ex;" alt="{\displaystyle A=T\cdot D\cdot T^{-1}}"></span> und somit </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{p}=\left(T\cdot D\cdot T^{-1}\right)^{p}=T\cdot D^{p}\cdot T^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mi>D</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{p}=\left(T\cdot D\cdot T^{-1}\right)^{p}=T\cdot D^{p}\cdot T^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d55e52e2d64a9c650b0ea4f90e50dadf6bba4cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.19ex; height:3.343ex;" alt="{\displaystyle A^{p}=\left(T\cdot D\cdot T^{-1}\right)^{p}=T\cdot D^{p}\cdot T^{-1}}"></span></dd></dl> <p>Die Zahl der für die Berechnung der rechten Seite benötigten Multiplikationen ist nur von der Größenordnung: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\log p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\log p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5d700d07dc95463cc60f63bf18347d8be425217" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.31ex; height:2.509ex;" alt="{\displaystyle n\log p}"></span> zur Berechnung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db4ed76952aa125fb95c69be6c96b92ab852bcac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.983ex; height:2.343ex;" alt="{\displaystyle D^{p}}"></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9810bbdafe4a6a8061338db0f74e25b7952620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.676ex;" alt="{\displaystyle n^{2}}"></span> zur Berechnung des Produkts <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{p}\cdot T^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{p}\cdot T^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97137edcb2b0c6a6d3356f8727d091ac338feccf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.715ex; height:2.676ex;" alt="{\displaystyle D^{p}\cdot T^{-1}}"></span></li> <li>sowie einer Matrixmultiplikation für das Produkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\cdot (D^{p}T^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\cdot (D^{p}T^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/347e86fbd0bb7140cae4c54e597200f6eb8bd523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.161ex; height:3.176ex;" alt="{\displaystyle T\cdot (D^{p}T^{-1})}"></span></li></ul> <p>Da die <a href="/wiki/Matrixmultiplikation#Algorithmen_mit_besserer_Komplexität" class="mw-redirect" title="Matrixmultiplikation">Matrixmultiplikation</a> von der Größenordnung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O\left(n^{2{,}3727}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2,372</mn> <mn>7</mn> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O\left(n^{2{,}3727}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc7a313b1cf6d14657ae84c69200d9b500e9798f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.484ex; height:3.343ex;" alt="{\displaystyle O\left(n^{2{,}3727}\right)}"></span> ist, erhalten wir eine Komplexität von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O\left(n^{2{,}3727}+n\cdot \log(p)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2,372</mn> <mn>7</mn> </mrow> </msup> <mo>+</mo> <mi>n</mi> <mo>⋅<!-- ⋅ --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O\left(n^{2{,}3727}+n\cdot \log(p)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dafcc6fcc678d0dc2aa27986835c46afc8670014" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.349ex; height:3.343ex;" alt="{\displaystyle O\left(n^{2{,}3727}+n\cdot \log(p)\right)}"></span> anstelle von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O\left(n^{2{,}3727}\cdot \log(p)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2,372</mn> <mn>7</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O\left(n^{2{,}3727}\cdot \log(p)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82c57454097f40fbfa33a09bd1f5a168234e3059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.114ex; height:3.343ex;" alt="{\displaystyle O\left(n^{2{,}3727}\cdot \log(p)\right)}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="In_der_Physik">In der Physik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=11" title="Abschnitt bearbeiten: In der Physik" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=11" title="Quellcode des Abschnitts bearbeiten: In der Physik"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Anwendung von Basiswechselmatrizen in der Physik findet bspw. in der <a href="/wiki/%C3%84hnlichkeitstheorie" title="Ähnlichkeitstheorie">Ähnlichkeitstheorie</a> statt, um <a href="/wiki/Dimensionslose_Kennzahl" title="Dimensionslose Kennzahl">dimensionslose Kennzahlen</a> zu ermitteln. Hierbei werden durch einen Basiswechsel einer physikalischen Größe neue Basisdimensionen zugeordnet. Die dimensionslosen Kennzahlen stellen dann genau das Verhältnis der physikalischen Größe zu seiner Dimensionsvorschrift dar. </p> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=12" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=12" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Peter_Knabner" title="Peter Knabner">Peter Knabner</a>, <a href="/wiki/Wolf_Barth_(Mathematiker)" title="Wolf Barth (Mathematiker)">Wolf Barth</a>: <cite style="font-style:italic">Lineare Algebra. Grundlagen und Anwendungen</cite>. Springer Spektrum, Berlin/Heidelberg 2013, <a href="/wiki/Spezial:ISBN-Suche/9783642321856" class="internal mw-magiclink-isbn">ISBN 978-3-642-32185-6</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Basiswechsel+%28Vektorraum%29&rft.au=Peter+Knabner%2C+Wolf+Barth&rft.btitle=Lineare+Algebra.