CINXE.COM

直言三段论 - 维基百科,自由的百科全书

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>直言三段论 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"ce899138-1508-44ee-89f8-c5814530ab4e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"直言三段论","wgTitle":"直言三段论","wgCurRevisionId":83607832,"wgRevisionId":83607832,"wgArticleId":184516,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["引文格式1维护:未识别语文类型","使用ISBN魔术链接的页面","推理规则"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"直言三段论","wgRelevantArticleId":184516,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault": true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q107342","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles" :"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas","ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices","ext.gadget.hideConversionTab", "ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.gadget.large-font&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="直言三段论 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-直言三段论 rootpage-直言三段论 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-语气和格式" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#语气和格式"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>语气和格式</span> </div> </a> <ul id="toc-语气和格式-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-有效性" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#有效性"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>有效性</span> </div> </a> <button aria-controls="toc-有效性-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关有效性子章节</span> </button> <ul id="toc-有效性-sublist" class="vector-toc-list"> <li id="toc-有效三段論式" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#有效三段論式"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>有效三段論式</span> </div> </a> <ul id="toc-有效三段論式-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-常犯的無效三段論式" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#常犯的無效三段論式"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>常犯的無效三段論式</span> </div> </a> <ul id="toc-常犯的無效三段論式-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-三段论式列表" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#三段论式列表"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>三段论式列表</span> </div> </a> <button aria-controls="toc-三段论式列表-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关三段论式列表子章节</span> </button> <ul id="toc-三段论式列表-sublist" class="vector-toc-list"> <li id="toc-经典三段论式" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#经典三段论式"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>经典三段论式</span> </div> </a> <ul id="toc-经典三段论式-sublist" class="vector-toc-list"> <li id="toc-第1格" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第1格"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>第1格</span> </div> </a> <ul id="toc-第1格-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-第2格" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第2格"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.2</span> <span>第2格</span> </div> </a> <ul id="toc-第2格-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-第3格" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第3格"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.3</span> <span>第3格</span> </div> </a> <ul id="toc-第3格-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-增补的论式" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#增补的论式"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>增补的论式</span> </div> </a> <ul id="toc-增补的论式-sublist" class="vector-toc-list"> <li id="toc-第4格" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第4格"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>第4格</span> </div> </a> <ul id="toc-第4格-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-结论弱化的论式" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#结论弱化的论式"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>结论弱化的论式</span> </div> </a> <ul id="toc-结论弱化的论式-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-谓词演算公式的注解" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#谓词演算公式的注解"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>谓词演算公式的注解</span> </div> </a> <ul id="toc-谓词演算公式的注解-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-24論式圖示" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#24論式圖示"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>24論式圖示</span> </div> </a> <ul id="toc-24論式圖示-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参见" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参见"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>参见</span> </div> </a> <ul id="toc-参见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-註解" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#註解"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>註解</span> </div> </a> <ul id="toc-註解-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-引用" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#引用"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>引用</span> </div> </a> <ul id="toc-引用-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部連結" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#外部連結"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>外部連結</span> </div> </a> <ul id="toc-外部連結-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">直言三段论</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。63种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-63" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">63种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Syllogismus" title="Syllogismus – 瑞士德语" lang="gsw" hreflang="gsw" data-title="Syllogismus" data-language-autonym="Alemannisch" data-language-local-name="瑞士德语" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D9%8A%D8%A7%D8%B3_(%D9%85%D9%86%D8%B7%D9%82)" title="قياس (منطق) – 阿拉伯语" lang="ar" hreflang="ar" data-title="قياس (منطق)" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Sillogizm" title="Sillogizm – 阿塞拜疆语" lang="az" hreflang="az" data-title="Sillogizm" data-language-autonym="Azərbaycanca" data-language-local-name="阿塞拜疆语" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%BE%D0%B3%D0%B8%D0%B7%D1%8A%D0%BC" title="Силогизъм – 保加利亚语" lang="bg" hreflang="bg" data-title="Силогизъм" data-language-autonym="Български" data-language-local-name="保加利亚语" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Sullogismos" title="Sullogismos – 布列塔尼语" lang="br" hreflang="br" data-title="Sullogismos" data-language-autonym="Brezhoneg" data-language-local-name="布列塔尼语" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Sil%C2%B7logisme" title="Sil·logisme – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Sil·logisme" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%82%DB%8C%D8%A7%D8%B3" title="قیاس – 