CINXE.COM

Search results for: stone

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stone</title> <meta name="description" content="Search results for: stone"> <meta name="keywords" content="stone"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stone" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stone"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 262</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stone</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soria-Verdugo">A. Soria-Verdugo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rubio-Rubio"> M. Rubio-Rubio</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arrieta"> J. Arrieta</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Garc%C3%ADa-Hernando"> N. García-Hernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO<sub>2</sub> attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NO<sub>x</sub> and SO<sub>x</sub> emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20stone" title="olive stone">olive stone</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate" title=" reaction rate"> reaction rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a> </p> <a href="https://publications.waset.org/abstracts/89807/reaction-rate-of-olive-stone-during-combustion-in-a-bubbling-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Karech">Toufik Karech</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderahmen%20Benseghir"> Abderahmen Benseghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayeb%20Bouzid"> Tayeb Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20dam" title="earth dam">earth dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20foundation" title=" dam foundation"> dam foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title=" stone columns"> stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20analysis" title=" seepage analysis"> seepage analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a> </p> <a href="https://publications.waset.org/abstracts/84081/the-behavior-of-dam-foundation-reinforced-by-stone-columns-case-study-of-kissir-dam-jijel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ramezan%20Shirazi">Mohsen Ramezan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Orod%20Zarrin"> Orod Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Komeil%20Valipourian"> Komeil Valipourian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=expansive%20clay" title=" expansive clay"> expansive clay</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title=" stone columns"> stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro%20techniques" title=" vibro techniques"> vibro techniques</a> </p> <a href="https://publications.waset.org/abstracts/22901/the-role-of-vibro-stone-column-for-enhancing-the-soft-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Calvo%20Salve">Miguel Angel Calvo Salve</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-supporting%20wall" title="self-supporting wall">self-supporting wall</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20cladding%20systems" title=" stone cladding systems"> stone cladding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hanging%20veneer%20cladding%20systems" title=" hanging veneer cladding systems"> hanging veneer cladding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20of%20facade%20systems" title=" sustainability of facade systems"> sustainability of facade systems</a> </p> <a href="https://publications.waset.org/abstracts/177649/comparative-analysis-of-a-self-supporting-wall-of-granite-slabs-in-a-multi-leaves-enclosure-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Excavations in the Maadi Area Maadi-West the Stone House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bekheit%20Gad%20Khaleil">Mohamed Bekheit Gad Khaleil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Maadi was a civilization .It is considered one of the oldest civilizations in the world and an area of prehistoric times, especially the civilization (Nakada 1&2 ) It contains the oldest stone house in the history. Many excavations have been done in this area. This report was prepared under my supervision and in cooperation with the German institute .The stone building was redocumented, photographed and drawn once again . The stone building has been built carefully. The measurements for this building are (8m x 4m).and the depth of this building is 2m underground and an entrance located at the eastern part of the northern wall and it has three huge pits in the middle of the building seem to have contained wooden posts, most probably to support the roof. The use of the building is unclear. Circular impressions in front of the north wall and in the south-eastern part of the floor indicate that much of it was a storehouse for numerous vessels such as unique feature may have not only served for private domestic purposes. Before starting work in any site, instruction must be followed :- 1-Gather as much information about this place as possible . (Historical background - previous excavations - maps - pictures) 2-Writing, recording, describing and documenting 3- Draw a map of the site showing the place’s division system (trenches) 4- Safe ( Workers & The Place ) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photographing" title="photographing">photographing</a>, <a href="https://publications.waset.org/abstracts/search?q=excavations" title=" excavations"> excavations</a>, <a href="https://publications.waset.org/abstracts/search?q=documentation" title=" documentation"> documentation</a>, <a href="https://publications.waset.org/abstracts/search?q=registration" title=" registration"> registration</a> </p> <a href="https://publications.waset.org/abstracts/186033/excavations-in-the-maadi-area-maadi-west-the-stone-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Automatic Detection of Defects in Ornamental Limestone Using Wavelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Proen%C3%A7a">Maria C. Proença</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Aniceto"> Marco Aniceto</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20N.