+Grundlagen+und+Anwendungen&rft.date=2013&rft.genre=book&rft.isbn=9783642321856&rft.place=Berlin%2FHeidelberg&rft.pub=Springer+Spektrum" style="display:none"> </span></li> <li>Gerd Fischer: <cite style="font-style:italic">Lineare Algebra: Eine Einführung für Studienanfänger</cite>. 13. Auflage. Vieweg, 2002, <a href="/wiki/Spezial:ISBN-Suche/3528972173" class="internal mw-magiclink-isbn">ISBN 3-528-97217-3</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Basiswechsel+%28Vektorraum%29&rft.au=Gerd+Fischer&rft.btitle=Lineare+Algebra%3A+Eine+Einf%C3%BChrung+f%C3%BCr+Studienanf%C3%A4nger&rft.date=2002&rft.edition=13&rft.genre=book&rft.isbn=3528972173&rft.pub=Vieweg" style="display:none"> </span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit&section=13" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit&section=13" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wikiversity"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/20px-Wikiversity_logo_2017.svg.png" decoding="async" width="20" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/29px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/39px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></div><b><a href="https://de.wikiversity.org/wiki/Kurs:Lineare_Algebra_(Osnabr%C3%BCck_2015-2016)/Teil_I/Vorlesung_9" class="extiw" title="v:Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Vorlesung 9">Wikiversity: Vorlesung zu Basiswechsel</a></b> – Kursmaterialien</div> <ul><li><a rel="nofollow" class="external text" href="https://mathepedia.de/Basiswechsel.html">Seite mit ausführlichen Beispielen</a></li></ul> <div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable normdaten-typ-s" style="border-style: solid; border-width: 1px; clear: left; margin-bottom:1em; margin-top:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="normdaten"> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div> Normdaten (Sachbegriff): <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="plainlinks-print"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4144107-2">4144107-2</a></span> <span class="noprint">(<a rel="nofollow" class="external text" href="https://lobid.org/gnd/4144107-2">lobid</a>, <a rel="nofollow" class="external text" href="https://swb.bsz-bw.de/DB=2.104/SET=1/TTL=1/CMD?retrace=0&trm_old=&ACT=SRCHA&IKT=2999&SRT=RLV&TRM=4144107-2">OGND</a><span class="metadata">, <a rel="nofollow" class="external text" href="https://prometheus.lmu.de/gnd/4144107-2">AKS</a></span>)</span> <span class="metadata"></span></div> </div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Basiswechsel_(Vektorraum)&oldid=221424393">https://de.wikipedia.org/w/index.php?title=Basiswechsel_(Vektorraum)&oldid=221424393</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorie</a>: <ul><li><a href="/wiki/Kategorie:Lineare_Algebra" title="Kategorie:Lineare Algebra">Lineare Algebra</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&returnto=Basiswechsel+%28Vektorraum%29" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&returnto=Basiswechsel+%28Vektorraum%29" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Basiswechsel_(Vektorraum)" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Basiswechsel_(Vektorraum)" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Basiswechsel_(Vektorraum)"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=de.wikipedia.org&uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Basiswechsel_(Vektorraum)" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Basiswechsel_(Vektorraum)" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&oldid=221424393" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&action=info" title="Weitere Informationen über diese Seite"><span>Seiteninformationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&page=Basiswechsel_%28Vektorraum%29&id=221424393&wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FBasiswechsel_%28Vektorraum%29"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrKodu&url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FBasiswechsel_%28Vektorraum%29"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&page=Basiswechsel_%28Vektorraum%29&action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Basiswechsel_(Vektorraum)&printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Change_of_basis" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q810255" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%BA%D9%8A%D9%8A%D8%B1_%D8%A7%D9%84%D9%82%D8%A7%D8%B9%D8%AF%D8%A9_(%D8%AC%D8%A8%D8%B1_%D8%AE%D8%B7%D9%8A)" title="تغيير القاعدة (جبر خطي) – Arabisch" lang="ar" hreflang="ar" data-title="تغيير القاعدة (جبر خطي)" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Canvi_de_base" title="Canvi