中库尔德语" lang="ckb" hreflang="ckb" data-title="قیاس" data-language-autonym="کوردی" data-language-local-name="中库尔德语" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Sylogismus" title="Sylogismus – 捷克语" lang="cs" hreflang="cs" data-title="Sylogismus" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Syllogisme" title="Syllogisme – 丹麦语" lang="da" hreflang="da" data-title="Syllogisme" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="优良条目"><a href="https://de.wikipedia.org/wiki/Syllogismus" title="Syllogismus – 德语" lang="de" hreflang="de" data-title="Syllogismus" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BB%CE%BB%CE%BF%CE%B3%CE%B9%CF%83%CE%BC%CF%8C%CF%82" title="Συλλογισμός – 希腊语" lang="el" hreflang="el" data-title="Συλλογισμός" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Syllogism" title="Syllogism – 英语" lang="en" hreflang="en" data-title="Syllogism" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Silogismo" title="Silogismo – 世界语" lang="eo" hreflang="eo" data-title="Silogismo" data-language-autonym="Esperanto" data-language-local-name="世界语" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Silogismo" title="Silogismo – 西班牙语" lang="es" hreflang="es" data-title="Silogismo" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/S%C3%BCllogism" title="Süllogism – 爱沙尼亚语" lang="et" hreflang="et" data-title="Süllogism" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Silogismo" title="Silogismo – 巴斯克语" lang="eu" hreflang="eu" data-title="Silogismo" data-language-autonym="Euskara" data-language-local-name="巴斯克语" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%DB%8C%D8%A7%D8%B3" title="قیاس – 波斯语" lang="fa" hreflang="fa" data-title="قیاس" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Syllogismi" title="Syllogismi – 芬兰语" lang="fi" hreflang="fi" data-title="Syllogismi" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Syllogisme" title="Syllogisme – 法语" lang="fr" hreflang="fr" data-title="Syllogisme" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Siloxismo" title="Siloxismo – 加利西亚语" lang="gl" hreflang="gl" data-title="Siloxismo" data-language-autonym="Galego" data-language-local-name="加利西亚语" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%99%D7%9C%D7%95%D7%92%D7%99%D7%96%D7%9D" title="סילוגיזם – 希伯来语" lang="he" hreflang="he" data-title="סילוגיזם" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A8%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AF%E0%A4%B5%E0%A4%BE%E0%A4%95%E0%A5%8D%E0%A4%AF" title="न्यायवाक्य – 印地语" lang="hi" hreflang="hi" data-title="न्यायवाक्य" data-language-autonym="हिन्दी" data-language-local-name="印地语" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Silogizam" title="Silogizam – 克罗地亚语" lang="hr" hreflang="hr" data-title="Silogizam" data-language-autonym="Hrvatski" data-language-local-name="克罗地亚语" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Szillogizmus" title="Szillogizmus – 匈牙利语" lang="hu" hreflang="hu" data-title="Szillogizmus" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8D%D5%AB%D5%AC%D5%AC%D5%B8%D5%A3%D5%AB%D5%BD%D5%BF%D5%AB%D5%AF%D5%A1" title="Սիլլոգիստիկա – 亚美尼亚语" lang="hy" hreflang="hy" data-title="Սիլլոգիստիկա" data-language-autonym="Հայերեն" data-language-local-name="亚美尼亚语" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Syllogismo" title="Syllogismo – 国际语" lang="ia" hreflang="ia" data-title="Syllogismo" data-language-autonym="Interlingua" data-language-local-name="国际语" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Silogisme" title="Silogisme – 印度尼西亚语" lang="id" hreflang="id" data-title="Silogisme" data-language-autonym="Bahasa Indonesia" data-language-local-name="印度尼西亚语" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Silogismo" title="Silogismo – 伊多语" lang="io" hreflang="io" data-title="Silogismo" data-language-autonym="Ido" data-language-local-name="伊多语" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%B6khenda" title="Rökhenda – 冰岛语" lang="is" hreflang="is" data-title="Rökhenda" data-language-autonym="Íslenska" data-language-local-name="冰岛语" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Sillogismo" title="Sillogismo – 意大利语" lang="it" hreflang="it" data-title="Sillogismo" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%B8%89%E6%AE%B5%E8%AB%96%E6%B3%95" title="三段論法 – 日语" lang="ja" hreflang="ja" data-title="三段論法" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9E%D0%B9_%D2%9B%D0%BE%D1%80%D1%8B%D1%82%D1%8B%D0%BD%D0%B4%D1%8B" title="Ой қорытынды – 哈萨克语" lang="kk" hreflang="kk" data-title="Ой қорытынды" data-language-autonym="Қазақша" data-language-local-name="哈萨克语" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%BC%EB%8B%A8%EB%85%BC%EB%B2%95" title="삼단논법 – 韩语" lang="ko" hreflang="ko" data-title="삼단논법" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%BB%D0%BE%D0%B3%D0%B8%D0%B7%D0%BC" title="Силлогизм – 柯尔克孜语" lang="ky" hreflang="ky" data-title="Силлогизм" data-language-autonym="Кыргызча" data-language-local-name="柯尔克孜语" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Syllogismus" title="Syllogismus – 拉丁语" lang="la" hreflang="la" data-title="Syllogismus" data-language-autonym="Latina" data-language-local-name="拉丁语" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Syllogismus" title="Syllogismus – 卢森堡语" lang="lb" hreflang="lb" data-title="Syllogismus" data-language-autonym="Lëtzebuergesch" data-language-local-name="卢森堡语" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Silogizmas" title="Silogizmas – 立陶宛语" lang="lt" hreflang="lt" data-title="Silogizmas" data-language-autonym="Lietuvių" data-language-local-name="立陶宛语" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%BE%D0%B3%D0%B8%D0%B7%D0%B0%D0%BC" title="Силогизам – 马其顿语" lang="mk" hreflang="mk" data-title="Силогизам" data-language-autonym="Македонски" data-language-local-name="马其顿语" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%B5%E0%A4%BE%E0%A4%95%E0%A5%8D%E0%A4%AF" title="संवाक्य – 马拉地语" lang="mr" hreflang="mr" data-title="संवाक्य" data-language-autonym="मराठी" data-language-local-name="马拉地语" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Syllogismus" title="Syllogismus – 低地德语" lang="nds" hreflang="nds" data-title="Syllogismus" data-language-autonym="Plattdüütsch" data-language-local-name="低地德语" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Syllogisme" title="Syllogisme – 荷兰语" lang="nl" hreflang="nl" data-title="Syllogisme" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Syllogisme" title="Syllogisme – 书面挪威语" lang="nb" hreflang="nb" data-title="Syllogisme" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Silogisme" title="Silogisme – 