%20Santos"> Pedro N. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20C.%20Freitas"> José C. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses &ndash; dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20detection" title="automatic detection">automatic detection</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20lines" title=" fracture lines"> fracture lines</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/39096/automatic-detection-of-defects-in-ornamental-limestone-using-wavelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Comparison of Safety and Efficacy between Thulium Fibre Laser and Holmium YAG Laser for Retrograde Intrarenal Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Poudyal">Sujeet Poudyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: After Holmium:yttrium-aluminum-garnet (Ho: YAG) laser has revolutionized the management of urolithiasis, the introduction of Thulium fibre laser (TFL) has already challenged Ho:YAG laser due to its multiple commendable properties. Nevertheless, there are only few studies comparing TFL and holmium laser in Retrograde Intrarenal Surgery(RIRS). Therefore, this study was carried out to compare the efficacy and safety of thulium fiber laser (TFL) and holmium laser in RIRS. Methods: This prospective comparative study, which included all patients undergoing laser lithotripsy (RIRS) for proximal ureteric calculus and nephrolithiasis from March 2022 to March 2023, consisted of 63 patients in Ho:YAG laser group and 65 patients in TFL group. Stone free rate, operative time, laser utilization time, energy used, and complications were analysed between the two groups. Results: Mean stone size was comparable in TFL (14.23±4.1 mm) and Ho:YAG (13.88±3.28 mm) group, p-0.48. Similarly, mean stone density in TFL (1269±262 HU) was comparable to Ho:YAG (1189±212 HU), p-0.48. There was significant difference in lasing time between TFL (12.69±7.41 mins) and Ho:YAG (20.44±14 mins), p-0.012). TFL group had operative time of 43.47± 16.8 mins which was shorter than Ho:YAG group (58±26.3 mins),p-0.005. Both TFL and Ho:YAG groups had comparable total energy used(11.4±6.2 vs 12±8 respectively, p-0.758). Stone free rate was 87%for TFL, whereas it was 79.5% for Ho:YAG, p-0.25). Two cases of sepsis and one ureteric stricture were encountered in TFL, whereas three cases suffered from sepsis apart from one ureteric stricture in Ho:YAG group, p-0.62). Conclusion: Thulium Fibre Laser has similar efficacy as Holmium: YAG Laser in terms of safety and stone free rate. However, due to better stone ablation rate in TFL, it can become the game changer in management of urolithiasis in the coming days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrograde%20intrarenal%20surgery" title="retrograde intrarenal surgery">retrograde intrarenal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=thulium%20fibre%20laser" title=" thulium fibre laser"> thulium fibre laser</a>, <a href="https://publications.waset.org/abstracts/search?q=holmium%3Ayttrium-aluminum-garnet%20%28ho%3Ayag%29%20laser" title=" holmium:yttrium-aluminum-garnet (ho:yag) laser"> holmium:yttrium-aluminum-garnet (ho:yag) laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrolithiasis" title=" nephrolithiasis"> nephrolithiasis</a> </p> <a href="https://publications.waset.org/abstracts/168964/comparison-of-safety-and-efficacy-between-thulium-fibre-laser-and-holmium-yag-laser-for-retrograde-intrarenal-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20M.%20Ahmed">Sayed M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20S.%20Darwish"> Sawsan S. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20A.%20Elmarzugi"> Nagib A. Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Al-Dosari"> Mohammad A. Al-Dosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Adam"> Mahmoud A. Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20and%20archaeological%20heritage" title="architectural and archaeological heritage">architectural and archaeological heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20stone" title=" calcareous stone"> calcareous stone</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis%20TiO2" title=" photocatalysis TiO2"> photocatalysis TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20aging" title=" thermal aging"> thermal aging</a> </p> <a href="https://publications.waset.org/abstracts/47907/nanotechnology-in-conservation-of-artworks-tio2-based-nanocoatings-for-the-protection-and-preservation-of-stone-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serife%20Parlayici">Serife Parlayici</a>, <a href="https://publications.waset.org/abstracts/search?q=Erol%20Pehlivan"> Erol Pehlivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plum-stone" title="plum-stone">plum-stone</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20lead" title=" copper and lead"> copper and lead</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a> </p> <a href="https://publications.waset.org/abstracts/71963/removal-of-copperii-and-leadii-from-aqueous-phase-by-plum-stone-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Optimized Design, Material Selection, and Improvement of Liners, Mother Plate, and Stone Box of a Direct Charge Transfer Chute in a Sinter Plant: A