de base – Katalanisch" lang="ca" hreflang="ca" data-title="Canvi de base" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Matice_p%C5%99echodu" title="Matice přechodu – Tschechisch" lang="cs" hreflang="cs" data-title="Matice přechodu" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Change_of_basis" title="Change of basis – Englisch" lang="en" hreflang="en" data-title="Change of basis" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/%C5%9Can%C4%9Do_de_bazo" title="Ŝanĝo de bazo – Esperanto" lang="eo" hreflang="eo" data-title="Ŝanĝo de bazo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cambio_de_base" title="Cambio de base – Spanisch" lang="es" hreflang="es" data-title="Cambio de base" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kannanvaihto" title="Kannanvaihto – Finnisch" lang="fi" hreflang="fi" data-title="Kannanvaihto" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Changement_de_base_(alg%C3%A8bre_lin%C3%A9aire)" title="Changement de base (algèbre linéaire) – Französisch" lang="fr" hreflang="fr" data-title="Changement de base (algèbre linéaire)" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A6%D7%AA_%D7%9E%D7%A2%D7%91%D7%A8" title="מטריצת מעבר – Hebräisch" lang="he" hreflang="he" data-title="מטריצת מעבר" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/B%C3%A1zistranszform%C3%A1ci%C3%B3" title="Bázistranszformáció – Ungarisch" lang="hu" hreflang="hu" data-title="Bázistranszformáció" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Perubahan_basis" title="Perubahan basis – Indonesisch" lang="id" hreflang="id" data-title="Perubahan basis" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice_di_cambiamento_di_base" title="Matrice di cambiamento di base – Italienisch" lang="it" hreflang="it" data-title="Matrice di cambiamento di base" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95%E5%A4%89%E6%8F%9B" title="基底変換 – Japanisch" lang="ja" hreflang="ja" data-title="基底変換" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Basistransformatie" title="Basistransformatie – Niederländisch" lang="nl" hreflang="nl" data-title="Basistransformatie" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Mudan%C3%A7a_de_base" title="Mudança de base – Portugiesisch" lang="pt" hreflang="pt" data-title="Mudança de base" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Basbyte" title="Basbyte – Schwedisch" lang="sv" hreflang="sv" data-title="Basbyte" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%BC%D1%96%D0%BD%D0%B0_%D0%B1%D0%B0%D0%B7%D0%B8%D1%81%D1%83" title="Зміна базису – Ukrainisch" lang="uk" hreflang="uk" data-title="Зміна базису" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D8%A8%D8%AF%DB%8C%D9%84%DB%8C_%D8%A7%D8%B2_%D8%A8%D9%86%DB%8C%D8%A7%D8%AF_%D8%B3%D9%85%D8%AA%DB%8C%DB%81" title="تبدیلی از بنیاد سمتیہ – Urdu" lang="ur" hreflang="ur" data-title="تبدیلی از بنیاد سمتیہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A9p_chuy%E1%BB%83n_c%C6%A1_s%E1%BB%9F" title="Phép chuyển cơ sở – Vietnamesisch" lang="vi" hreflang="vi" data-title="Phép chuyển cơ sở" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9F%BA%E5%8F%98%E6%9B%B4" title="基变更 – Chinesisch" lang="zh" hreflang="zh" data-title="基变更" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q810255#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 23. März 2022 um 14:10 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Basiswechsel_(Vektorraum)&project=de.wikipedia.org">Abrufstatistik</a> · <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Basiswechsel_(Vektorraum)?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Basiswechsel_(Vektorraum)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-858ddf96d-p7ln6","wgBackendResponseTime":128,"wgPageParseReport":{"limitreport":{"cputime":"0.258","walltime":"0.460","ppvisitednodes":{"value":1796,"limit":1000000},"postexpandincludesize":{"value":8712,"limit":2097152},"templateargumentsize":{"value":1054,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":6588,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 138.288 1 -total"," 53.74% 74.317 2 Vorlage:Literatur"," 28.13% 38.899 1 Vorlage:Normdaten"," 22.64% 31.309 1 Vorlage:BibISBN"," 21.07% 29.141 1 Vorlage:Wikidata-Registrierung"," 14.64% 20.252 1 Vorlage:BibISBN/3528972173"," 12.79% 17.685 1 Vorlage:BibRecord"," 9.78% 13.520 1 Vorlage:BibRecord/Literatur"," 4.98% 6.885 1 Vorlage:Booland"," 3.43% 4.740 1 Vorlage:Hinweisbaustein"]},"scribunto":{"limitreport-timeusage":{"value":"0.047","limit":"10.000"},"limitreport-memusage":{"value":2275851,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-8684b44546-fm9l9","timestamp":"20241204125420","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Basiswechsel (Vektorraum)","url":"https:\/\/de.wikipedia.org\/wiki\/Basiswechsel_(Vektorraum)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q810255","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q810255","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-09-24T12:49:59Z","headline":"\u00dcbergang zwischen zwei verschiedenen Basen eines endlichdimensionalen Vektorraums"}</script> </body> </html>