諾維亞文" lang="nov" hreflang="nov" data-title="Silogisme" data-language-autonym="Novial" data-language-local-name="諾維亞文" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Sillogisme" title="Sillogisme – 奥克语" lang="oc" hreflang="oc" data-title="Sillogisme" data-language-autonym="Occitan" data-language-local-name="奥克语" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Sylogizm" title="Sylogizm – 波兰语" lang="pl" hreflang="pl" data-title="Sylogizm" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Silogism" title="Silogism – 皮埃蒙特文" lang="pms" hreflang="pms" data-title="Silogism" data-language-autonym="Piemontèis" data-language-local-name="皮埃蒙特文" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Silogismo" title="Silogismo – 葡萄牙语" lang="pt" hreflang="pt" data-title="Silogismo" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Silogism" title="Silogism – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Silogism" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%BB%D0%BE%D0%B3%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" title="Силлогистика – 俄语" lang="ru" hreflang="ru" data-title="Силлогистика" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Syllogism" title="Syllogism – Simple English" lang="en-simple" hreflang="en-simple" data-title="Syllogism" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Sylogizmus" title="Sylogizmus – 斯洛伐克语" lang="sk" hreflang="sk" data-title="Sylogizmus" data-language-autonym="Slovenčina" data-language-local-name="斯洛伐克语" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Silogizem" title="Silogizem – 斯洛文尼亚语" lang="sl" hreflang="sl" data-title="Silogizem" data-language-autonym="Slovenščina" data-language-local-name="斯洛文尼亚语" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Silogjizmi" title="Silogjizmi – 阿尔巴尼亚语" lang="sq" hreflang="sq" data-title="Silogjizmi" data-language-autonym="Shqip" data-language-local-name="阿尔巴尼亚语" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%BE%D0%B3%D0%B8%D0%B7%D0%B0%D0%BC" title="Силогизам – 塞尔维亚语" lang="sr" hreflang="sr" data-title="Силогизам" data-language-autonym="Српски / srpski" data-language-local-name="塞尔维亚语" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Syllogism" title="Syllogism – 瑞典语" lang="sv" hreflang="sv" data-title="Syllogism" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Silohismo" title="Silohismo – 他加禄语" lang="tl" hreflang="tl" data-title="Silohismo" data-language-autonym="Tagalog" data-language-local-name="他加禄语" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Tas%C4%B1m" title="Tasım – 土耳其语" lang="tr" hreflang="tr" data-title="Tasım" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%BE%D0%B3%D1%96%D0%B7%D0%BC" title="Силогізм – 乌克兰语" lang="uk" hreflang="uk" data-title="Силогізм" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%82%DB%8C%D8%A7%D8%B3_(%D9%85%D9%86%D8%B7%D9%82)" title="قیاس (منطق) – 乌尔都语" lang="ur" hreflang="ur" data-title="قیاس (منطق)" data-language-autonym="اردو" data-language-local-name="乌尔都语" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Sillogizm" title="Sillogizm – 乌兹别克语" lang="uz" hreflang="uz" data-title="Sillogizm" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="乌兹别克语" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Tam_%C4%91o%E1%BA%A1n_lu%E1%BA%ADn" title="Tam đoạn luận – 越南语" lang="vi" hreflang="vi" data-title="Tam đoạn luận" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="直言三段论 – 吴语" lang="wuu" hreflang="wuu" data-title="直言三段论" data-language-autonym="吴语" data-language-local-name="吴语" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%AE%9A%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AB%96" title="定言三段論 – 粤语" lang="yue" hreflang="yue" data-title="定言三段論" data-language-autonym="粵語" data-language-local-name="粤语" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q107342#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;oldid=83607832" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&amp;page=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;id=83607832&amp;wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E7%259B%25B4%25E8%25A8%2580%25E4%25B8%2589%25E6%25AE%25B5%25E8%25AE%25BA"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E7%259B%25B4%25E8%25A8%2580%25E4%25B8%2589%25E6%25AE%25B5%25E8%25AE%25BA"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Syllogisms" hreflang="en"><span>维基共享资源</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q107342" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><p><b>直言三段论</b>是所有<a href="/wiki/%E5%89%8D%E6%8F%90" title="前提">前提</a>都是<a href="/wiki/%E7%9B%B4%E8%A8%80%E5%91%BD%E9%A1%8C" title="直言命題">直言命题</a>的<a href="/wiki/%E6%BC%94%E7%BB%8E%E6%8E%A8%E7%90%86" title="演绎推理">演绎推理</a>。前兩個<a href="/wiki/%E5%91%BD%E9%A2%98" title="命题">命題</a>被分别称为<b>大前提</b>和<b>小前提</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>。如果這個三段論是<a href="/wiki/%E6%9C%89%E6%95%88%E7%9A%84" class="mw-redirect" title="有效的">有效的</a>,這兩個前提邏輯上蕴涵了最後的命題,它叫做<b>結論</b>。結論的真實性建立在前提的真實性和它們之間的聯繫之上:<a href="/wiki/%E4%B8%AD%E9%A1%B9" title="中项">中項</a>在前提中必須<b><a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a></b>(distribute)至少一次,形成在結論中的主詞和謂词之間的連接。例如: </p> <blockquote style="float: none; margin: 0.7em 0.3em; border: solid 1px #E0CB52; border-left: solid 5px #E0CB52; padding: 0.3em 0.7em; background-color: #FCFAEE;"> <div> <dl><dd>所有生物都會死。</dd> <dd>所有人都是生物。</dd> <dd>所以,所有人都會死。</dd></dl> </div></blockquote> <p>這裡的中項“生物”在大前提中周延,大項“會死者”在大前提和結論中都不周延,小項“人”在小前提和結論中周延;這個三段論符合<a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a>規則:中項至少在一個前提中<a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a>。一些直言<a href="/wiki/%E4%B8%89%E6%AE%B5%E8%AB%96" title="三段論">三段論</a>不是有效的,例如: </p> <blockquote style="float: none; margin: 0.7em 0.3em; border: solid 1px #E0CB52; border-left: solid 5px #E0CB52; padding: 0.3em 0.7em; background-color: #FCFAEE;"> <div> <dl><dd>所有鳥都有翅膀。</dd> <dd>所有人都不是鳥。</dd> <dd>所以,没有人有翅膀。</dd></dl> </div></blockquote> <p>即使此例子的兩個前提和結論都是正確的,中項“鳥”在大前提和小前提中周延,大項“有翅膀”在結論中周延,小項“人”在小前提和結論中周延;此三段論卻是一種<a href="/wiki/%E5%A4%A7%E8%A9%9E%E4%B8%8D%E7%95%B6" title="大詞不當">大項不當</a><a href="/wiki/%E5%BD%A2%E5%BC%8F%E8%AC%AC%E8%AA%A4" title="形式謬誤">謬誤</a>,將結論“沒有人有翅膀”理解為同樣表達的“所有人沒有翅膀”如此一來方便了解其中的谬误;此三段論不有效的原因是它不符合另一個<a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a>規則:在結論中周延的詞項,在前提中也必須周延。在該三段論中大項“有翅膀”在結論被否定了,也就是說表達了人沒有“有翅膀”,大項在此周延,但在大前提中未周延,因為在大前提中“有翅膀”並沒有涉及該項的所有個體。 </p><p><br /> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="语气和格式"><span id=".E8.AF.AD.E6.B0.94.E5.92.8C.E6.A0.BC.E5.BC.8F"></span>语气和格式</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=1" title="编辑章节:语气和格式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Square_of_opposition,_set_diagrams.