Computational Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamitra%20Ghosh">Anamitra Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeladri%20Paul"> Neeladri Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims at investigating material combinations and thereby improvising an optimized design of liner-mother plate arrangement and that of the stone box, such that it has low cost, high weldability, sufficiently capable of withstanding the increased amount of corrosive shear and bending loads, and having reduced thermal expansion coefficient at temperatures close to 1000 degrees Celsius. All the above factors have been preliminarily examined using a computational approach via ANSYS Thermo-Structural Computation, a commercial software that uses the Finite Element Method to analyze the response of simulated design specimens of liner-mother plate arrangement and the stone box, to varied bending, shear, and thermal loads as well as to determine the temperature gradients developed across various surfaces of the designs. Finally, the optimized structural designs of the liner-mother plate arrangement and that of the stone box with improved material and better structural and thermal properties are selected via trial-and-error method. The final improvised design is therefore considered to enhance the overall life and reliability of a Direct Charge Transfer Chute that transfers and segregates the hot sinter onto the cooler in a sinter plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear" title="shear">shear</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=sinter" title=" sinter"> sinter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated" title=" simulated"> simulated</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized" title=" optimized"> optimized</a>, <a href="https://publications.waset.org/abstracts/search?q=charge" title=" charge"> charge</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=chute" title=" chute"> chute</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=computational" title=" computational"> computational</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosive" title=" corrosive"> corrosive</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20box" title=" stone box"> stone box</a>, <a href="https://publications.waset.org/abstracts/search?q=liner" title=" liner"> liner</a>, <a href="https://publications.waset.org/abstracts/search?q=mother%20plate" title=" mother plate"> mother plate</a>, <a href="https://publications.waset.org/abstracts/search?q=arrangement" title=" arrangement"> arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a> </p> <a href="https://publications.waset.org/abstracts/152960/optimized-design-material-selection-and-improvement-of-liners-mother-plate-and-stone-box-of-a-direct-charge-transfer-chute-in-a-sinter-plant-a-computational-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mansour">Sayed Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20%20Aldoasri"> Mohammad Aldoasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20Elmarzugi"> Nagib Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resins" title="epoxy resins">epoxy resins</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20nanoparticles" title=" clay nanoparticles"> clay nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=re-assembly" title=" re-assembly"> re-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeological%20massive%20stones" title=" archaeological massive stones"> archaeological massive stones</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/107224/nanomaterials-for-archaeological-stone-conservation-re-assembly-of-archaeological-heavy-stones-using-epoxy-resin-modified-with-clay-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Determination of the Optimum Size of Building Stone Blocks: Case Study of Delichai Travertine Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Sedaghat%20Nejad">Hesam Sedaghat Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Hosseini"> Navid Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Nikvar%20Hassani"> Arash Nikvar Hassani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of the optimum block size with high profitability is one of the significant parameters in designation of the building stone mines. The aim of this study was to determine the optimum dimensions of building stone blocks in Delichai travertine mine of Damavand in Tehran province through combining the effective parameters proven in determination of the optimum dimensions in building stones such as the spacing of joints and gaps, extraction tools constraints with the help of modeling by Gemcom software. To this end, following simulation of the topography of the mine, the block model was prepared and then in order to use spacing joints and discontinuities as a limiting factor, the existing joints set was added to the model. Since only one almost horizontal joint set with a slope of 5 degrees was available, this factor was effective only in determining the optimum height of the block, and thus to determine the longitudinal and transverse optimum dimensions of the extracted block, the power of available loader in the mine was considered as the secondary limiting factor. According to the aforementioned factors, the optimal block size in this mine was measured as 3.4&times;4&times;7 meter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20stone" title="building stone">building stone</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20block%20size" title=" optimum block size"> optimum block size</a>, <a href="https://publications.waset.org/abstracts/search?q=Delichay%20travertine%20mine" title=" Delichay travertine mine"> Delichay travertine mine</a>, <a href="https://publications.waset.org/abstracts/search?q=loader%20power" title=" loader power"> loader power</a> </p> <a href="https://publications.waset.org/abstracts/49660/determination-of-the-optimum-size-of-building-stone-blocks-case-study-of-delichai-travertine-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> A Comparative Evaluation of Stone Spout Management Systems in Heritage and Non-heritage Areas of the Kathmandu Valley, Nepal </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mira%20Tripathi">Mira Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Hughey"> Ken Hughey</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamish%20G.%20Rennie"> Hamish G. Rennie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Management of water resources is a major challenge throughout the world and in many long-established societies people still use traditional water harvesting and management techniques. Despite often being seen as efficient and cost effective, traditional methods are in decline or have been abandoned in many countries. Nevertheless, traditional approaches continue to be useful in some countries such as Nepal. The extent to which such traditional measures, in this case via stone spouts, may survive modernization, while fulfilling socio-cultural, tourism, and other needs is the focus of the research. The research develops an understanding of the socio-cultural, tourism and other values of stone spouts for the people of urban and peri-urban heritage and non-heritage areas of the Kathmandu Valley to help ongoing sustainable management of remaining spouts. Three research questions are addressed: the impacts of changes in social and cultural norms and values; development activities; and, the incremental and ongoing loss of traditional stone spout infrastructure. A meta-theory framework has been developed which synthesizes Institutional, Attachment, Central Place and Common Property theories, which form analytical lenses for the mixed-method research approach. From the exploration of the meta-theory approach, it was found that no spouts are in pristine condition but those in non-heritage areas are in better condition than those in heritage areas. “Utility value” is the main driver that still motivates people to conserve spouts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20spouts" title="stone spouts">stone spouts</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20and%20cultural%20norms%20and%20values" title=" social and cultural norms and values"> social and cultural norms and values</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-theory" title=" meta-theory"> meta-theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathmandu%20Valley" title=" Kathmandu Valley"> Kathmandu Valley</a> </p> <a href="https://publications.waset.org/abstracts/58910/a-comparative-evaluation-of-stone-spout-management-systems-in-heritage-and-non-heritage-areas-of-the-kathmandu-valley-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Life Cycle Datasets for the Ornamental Stone Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Bianco">Isabella Bianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Andrea%20Blengini"> Gian Andrea Blengini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20datasets" title=" LCA datasets"> LCA datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20stone" title=" ornamental stone"> ornamental stone</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20environmental%20impact" title=" stone environmental impact"> stone environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/60723/life-cycle-datasets-for-the-ornamental-stone-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Experimental Modal Analysis of Kursuncular Minaret</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunus%20Dere">Yunus Dere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minarets are tower like structures where the call to prayer of Muslims is performed. They have a symbolic meaning and sacred place among Muslims. Being tall and slender, they are prone to damage under earthquakes and strong winds. Kursuncular stone minaret was built around thirty years ago in Konya/TURKEY. Its core and helical stairs are made of reinforced concrete. Its stone spire was damaged during a light earthquake. Its spire is later replaced with a light material covered with lead sheets. In this study, the natural frequencies and mode shapes of Kursuncular minaret is obtained experimentally and analytically. First an ambient vibration test is carried out using a data acquisition system with accelerometers located at four locations along the height of the minaret. The collected vibration data is evaluated by operational modal analysis techniques. For the analytical part of the study, the dimensions of the minaret are accurately measured and a detailed 3D solid finite element model of the minaret is generated. The moduli of elasticity of the stone and concrete are approximated using the compressive strengths obtained by Windsor Pin tests. Finite element modal analysis of the minaret is carried out to get the modal parameters. Experimental and analytical results are then compared and found in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20modal%20analysis" title="experimental modal analysis">experimental modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20minaret" title=" stone minaret"> stone minaret</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modal%20analysis" title=" finite element modal analysis"> finite element modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=minarets" title=" minarets"> minarets</a> </p> <a