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Square_of_opposition%2C_set_diagrams.svg/300px-Square_of_opposition%2C_set_diagrams.svg.png" decoding="async" width="300" height="388" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Square_of_opposition%2C_set_diagrams.svg/450px-Square_of_opposition%2C_set_diagrams.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Square_of_opposition%2C_set_diagrams.svg/600px-Square_of_opposition%2C_set_diagrams.svg.png 2x" data-file-width="479" data-file-height="620" /></a><figcaption><a href="/wiki/%E5%AF%B9%E7%AB%8B%E5%9B%9B%E8%BE%B9%E5%BD%A2" title="对立四边形">對立四邊形</a>圖,揭示傳統邏輯四種命題語氣的關係,紅色表示非空,黑色表示空。</figcaption></figure> <p>三段論有如下典型形式: </p> <dl><dd>大前提:所有M是P。</dd> <dd>小前提:所有S是M。</dd> <dd>結論:所有S是P。</dd></dl> <p>其中S代表結論的<a href="/wiki/%E4%B8%BB%E8%A9%9E" class="mw-redirect" title="主詞">主詞</a>(<b>S</b>ubject),P代表結論的<a href="/wiki/%E8%AC%82%E8%A9%9E" class="mw-redirect" title="謂詞">謂詞</a>(<b>P</b>redicate),M代表中詞(<b>M</b>iddle)。 </p><p>三段論的命題可分為<a href="/wiki/%E5%85%A8%E7%A7%B0%E9%87%8F%E5%8C%96" title="全称量化">全称</a>(universal)、<a href="/wiki/%E5%AD%98%E5%9C%A8%E9%87%8F%E5%8C%96" title="存在量化">特称</a>(particular),及肯定、否定,組合起來有以下四類<b>語氣</b>(Mood): </p> <dl><dd><table class="wikitable"> <tbody><tr> <th>類型</th> <th>代號</th> <th>形式</th> <th>範例 </th></tr> <tr> <td>全稱肯定型</td> <td><tt>A</tt>(SaP)</td> <td>所有S是P</td> <td>所有人是會死的 </td></tr> <tr> <td>全稱否定型</td> <td><tt>E</tt>(SeP)</td> <td>沒有S是P</td> <td>沒有人是完美的 </td></tr> <tr> <td>特稱肯定型</td> <td><tt>I</tt>(SiP)</td> <td>有些S是P</td> <td>有些人是健康的 </td></tr> <tr> <td>特稱否定型</td> <td><tt>O</tt>(SoP)</td> <td>有些S不是P</td> <td>有些人不是健康的 </td></tr></tbody></table></dd></dl> <p>三段論中,結論中的謂詞稱作<b>大詞</b>(P,或稱大項),包含大詞在內的前提稱作<b>大前提</b>;結論中的主詞稱作<b>小詞</b>(S,或稱小項),包含小詞在內的前提稱作<b>小前提</b>;沒有出現在結論,卻在兩個前提重複出現的稱作<b>中詞</b>(M,或稱中項)。大詞、中詞、小詞依不同排列方式,可分成四種<b>格</b>(Figure): </p> <dl><dd><table class="wikitable" style="font-family:Arial;"> <tbody><tr> <th></th> <th>第1格</th> <th>第2格</th> <th>第3格</th> <th>第4格 </th></tr> <tr> <th>大前提 </th> <td>M-P</td> <td>P-M</td> <td>M-P</td> <td>P-M </td></tr> <tr> <th>小前提 </th> <td>S-M</td> <td>S-M</td> <td>M-S</td> <td>M-S </td></tr> <tr> <th>結論 </th> <td>S-P</td> <td>S-P</td> <td>S-P</td> <td>S-P </td></tr> </tbody></table></dd></dl> <p>將以上整合在一起,三段論的大前提、小前提、結論分別可為<tt>A</tt>、<tt>E</tt>、<tt>I</tt>、<tt>O</tt>型命題之一,又可分為4格,故總共有256種三段論(若考慮大前提與小前提對調,便有512種,但邏輯上是相同的)。 </p><p>三段論依語氣與格的分類縮寫,例如<b>AAA-1</b>(也可以寫成<b>1-AAA</b>)代表「大前提為<b>A</b>型,小前提為<b>A</b>型,結論為<b>A</b>型,第<b>1</b>格」的三段論。 </p><p>此外,三段論的四種格之间可相互转换: </p> <ul><li>第1格:对换大前提的主词和谓词的位置就变成第2格,对换小前提的主词和谓词的位置就变成第3格。</li> <li>第2格:对换大前提的主词和谓词的位置就变成第1格,对换小前提的主词和谓词的位置就变成第4格。</li> <li>第3格:对换大前提的主词和谓词的位置就变成第4格,对换小前提的主词和谓词的位置就变成第1格。</li> <li>第4格:对换大前提的主词和谓词的位置就变成第3格,对换小前提的主词和谓词的位置就变成第2格。</li></ul> <p><tt>E</tt>和<tt>I</tt>命题对换主词和谓词的位置而保持同原命题等价。<tt>A</tt>命题和<tt>O</tt>命题不能对换主词和谓词的位置,但是可以采用<a href="/wiki/%E7%9B%B4%E6%8E%A5%E6%8E%A8%E7%90%86" title="直接推理">直接推理</a>中的“对置法”。A命题还可以在确实主词有元素存在的前提下,转换成弱于原命题的<tt>I</tt>命题后再对换主词和谓词的位置。 </p> <div class="mw-heading mw-heading2"><h2 id="有效性"><span id=".E6.9C.89.E6.95.88.E6.80.A7"></span>有效性</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=2" title="编辑章节:有效性"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>考虑各种直言三段论的有效性將是非常冗长耗時的。前人想出了三个可供选择的方法来找出有效性。方法之一是记住下一章节中列出的所有論式。 </p><p>還可以通过构造<a href="/wiki/%E6%96%87%E6%B0%8F%E5%9B%BE" title="文氏图">文氏图</a>的方法得到有效形式。因为有三种项,文氏图需要三个交叠的圓圈来表示每一个类。首先,为小项构造一个圓圈。临近小项的圓圈的是同小項有着交叠的大项的圓圈。在这两个圓圈之上是中项的圓圈。它应当在三个位置有着交叠:大项,小项和大项与小项交叠的地方。一個三段论是有效的,其必然条件是通过图解两个前提得出结论的真实性。永不图解结论,因为结论必须从前提推导出来。总是首先图解全称命题。这是通过对一个类在另一个类中没有成员的区域加黑影来实现的。所以在前面例子的AAA-1形式中大前提“所有M是P”中,对M不与P交叠的所有区域加黑影,包括M与S交叠的部分。接着对小前提重复同样的过程。从这两个前提中可推导出在类S中所有成员也是类P的成员。但是,不能推出类P的所有成员都是类S的成员。 </p> <dl><dd><figure class="mw-halign-none" typeof="mw:File/Thumb"><a href="/wiki/File:Modus_Barbara.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Modus_Barbara.svg/400px-Modus_Barbara.svg.png" decoding="async" width="400" height="520" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Modus_Barbara.svg/600px-Modus_Barbara.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/86/Modus_Barbara.svg/800px-Modus_Barbara.svg.png 2x" data-file-width="718" data-file-height="934" /></a><figcaption></figcaption></figure></dd></dl> <p>作为文氏圖方法的另一个例子,考虑形式EIO-1的三段论。它的大前提是“没有M是P”,它的小前提是“有些S是M”,它的结论是“有些S不是P”。这个三段论的大项是P,它的小项是S,它的中项是M。大前提在图中通过对交集M ∩ P加阴影表示。小前提不能通过对任何区域加黑影表示。转而,我们可以在交集S ∩ M的非黑影部分使用<font color="red"><b>x</b></font>符号来表示“有些S是M”。(注意:黑影区域和<a href="/wiki/%E5%AD%98%E5%9C%A8%E9%87%8F%E5%8C%96" title="存在量化">存在量化</a>区域是互斥的)。接着因为存在符号位于S内但在P外,所以结论“存在一些S不是P”是正确的。 </p> <dl><dd><figure class="mw-halign-none" typeof="mw:File/Thumb"><a href="/wiki/File:Modus_Ferio.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Ferio.svg/400px-Modus_Ferio.svg.png" decoding="async" width="400" height="520" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Ferio.svg/600px-Modus_Ferio.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Ferio.svg/800px-Modus_Ferio.svg.png 2x" data-file-width="718" data-file-height="934" /></a><figcaption></figcaption></figure></dd></dl> <p>本文最後一節列出了所有24個有效論式的文氏圖。 </p><p>最后一种方法是记住下面非形式表述的幾條规则以避免<a href="/wiki/%E8%AC%AC%E8%AB%96" class="mw-redirect" title="謬論">謬論</a>。尽管文氏图对于诠释目的是好工具,有人更喜欢用這些规则来检验有效性。 </p><p>基本規則: </p> <ol><li>結論中<a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a>的詞必須在前提中<a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a>(謬誤:<a href="/wiki/%E5%A4%A7%E8%A9%9E%E4%B8%8D%E7%95%B6" title="大詞不當">大詞不當</a>、<a href="/wiki/%E5%B0%8F%E8%A9%9E%E4%B8%8D%E7%95%B6" title="小詞不當">小詞不當</a>)。</li> <li>中詞必須<a href="/wiki/%E5%91%A8%E5%BB%B6_(%E5%93%B2%E5%AD%B8%E6%A6%82%E5%BF%B5)" title="周延 (哲學概念)">周延</a>至少一次(謬誤:<a href="/wiki/%E4%B8%AD%E8%A9%9E%E4%B8%8D%E5%91%A8%E5%BB%B6" title="中詞不周延">中詞不周延</a>)。</li> <li>結論中否定命題的數目必須和前提中否定命題的數目相等: <ol><li>二前提皆肯定,則結論必須為肯定(謬誤:<a href="/wiki/%E8%82%AF%E5%AE%9A%E5%89%8D%E6%8F%90%E6%8E%A8%E5%BE%97%E5%90%A6%E5%AE%9A%E7%B5%90%E8%AB%96" title="肯定前提推得否定結論">肯定前提推得否定結論</a>)。</li> <li>一前提是否定,則結論必須為否定(謬誤:<a href="/wiki/%E5%90%A6%E5%AE%9A%E5%89%8D%E6%8F%90%E6%8E%A8%E5%BE%97%E8%82%AF%E5%AE%9A%E7%B5%90%E8%AB%96" title="否定前提推得肯定結論">否定前提推得肯定結論</a>)。</li> <li>二前提皆否定,則三段論必無效(謬誤:<a href="/wiki/%E6%8E%92%E5%AE%83%E5%89%8D%E6%8F%90%E8%AC%AC%E8%AA%A4" class="mw-redirect" title="排它前提謬誤">排它前提謬誤</a>)。</li></ol></li> <li>結論中特稱命題的數目必須和前提中特稱命題的數目相等: <ol><li>二前提皆全稱,則結論必須為全稱。</li> <li>一前提是特稱,則結論必須為特稱。</li> <li>二前提皆特稱,則三段論必無效。</li></ol></li></ol> <p>若一個三段論式滿足以上的所有規則,就必定有效。 </p><p>其他檢查: </p> <ul><li>如果語境上不能假設所有提及的集合非<a href="/wiki/%E7%A9%BA%E9%9B%86%E5%90%88" class="mw-redirect" title="空集合">空</a>,部分推論將會無效(謬誤:<a href="/wiki/%E5%AD%98%E5%9C%A8%E8%AC%AC%E8%AA%A4" class="mw-redirect" title="存在謬誤">存在謬誤</a>)。</li> <li>必須包含嚴格的三個詞,不多不少。且須注意所有關鍵詞和結構的語義是否一致(謬誤:<a href="/wiki/%E5%9B%9B%E8%A9%9E%E8%AC%AC%E8%AA%A4" title="四詞謬誤">四詞謬誤</a>、<a href="/wiki/%E6%AD%A7%E7%BE%A9%E8%AC%AC%E8%AA%A4" title="歧義謬誤">歧義謬誤</a>)。</li></ul> <div class="mw-heading mw-heading3"><h3 id="有效三段論式"><span id=".E6.9C.89.E6.95.88.E4.B8.89.E6.AE.B5.E8.AB.96.E5.BC.8F"></span>有效三段論式</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=3" title="编辑章节:有效三段論式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>唯有第一格的所有有效三段論式的結論涵蓋了<tt>A</tt>、<tt>E</tt>、<tt>I</tt>、<tt>O</tt>全部四種命題,第二格的所有有效三段論式皆為否定結論(<tt>E</tt>或<tt>O</tt>),第三格的所有有效三段論式皆為特稱結論(<tt>I</tt>或<tt>O</tt>),第四格的所有有效三段論式皆為否定結論或特稱結論(<tt>E</tt>、<tt>I</tt>或<tt>O</tt>)。下面表格中加下劃線者必須假設所有提及的集合非空才有效。 </p> <dl><dd><table class="wikitable"> <tbody><tr> <th>第1格 </th> <th>第2格 </th> <th>第3格 </th> <th>第4格 </th></tr> <tr> <td>AAA </td> <td>AEE </td> <td>A<u>A</u>I </td> <td>AA<u>I</u> </td></tr> <tr> <td>EAE </td> <td>EAE </td> <td>E<u>A</u>O </td> <td>E<u>A</u>O </td></tr> <tr> <td>AII </td> <td>AOO </td> <td>AII </td> <td>AEE </td></tr> <tr> <td>EIO </td> <td>EIO </td> <td>EIO </td> <td>EIO </td></tr> <tr> <td>AA<u>I</u> </td> <td>AE<u>O</u> </td> <td>IAI </td> <td>IAI </td></tr> <tr> <td>EA<u>O</u> </td> <td>EA<u>O</u> </td> <td>OAO </td> <td>AE<u>O</u> </td></tr></tbody></table></dd></dl> <p>在全部256種三段論式中,有24種有效,但是如果不能確定所有提及的集合為非空,則只有15種有效。 </p> <div class="mw-heading mw-heading3"><h3 id="常犯的無效三段論式"><span id=".E5.B8.B8.E7.8A.AF.E7.9A.84.E7.84.A1.E6.95.88.E4.B8.89.E6.AE.B5.E8.AB.96.E5.BC.8F"></span>常犯的無效三段論式</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=4" title="编辑章节:常犯的無效三段論式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <pre>1-AEE, 1-AEO, 1-EEA, 1-EEE, 1-EEI, 1-AIA, 1-IAA, 1-IAI, 1-III, 1-AOO, 1-OAO, 1-IEO 2-AAA, 2-AAI, 2-AII, 2-IAI, 2-OAO, 2-IEO, 2-EOI, 2-OEI, 2-IOO, 2-OIO 3-AAA, 3-AEE, 3-EAE, 3-AEO, 3-AOO, 3-AIA, 3-IAA, 3-III, 3-EOI, 3-OEI, 3-IEO 4-AAA, 4-EAE, 4-AII, 4-IEO </pre> <div class="mw-heading mw-heading2"><h2 id="三段论式列表"><span id=".E4.B8.89.E6.AE.B5.E8.AE.BA.E5.BC.8F.E5.88.97.E8.A1.A8"></span>三段论式列表</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=5" title="编辑章节:三段论式列表"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>总共有19个有效的论式,算结论弱化(全称弱化为特称)的5个论式則為24個有效论式,其中每一格刚好各有6個有效论式。為便於記憶,中世纪的学者將這些有效論式分別取了對應的<a href="/wiki/%E6%8B%89%E4%B8%81%E8%AA%9E" class="mw-redirect" title="拉丁語">拉丁語</a>名字,每個名字的加了下劃線的<a href="/wiki/%E5%85%83%E9%9F%B3" title="元音">元音</a>即是對應的語氣: </p> <dl><dd><table class="wikitable" style="font-family:Arial;"> <tbody><tr> <th>第1格 </th> <th>第2格 </th> <th>第3格 </th> <th>第4格 </th></tr> <tr> <td>B<u>a</u>rb<u>a</u>r<u>a</u> </td> <td>C<u>a</u>m<u>e</u>str<u>e</u>s </td> <td>D<u>a</u>r<u>a</u><i>p</i>t<u>i</u> </td> <td>B<u>a</u>m<u>a</u>l<u>i</u><i>p</i> </td></tr> <tr> <td>C<u>e</u>l<u>a</u>r<u>e</u>nt </td> <td>C<u>e</u>s<u>a</u>r<u>e</u> </td> <td>F<u>e</u>l<u>a</u><i>p</i>t<u>o</u>n </td> <td>F<u>e</u>s<u>a</u><i>p</i><u>o</u> </td></tr> <tr> <td>D<u>a</u>r<u>ii</u> </td> <td>B<u>a</u>r<u>o</u>c<u>o</u> </td> <td>D<u>a</u>t<u>i</u>s<u>i</u> </td> <td>C<u>a</u>l<u>e</u>m<u>e</u>s </td></tr> <tr> <td>F<u>e</u>r<u>io</u> </td> <td>F<u>e</u>st<u>i</u>n<u>o</u> </td> <td>F<u>e</u>r<u>i</u>s<u>o</u>n </td> <td>Fr<u>e</u>s<u>i</u>s<u>o</u>n </td></tr> <tr> <td><i>B<u>a</u>rb<u>a</u>r<u>i</u></i> </td> <td><i>C<u>a</u>m<u>e</u>str<u>o</u>s</i> </td> <td>D<u>i</u>s<u>a</u>m<u>i</u>s &#160; </td> <td>D<u>i</u>m<u>a</u>r<u>i</u>s </td></tr> <tr> <td><i>C<u>e</u>l<u>a</u>r<u>o</u>nt</i> </td> <td><i>C<u>e</u>s<u>a</u>r<u>o</u></i> </td> <td>B<u>o</u>c<u>a</u>rd<u>o</u> </td> <td><i>C<u>a</u>l<u>e</u>m<u>o</u>s</i> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading3"><h3 id="经典三段论式"><span id=".E7.BB.8F.E5.85.B8.E4.B8.89.E6.AE.B5.E8.AE.BA.E5.BC.8F"></span>经典三段论式</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=6" title="编辑章节:经典三段论式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>下面列出的是<a href="/wiki/%E4%BA%9A%E9%87%8C%E5%A3%AB%E5%A4%9A%E5%BE%B7" title="亚里士多德">亚里士多德</a>的《<a href="/w/index.php?title=%E5%89%8D%E5%88%86%E6%9E%90%E7%AF%87&amp;action=edit&amp;redlink=1" class="new" title="前分析篇(页面不存在)">前分析篇</a>》中关于前3个格的14个三段论式。 </p> <div class="mw-heading mw-heading4"><h4 id="第1格"><span id=".E7.AC.AC1.E6.A0.BC"></span>第1格</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=7" title="编辑章节:第1格"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b>AAA</b>(Barbara)</li></ul> <p><tt>&#160;</tt>所有M是P。<br /> <tt>&#160;</tt>所有S是M。<br /> <tt>∴</tt>所有S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \forall x(S(x)\rightarrow M(x))}{\forall x(S(x)\rightarrow P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \forall x(S(x)\rightarrow M(x))}{\forall x(S(x)\rightarrow P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed32a09520a5a25c600c0c66312656150a0fec66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.257ex; height:7.176ex;" alt="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \forall x(S(x)\rightarrow M(x))}{\forall x(S(x)\rightarrow P(x))}}}"></span> </p> <ul><li><b>EAE</b>(Celarent)</li></ul> <p><tt>&#160;</tt>没有M是P。<br /> <tt>&#160;</tt>所有S是M。<br /> <tt>∴</tt>没有S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\quad \forall x(S(x)\rightarrow M(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\quad \forall x(S(x)\rightarrow M(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5b079099e3d71011a8eb20cfe0b88eeb33f9e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.485ex; height:7.176ex;" alt="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\quad \forall x(S(x)\rightarrow M(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}"></span> </p> <ul><li><b>AII</b>(Darii)</li></ul> <p><tt>&#160;</tt>所有M是P。<br /> <tt>&#160;</tt>有些S是M。<br /> <tt>∴</tt>有些S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \exists x(S(x)\land M(x))}{\exists x(S(x)\land P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \exists x(S(x)\land M(x))}{\exists x(S(x)\land P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c18ede5218988db0032e494295a0d4e371c9063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.226ex; height:7.176ex;" alt="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \exists x(S(x)\land M(x))}{\exists x(S(x)\land P(x))}}}"></span> </p> <ul><li><b>EIO</b>(Ferio)</li></ul> <p><tt>&#160;</tt>没有M是P。<br /> <tt>&#160;</tt>有些S是M。<br /> <tt>∴</tt>有些S不是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\quad \exists x(S(x)\land M(x))}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\quad \exists x(S(x)\land M(x))}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58e09217b313f0f5a3a7d025d2da790fa64f22b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.454ex; height:7.176ex;" alt="{\displaystyle {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\quad \exists x(S(x)\land M(x))}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="第2格"><span id=".E7.AC.AC2.E6.A0.BC"></span>第2格</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=8" title="编辑章节:第2格"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b>AEE</b>(Camestres)</li></ul> <p><tt>&#160;</tt>所有P是M。