href="https://publications.waset.org/abstracts/30455/experimental-modal-analysis-of-kursuncular-minaret" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Research the Causes of Defects and Injuries of Reinforced Concrete and Stone Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akaki%20Qatamidze">Akaki Qatamidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementation of the project will be a step forward in terms of reliability in Georgia and the improvement of the construction and the development of construction. Completion of the project is expected to result in a complete knowledge, which is expressed in concrete and stone structures of assessing the technical condition of the processing. This method is based on a detailed examination of the structure, in order to establish the injuries and the elimination of the possibility of changing the structural scheme of the new requirements and architectural preservationists. Reinforced concrete and stone structures research project carried out in a systematic analysis of the important approach is to optimize the process of research and development of new knowledge in the neighboring areas. In addition, the problem of physical and mathematical models of rational consent, the main pillar of the physical (in-situ) data and mathematical calculation models and physical experiments are used only for the calculation model specification and verification. Reinforced concrete and stone construction defects and failures the causes of the proposed research to enhance the effectiveness of their maximum automation capabilities and expenditure of resources to reduce the recommended system analysis of the methodological concept-based approach, as modern science and technology major particularity of one, it will allow all family structures to be identified for the same work stages and procedures, which makes it possible to exclude subjectivity and addresses the problem of the optimal direction. It discussed the methodology of the project and to establish a major step forward in the construction trades and practical assistance to engineers, supervisors, and technical experts in the construction of the settlement of the problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=expertise" title=" expertise"> expertise</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20structures" title=" stone structures "> stone structures </a> </p> <a href="https://publications.waset.org/abstracts/36714/research-the-causes-of-defects-and-injuries-of-reinforced-concrete-and-stone-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Influence of Partially-Replaced Coarse Aggregates with Date Palm Seeds on the Concrete Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahed%20Alrshoudi">Fahed Alrshoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saudi Arabia is ranked the third of the largest suppliers of Dates worldwide (about 28.5 million palm trees), producing more than 2 million tons of dates yearly. These trees produce large quantity of dates palm seeds (DPS) which can be considered literally as a waste. The date seeds are stiff, therefore, it is possible to utilize DPS as coarse aggregates in lightweight concrete for certain structural applications and to participate at reusing the waste. The use of DPS as coarse aggregate in concrete can be an alternative choice as a partial replacement of the stone aggregates (SA). This paper reports the influence of partially replaced stone aggregates with DPS on the hardened properties of concrete performance. Based on the experimental results, the DPS has the potential use as an acceptable alternative aggregates in producing structural lightweight concrete members, instead of stone aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20Strength" title=" tensile Strength"> tensile Strength</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20seeds" title=" date palm seeds"> date palm seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate" title=" aggregate"> aggregate</a> </p> <a href="https://publications.waset.org/abstracts/117161/influence-of-partially-replaced-coarse-aggregates-with-date-palm-seeds-on-the-concrete-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Al%20Ammari">K. Al Ammari</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Clarke"> B. G. Clarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=installation" title=" installation"> installation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a> </p> <a href="https://publications.waset.org/abstracts/37225/predicting-the-effect-of-vibro-stone-column-installation-on-performance-of-reinforced-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20M.%20Ahmed">Sayed M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20S.%20Darwish"> Sawsan S. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Adam"> Mahmoud A. Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20A.%20Elmarzugi"> Nagib A. Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Al-Dosari"> Mohammad A. Al-Dosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20calcareous%20stone%20monuments" title="architectural calcareous stone monuments">architectural calcareous stone monuments</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis%20TiO2" title=" photocatalysis TiO2"> photocatalysis TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20aging" title=" thermal aging"> thermal aging</a> </p> <a href="https://publications.waset.org/abstracts/48269/analytical-characterization-of-tio2-based-nanocoatings-for-the-protection-and-preservation-of-architectural-calcareous-stone-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sarkar">D. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pal"> M. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Sarkar"> A. K. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity o f stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence, zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20burnt%20brick%20aggregate" title=" over burnt brick aggregate"> over burnt brick aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=marshall%20stability" title=" marshall stability"> marshall stability</a>, <a href="https://publications.waset.org/abstracts/search?q=zycosoil" title=" zycosoil"> zycosoil</a> </p> <a href="https://publications.waset.org/abstracts/10998/laboratory-evaluation-of-asphalt-concrete-prepared-with-over-burnt-brick-aggregate-treated-by-zycosoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Algebraic Characterization of Sheaves over Boolean Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20M.%20Swamy">U. M. Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact Hausdorff and totally disconnected topological space are known as Boolean space in view of the stone duality between Boolean algebras and such topological spaces. A sheaf over X is a triple (S, p, X) where S and X are topological spaces and p is a local homeomorphism of S onto X (that is, for each element s in S, there exist open sets U and G containing s and p(s) in S and X respectively such that the restriction of p to U is a homeomorphism of U onto G). Here we mainly concern on sheaves over Boolean spaces. From a given sheaf over a Boolean space, we obtain an algebraic structure in such a way that there is a one-to-one correspondence between these algebraic structures and sheaves over Boolean spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boolean%20algebra" title="Boolean algebra">Boolean algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=Boolean%20space" title=" Boolean space"> Boolean space</a>, <a href="https://publications.waset.org/abstracts/search?q=sheaf" title=" sheaf"> sheaf</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20duality" title=" stone duality"> stone duality</a> </p> <a href="https://publications.waset.org/abstracts/124439/algebraic-characterization-of-sheaves-over-boolean-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20M.%20Ahmed">Sayed M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20S.%20Darwish"> Sawsan S. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20A.%20Elmarzugi"> Nagib A. Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Al-Dosari"> Mohammad A. Al-Dosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Adam"> Mahmoud A. Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20measurements" title="colorimetric measurements">colorimetric measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20stone%20consolidation" title=" porous stone consolidation"> porous stone consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone" title=" sandstone"> sandstone</a> </p> <a href="https://publications.waset.org/abstracts/47909/synthesis-and-analytical-characterisation-of-polymer-silica-nanoparticles-composite-for-the-protection-and-preservation-of-stone-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Arici">Esra Arici</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Olmez"> Duygu Olmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ozkan"> Murat Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Topcu"> Nurcan Topcu</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Capraz"> Furkan Capraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Deniz"> Gokhan Deniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Arman%20Altinyay"> Arman Altinyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineered%20quartz%20stone" title="engineered quartz stone">engineered quartz stone</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20quartz%20aggregate" title=" fine quartz aggregate"> fine quartz aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20packing" title=" granular packing"> granular packing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties." title=" physical properties."> physical properties.</a> </p> <a href="https://publications.waset.org/abstracts/110565/effects-of-particle-size-distribution-on-mechanical-strength-and-physical-properties-in-engineered-quartz-stone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Investment Casting Conditions with Tourmaline In-Situ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kageeporn%20Wongpreedee">Kageeporn Wongpreedee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bongkot%20Phichaikamjornwut"> Bongkot Phichaikamjornwut</a>, <a href="https://publications.waset.org/abstracts/search?q=Duangkhae%20Bootkul"> Duangkhae Bootkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique of stone in place casting had been established in jewelry production for two decades. However, the process were not widely used since it was limited to precious stones with high hardness and high stabililty at high temperature. This experiment were tested on tourmaline which is semi-precious gemstone having less hardness and less stability comparing to precious stones. The experiment were designed into two parts. The first part is to understand the phenomena of tourmaline under the heating conditions. Natural tourmaline stones were investigated and compared inclusions inside stones tested at temperature of 500 °C, 600 °C, and 700 °C. The second part is to cast the treated tourmaline with ion-implanation under the stones in place casting conditions. The results showed that stones were able to tolerate as much as at 700 °C showing the growths of inclusions inside the stones. The second part of this experiment were compared tourmaline with ion-implantation and natural tourmaline using on stones in place casting