<br /> <tt>&#160;</tt>没有S是M。<br /> <tt>∴</tt>没有S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\cfrac {{\begin{matrix}\quad \\\forall x(P(x)\rightarrow M(x))\end{matrix}}\qquad {\cfrac {\forall x(S(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot S(x))}}}{\forall x(M(x)\rightarrow \lnot S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\cfrac {\forall x(P(x)\rightarrow \lnot S(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\cfrac {{\begin{matrix}\quad \\\forall x(P(x)\rightarrow M(x))\end{matrix}}\qquad {\cfrac {\forall x(S(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot S(x))}}}{\forall x(M(x)\rightarrow \lnot S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\cfrac {\forall x(P(x)\rightarrow \lnot S(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1590a4e2e46aac626f8c6286a0b409f13b536ab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:46.232ex; height:18.009ex;" alt="{\displaystyle {\cfrac {\cfrac {{\begin{matrix}\quad \\\forall x(P(x)\rightarrow M(x))\end{matrix}}\qquad {\cfrac {\forall x(S(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot S(x))}}}{\forall x(M(x)\rightarrow \lnot S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\cfrac {\forall x(P(x)\rightarrow \lnot S(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}}"></span> </p><p>(AEE-2是AEE-4的等价形式。这种形式还有其他推导方法。)<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><b>EAE</b>(Cesare)</li></ul> <p><tt>&#160;</tt>没有P是M。<br /> <tt>&#160;</tt>所有S是M。<br /> <tt>∴</tt>没有S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\forall x(S(x)\rightarrow M(x))\end{matrix}}}{\forall x(S(x)\rightarrow \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\forall x(S(x)\rightarrow M(x))\end{matrix}}}{\forall x(S(x)\rightarrow \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69bee0c91ef6877ee987fb9a1924c8741c258e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.395ex; height:10.676ex;" alt="{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\forall x(S(x)\rightarrow M(x))\end{matrix}}}{\forall x(S(x)\rightarrow \lnot P(x))}}}"></span> </p><p>(EAE-2是EAE-1的等价形式。) </p> <ul><li><b>AOO</b>(Baroco)</li></ul> <p><tt>&#160;</tt>所有P是M。<br /> <tt>&#160;</tt>有些S不是M。<br /> <tt>∴</tt>有些S不是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))}{\forall x(P(x)\rightarrow \lnot (\lnot M(x)))}}{\forall x((\lnot M(x))\rightarrow \lnot P(x))}}\quad {\cfrac {\exists x(S(x)\land \lnot M(x))}{\exists x(S(x)\land (\lnot M(x)))}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))}{\forall x(P(x)\rightarrow \lnot (\lnot M(x)))}}{\forall x((\lnot M(x))\rightarrow \lnot P(x))}}\quad {\cfrac {\exists x(S(x)\land \lnot M(x))}{\exists x(S(x)\land (\lnot M(x)))}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0088e1cc5db8aeb9ddc515b449177c2ed4d8126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:49.681ex; height:14.343ex;" alt="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))}{\forall x(P(x)\rightarrow \lnot (\lnot M(x)))}}{\forall x((\lnot M(x))\rightarrow \lnot P(x))}}\quad {\cfrac {\exists x(S(x)\land \lnot M(x))}{\exists x(S(x)\land (\lnot M(x)))}}}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p><p>(这种形式还有其他推导方法。)<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><b>EIO</b>(Festino)</li></ul> <p><tt>&#160;</tt>没有P是M。<br /> <tt>&#160;</tt>有些S是M。<br /> <tt>∴</tt>有些S不是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\exists x(S(x)\land M(x))\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\exists x(S(x)\land M(x))\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99df6c5fca6c97ec2ffbce4bfb9b53379e3f9f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.364ex; height:10.676ex;" alt="{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\exists x(S(x)\land M(x))\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p><p>(EIO-2是EIO-1的等价形式。) </p> <div class="mw-heading mw-heading4"><h4 id="第3格"><span id=".E7.AC.AC3.E6.A0.BC"></span>第3格</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=9" title="编辑章节:第3格"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b>AAI</b>(Darapti)</li></ul> <p><tt>&#160;</tt>所有M是P。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S是P。<br /> (这种形式需要假定有些M确实存在。)<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\\quad \\\forall x(M(x)\rightarrow P(x))\end{matrix}}\ {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\\quad \\\forall x(M(x)\rightarrow P(x))\end{matrix}}\ {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de435f9e280ba22d8bd5774177f0237ccfe02cda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:61.867ex; height:18.009ex;" alt="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\\quad \\\forall x(M(x)\rightarrow P(x))\end{matrix}}\ {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land P(x))}}}"></span> </p> <ul><li><b>EAO</b>(Felapton)</li></ul> <p><tt>&#160;</tt>没有M是P。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S不是P。<br /> (这种形式需要假定有些M确实存在。)<sup id="cite_ref-#1_5-0" class="reference"><a href="#cite_note-#1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\\quad \\\forall x(M(x)\rightarrow \lnot P(x))\end{matrix}}\,{\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\\quad \\\forall x(M(x)\rightarrow \lnot P(x))\end{matrix}}\,{\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32443fee7cd1fd0aeee8cc2501441d51073b822a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:63.224ex; height:18.009ex;" alt="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\\quad \\\forall x(M(x)\rightarrow \lnot P(x))\end{matrix}}\,{\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p> <ul><li><b>AII</b>(Datisi)</li></ul> <p><tt>&#160;</tt>所有M是P。<br /> <tt>&#160;</tt>有些M是S。<br /> <tt>∴</tt>有些S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow P(x))\end{matrix}}\qquad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow P(x))\end{matrix}}\qquad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7470fdcc968566dc7c67ed0f212329506935c17c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.814ex; height:10.676ex;" alt="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow P(x))\end{matrix}}\qquad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land P(x))}}}"></span> </p><p>(AII-3是AII-1的等价形式。) </p> <ul><li><b>EIO</b>(Ferison)</li></ul> <p><tt>&#160;</tt>没有M是P。<br /> <tt>&#160;</tt>有些M是S。<br /> <tt>∴</tt>有些S不是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow \lnot P(x))\end{matrix}}\quad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow \lnot P(x))\end{matrix}}\quad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3acb4491f307a5fd8b993f3d10f4f6526a44a26c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.041ex; height:10.676ex;" alt="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow \lnot P(x))\end{matrix}}\quad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p><p>(EIO-3是EIO-1的等价形式。) </p> <ul><li><b>IAI</b>(Disamis)</li></ul> <p><tt>&#160;</tt>有些M是P。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\cfrac {{\cfrac {\exists x(M(x)\land P(x))}{\exists x(P(x)\land M(x))}}\qquad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow S(x))\qquad \exists x(P(x)\land M(x))}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\cfrac {{\cfrac {\exists x(M(x)\land P(x))}{\exists x(P(x)\land M(x))}}\qquad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow S(x))\qquad \exists x(P(x)\land M(x))}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed4ae5493ea47c6537394a30cccf246f9dba09c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:43.65ex; height:18.009ex;" alt="{\displaystyle {\cfrac {\cfrac {{\cfrac {\exists x(M(x)\land P(x))}{\exists x(P(x)\land M(x))}}\qquad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow S(x))\qquad \exists x(P(x)\land M(x))}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}"></span> </p><p>(IAI-3是IAI-4的等价形式。) </p> <ul><li><b>OAO</b>(Bocardo)</li></ul> <p><tt>&#160;</tt>有些M不是P。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S不是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\cfrac {{\cfrac {\exists x(M(x)\land \lnot P(x))}{\exists x((\lnot P(x))\land M(x))}}\quad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow S(x))\quad \exists x((\lnot P(x))\land M(x))}}{\cfrac {\exists x((\lnot P(x))\land S(x))}{\exists x(S(x)\land \lnot P(x))}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\cfrac {{\cfrac {\exists x(M(x)\land \lnot P(x))}{\exists x((\lnot P(x))\land M(x))}}\quad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow S(x))\quad \exists x((\lnot P(x))\land M(x))}}{\cfrac {\exists x((\lnot P(x))\land S(x))}{\exists x(S(x)\land \lnot P(x))}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34682974e323f22142db91ae8f6159987228c8e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:44.687ex; height:18.009ex;" alt="{\displaystyle {\cfrac {\cfrac {{\cfrac {\exists x(M(x)\land \lnot P(x))}{\exists x((\lnot P(x))\land M(x))}}\quad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow S(x))\quad \exists x((\lnot P(x))\land M(x))}}{\cfrac {\exists x((\lnot P(x))\land S(x))}{\exists x(S(x)\land \lnot P(x))}}}}"></span> </p><p>(这种形式还有其他推导方法。)<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="增补的论式"><span id=".E5.A2.9E.E8.A1.A5.E7.9A.84.E8.AE.BA.E5.BC.8F"></span>增补的论式</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=10" title="编辑章节:增补的论式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>第4格由亞里士多德的學生<a href="/wiki/%E6%B3%B0%E5%A5%A7%E5%BC%97%E6%8B%89%E6%96%AF%E6%89%98%E6%96%AF" title="泰奧弗拉斯托斯">泰奧弗拉斯托斯</a>補充<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading4"><h4 id="第4格"><span id=".E7.AC.AC4.E6.A0.BC"></span>第4格</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=11" title="编辑章节:第4格"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b>AAI</b>(Bamalip)</li></ul> <p><tt>&#160;</tt>所有P是M。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S是P。<br /> (这种形式需要假定有些P确实存在。) </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\forall x(P(x)\rightarrow S(x))}}\quad {\cfrac {\exists xP(x)}{\exists x(P(x)\land P(x))}}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\forall x(P(x)\rightarrow S(x))}}\quad {\cfrac {\exists xP(x)}{\exists x(P(x)\land P(x))}}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4029cf8bfa1630de55831c2ffce555845723e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:63.871ex; height:18.009ex;" alt="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\forall x(P(x)\rightarrow S(x))}}\quad {\cfrac {\exists xP(x)}{\exists x(P(x)\land P(x))}}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}"></span> </p> <ul><li><b>EAO</b>(Fesapo)</li></ul> <p><tt>&#160;</tt>没有P是M。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S不是P。<br /> </p><p>(这种形式需要假定有些M确实存在。)<sup id="cite_ref-#2_8-0" class="reference"><a href="#cite_note-#2-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\end{matrix}}\,{\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\end{matrix}}\,{\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38d3e1e1dfa59fc7431c88a9d13c95496ec7065d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:64.06ex; height:18.009ex;" alt="{\displaystyle {\cfrac {{\begin{matrix}\quad \\\quad \\{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\end{matrix}}\,{\cfrac {{\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}\quad {\cfrac {\exists xM(x)}{\exists x(M(x)\land M(x))}}}{\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p><p>(EAO-4是EAO-3的等价形式。) </p> <ul><li><b>AEE</b>(Calemes)</li></ul> <p><tt>&#160;</tt>所有P是M。<br /> <tt>&#160;</tt>没有M是S。<br /> <tt>∴</tt>没有S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \forall x(M(x)\rightarrow \lnot S(x))}{\forall x(M(x)\rightarrow \lnot S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\cfrac {\forall x(P(x)\rightarrow \lnot S(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \forall x(M(x)\rightarrow \lnot S(x))}{\forall x(M(x)\rightarrow \lnot S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\cfrac {\forall x(P(x)\rightarrow \lnot S(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07e7fb5b45bfe5c059056c083a212594218256fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:44.644ex; height:14.343ex;" alt="{\displaystyle {\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \forall x(M(x)\rightarrow \lnot S(x))}{\forall x(M(x)\rightarrow \lnot S(x))\qquad \forall x(P(x)\rightarrow M(x))}}{\cfrac {\forall x(P(x)\rightarrow \lnot S(x))}{\forall x(S(x)\rightarrow \lnot P(x))}}}}"></span> </p> <ul><li><b>EIO</b>(Fresison)</li></ul> <p><tt>&#160;</tt>没有P是M。<br /> <tt>&#160;</tt>有些M是S。<br /> <tt>∴</tt>有些S不是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b34db746d6b82df8bbee93404e4d3e73d6a14fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.449ex; height:10.676ex;" alt="{\displaystyle {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\cfrac {\exists x(M(x)\land S(x))}{\exists x(S(x)\land M(x))}}}{\exists x(S(x)\land \lnot P(x))}}}"></span> </p><p>(EIO-4是EIO-1的等价形式。) </p> <ul><li><b>IAI</b>(Dimaris)</li></ul> <p><tt>&#160;</tt>有些P是M。<br /> <tt>&#160;</tt>所有M是S。