process at different stone setting types. The results showed that the cracks and inclustions of both treat and natural tourmaline with stones in place casting were propagate due to high stress of metal contractions. The stones with ion-implatation were more likely tolerate to cracks and inclusion propagations inside the stones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20in%20place%20casting" title="stone in place casting">stone in place casting</a>, <a href="https://publications.waset.org/abstracts/search?q=tourmaline" title=" tourmaline"> tourmaline</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20implantation" title=" ion implantation"> ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20contraction" title=" metal contraction"> metal contraction</a> </p> <a href="https://publications.waset.org/abstracts/57747/investment-casting-conditions-with-tourmaline-in-situ" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Badereldien">Mohammed Badereldien</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezk%20Diab"> Rezk Diab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamoud%20Ali"> Mohamoud Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Aboelkassem"> Ayman Aboelkassem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate%20nanoparticles" title="calcium carbonate nanoparticles">calcium carbonate nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20stone" title=" calcareous stone"> calcareous stone</a>, <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20measurements" title=" colorimetric measurements"> colorimetric measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/95113/the-evaluation-of-the-performance-of-caco3polymer-nano-composites-for-the-preservation-of-historic-limestone-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Karech%20A.%20Noui">T. Karech A. Noui</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouzid"> T. Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piles" title="piles">piles</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20columns" title=" stone columns"> stone columns</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a> </p> <a href="https://publications.waset.org/abstracts/72108/behavior-of-the-foundation-of-bridge-reinforced-by-rigid-and-flexible-inclusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Ground Improvement Using Deep Vibro Techniques at Madhepura E-Loco Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sekhar">A. Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ramakrishna%20Raju"> N. Ramakrishna Raju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a result of ground improvement using deep vibro techniques with combination of sand and stone columns performed on a highly liquefaction susceptible site (70 to 80% sand strata and balance silt) with low bearing capacities due to high settlements located (earth quake zone V as per IS code) at Madhepura, Bihar state in northern part of India. Initially, it was envisaged with bored cast in-situ/precast piles, stone/sand columns. However, after detail analysis to address both liquefaction and improve bearing capacities simultaneously, it was analyzed the deep vibro techniques with combination of sand and stone columns is excellent solution for given site condition which may be first time in India. First after detail soil investigation, pre eCPT test was conducted to evaluate the potential depth of liquefaction to densify silty sandy soils to improve factor of safety against liquefaction. Then trail test were being carried out at site by deep vibro compaction technique with sand and stone columns combination with different spacings of columns in triangular shape with different timings during each lift of vibro up to ground level. Different spacings and timing was done to obtain the most effective spacing and timing with vibro compaction technique to achieve maximum densification of saturated loose silty sandy soils uniformly for complete treated area. Then again, post eCPT test and plate load tests were conducted at all trail locations of different spacings and timing of sand and stone columns to evaluate the best results for obtaining the required factor of safety against liquefaction and the desired bearing capacities with reduced settlements for construction of industrial structures. After reviewing these results, it was noticed that the ground layers are densified more than the expected with improved factor of safety against liquefaction and achieved good bearing capacities for a given settlements as per IS codal provisions. It was also worked out for cost-effectiveness of lightly loaded single storied structures by using deep vibro technique with sand column avoiding stone. The results were observed satisfactory for resting the lightly loaded foundations. In this technique, the most important is to mitigating liquefaction with improved bearing capacities and reduced settlements to acceptable limits as per IS: 1904-1986 simultaneously up to a depth of 19M. To our best knowledge it was executed first time in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20vibro%20techniques" title=" deep vibro techniques"> deep vibro techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/84536/ground-improvement-using-deep-vibro-techniques-at-madhepura-e-loco-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne-Marie%20Tuomala">Anne-Marie Tuomala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education%20for%20sustainable%20development" title="education for sustainable development">education for sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20attitudes" title=" learning attitudes"> learning attitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20of%20circular%20economy" title=" learning of circular economy"> learning of circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20learning" title=" virtual learning"> virtual learning</a> </p> <a href="https://publications.waset.org/abstracts/186447/attitudes-to-thinking-and-learning-in-sustainability-education-case-basics-of-natural-stone-industry-in-circular-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> A Case Study of Building Behavior Damaged during 26th Oct, 2015 Earthquake in Northern Areas of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Ali">Rahmat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Naseer"> Amjad Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20A.%20Shah"> Abid A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is an attempt to presents the performance of building observed during 26th Oct, 2015 earthquake in District Swat and Shangla region. Most of the buildings in the earthquake hit areas were built with Rubble stone masonry, dress Stone Masonry, brick masonry with and without RC column, Brick masonry with RC beams and column, Block Masonry with and without RC column. It was found that most of the buildings were built without proper supervision and without following any codes. A majority of load bearing masonry walls were highly affected during the earthquake. The load bearing walls built with rubble stone masonry were collapsed resulting huge damages and loss of property and life. Load bearing bricks masonry walls were also affected in most of the region. In some residential buildings the bricks were crushed in a single brick walls. Severe cracks were also found in double brick masonry walls. In RC frame structure beams and columns were also seriously affected. A majority of building structures were non-engineered. Some buildings designed by unskilled local consultants were also affected during the earthquake. Several architectural and structural mistakes were also found in various buildings designed by local consultant. It was found that the structures were collapsed prematurely either because of unskillful labor and using substandard materials or avoiding delicate repair, maintenance, and health monitoring activities because of lack of available sophisticated technology in our country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracks" title="cracks">cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse" title=" collapse"> collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a> </p> <a href="https://publications.waset.org/abstracts/45899/a-case-study-of-building-behavior-damaged-during-26th-oct-2015-earthquake-in-northern-areas-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Physico-Mechanical Properties of Dir-Volcanics and Its Use as a Dimension Stone from Kohistan Island Arc, North Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nawaz">Muhammad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Ahmad"> Waqas Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimension stone is used in construction since prehistoric time; however, its use in the construction has gained significant attention for the last few decades. The present study is designed to investigate the physical and strength properties of volcanic rocks from the Kohistan Island Arc to assess their use as dimension stone. On the basis of the composition, color and texture, five varieties of andesites (MMA, PMA-1, PMA-2, CMA and FMA) and two varieties of agglomerates (AG-1 and AG-2) were identified. These were characterized in terms of their petrography (compositional and textural), physical properties (specific gravity, water absorption, porosity) and strength properties (Unconfined compressive strength and Unconfined tensile strength). Two non-destructive tests (Ultrasonic pulse velocity test and Schmidt Hammer) were conducted and the degree of polishing was evaluated. In addition, correlation analyses were carried out to establish possible relationships among these parameters. The presence of chlorite, epidote, sericite and recrystallized quartz showed the signs of low-grade metamorphism in andesites. The results showed feldspar, amphibole and quartz imparted good physical and strength properties to the samples MMA, CMA, FMA, AG1 and AG2. Whereas, the abundance of alteration products such as chlorite, sericite and epidote in PMA-1 and PMA-2 reduced the physical and strength properties. The unconfined compressive strength showed a strong correlation with ultrasonic pulse velocity, dry density, porosity and water absorption. The values of ultrasonic pulse velocity and Schmidt hammer were considerably affected by the weathering grade. The samples PMA-1 and PMA-2, due to their high water absorption and low strength values, were not recommended for use in load-bearing masonry units and outdoor applications. Whereas, the excellent properties, i.e. high strength and good polishing, the samples, FMA and MMA suggested their use as a decorative and facing stone, in the external pavement, ashlar, rubbles and load-bearing masonry units etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Physico-mechanical%20properties" title="Physico-mechanical properties">Physico-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Volcanic%20rocks" title=" Volcanic rocks"> Volcanic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohistan%20Island%20Arc" title=" Kohistan Island Arc"> Kohistan Island Arc</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/169657/physico-mechanical-properties-of-dir-volcanics-and-its-use-as-a-dimension-stone-from-kohistan-island-arc-north-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stone&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10