<br /> <tt>∴</tt>有些S是P。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\cfrac {\exists x(P(x)\land M(x))\qquad \forall x(M(x)\rightarrow \ S(x))}{\forall x(M(x)\rightarrow \ S(x))\qquad \exists x(P(x)\land M(x))}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mtext>&#xA0;</mtext> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mtext>&#xA0;</mtext> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\cfrac {\exists x(P(x)\land M(x))\qquad \forall x(M(x)\rightarrow \ S(x))}{\forall x(M(x)\rightarrow \ S(x))\qquad \exists x(P(x)\land M(x))}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683157ef880a851251be01def7e6f4549ea3e910" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:42.643ex; height:14.343ex;" alt="{\displaystyle {\cfrac {\cfrac {\exists x(P(x)\land M(x))\qquad \forall x(M(x)\rightarrow \ S(x))}{\forall x(M(x)\rightarrow \ S(x))\qquad \exists x(P(x)\land M(x))}}{\cfrac {\exists x(P(x)\land S(x))}{\exists x(S(x)\land P(x))}}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="结论弱化的论式"><span id=".E7.BB.93.E8.AE.BA.E5.BC.B1.E5.8C.96.E7.9A.84.E8.AE.BA.E5.BC.8F"></span>结论弱化的论式</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=12" title="编辑章节:结论弱化的论式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>歷史上,AAI-3、EAO-3、AAI-4、EAO-4的拉丁語名字中有字母“p”,用来指示出这些论式通過引入了某个词项确实有元素存在的前提,将一个<tt>A</tt>命题弱化成了<tt>I</tt>命题。后人认为它們不是直言的即不是无条件的,这个问题被称为<a href="/wiki/%E5%AD%98%E5%9C%A8%E6%80%A7%E5%BC%95%E5%85%A5%E9%97%AE%E9%A2%98" class="mw-redirect" title="存在性引入问题">存在性引入问题</a>。 </p><p>在假定结论的主词确定有成员存在的前提下,可将论式中的结论<tt>A</tt>弱化为结论<tt>I</tt>,结论<tt>E</tt>弱化为结论<tt>O</tt>,它们也可以被增补为有效论式,从而得到所有可能的24有效论式。结论弱化论式有5个:<b>AAI-1</b>(Barbari),即弱化的AAA-1;<b>EAO-1</b>(Celaront),即弱化的EAE-1;<b>AEO-2</b>(Camestros),即弱化的AEE-2;<b>EAO-2</b>(Cesaro),即弱化的EAE-2;<b>AEO-4</b>(Calemos),即弱化的AEE-4。AAI-1的结论同于AII-1的结论,EAO-1、EAO-2的结论同于EIO-1的结论,AEO-2、AEO-4的结论同于AOO-2的结论,需要注意结论弱化论式原来的结论依然成立。 </p> <div class="mw-heading mw-heading3"><h3 id="谓词演算公式的注解"><span id=".E8.B0.93.E8.AF.8D.E6.BC.94.E7.AE.97.E5.85.AC.E5.BC.8F.E7.9A.84.E6.B3.A8.E8.A7.A3"></span>谓词演算公式的注解</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=13" title="编辑章节:谓词演算公式的注解"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>按照<a href="/wiki/%E5%B8%83%E5%B0%94%E9%80%BB%E8%BE%91" title="布尔逻辑">布尔逻辑</a>和<a href="/wiki/%E9%9B%86%E5%90%88%E4%BB%A3%E6%95%B0" title="集合代数">集合代数</a>的观点,三段论可以解释为:<a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>(<a href="/wiki/%E7%B1%BB_(%E6%95%B0%E5%AD%A6)" title="类 (数学)">类</a>)<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,S\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>S</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,S\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80de9e29ab9c15889689ff799b09548547d6c8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.273ex; height:2.176ex;" alt="{\displaystyle \,S\,}"></span>和集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>有某种<a href="/wiki/%E4%BA%8C%E5%85%83%E5%85%B3%E7%B3%BB" title="二元关系">二元关系</a>,并且集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>和集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,P\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>P</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,P\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e91614855859e9d2e1df5e74c8d4fe6fb1a9b20d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.52ex; height:2.176ex;" alt="{\displaystyle \,P\,}"></span>有某种二元关系,从而推论出集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,S\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>S</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,S\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80de9e29ab9c15889689ff799b09548547d6c8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.273ex; height:2.176ex;" alt="{\displaystyle \,S\,}"></span>和集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,P\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>P</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,P\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e91614855859e9d2e1df5e74c8d4fe6fb1a9b20d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.52ex; height:2.176ex;" alt="{\displaystyle \,P\,}"></span>是否存在进而为何种可确定的二元关系。两个集合之间的二元关系用直言命题可确定的有四种: </p> <ul><li><tt>A</tt>(全称肯定)命题:所有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>的元素是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的元素,确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>“<a href="/wiki/%E5%8C%85%E5%90%AB" class="mw-redirect" title="包含">包含</a>于”<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的关系,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的<a href="/wiki/%E5%AD%90%E9%9B%86" title="子集">子集</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>的<a href="/wiki/%E8%B6%85%E9%9B%86" class="mw-redirect" title="超集">超集</a>,这是一种<a href="/wiki/%E5%81%8F%E5%BA%8F%E5%85%B3%E7%B3%BB" title="偏序关系">偏序关系</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,L\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>L</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,L\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c9ee80f5d8f948f5995ad5cd6d9c4c20a956cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.357ex; height:2.176ex;" alt="{\displaystyle \,L\,}"></span>包含于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>,並且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>包含于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>,則<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,L\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>L</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,L\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c9ee80f5d8f948f5995ad5cd6d9c4c20a956cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.357ex; height:2.176ex;" alt="{\displaystyle \,L\,}"></span>包含于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>。<tt>A</tt>命题允许两个推理方向,从元素属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>推出它属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>,从元素不属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>推出它不属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>。<tt>A</tt>命题确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>减<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的<a href="/wiki/%E5%B7%AE%E9%9B%86" class="mw-redirect" title="差集">差集</a>是<a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a>。</li> <li><tt>E</tt>(全称否定)命题:所有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>的元素不是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的元素,确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>是“<a href="/wiki/%E4%B8%8D%E4%BA%A4%E9%9B%86" title="不交集">无交集</a>”的关系,这是一种<a href="/wiki/%E5%AF%B9%E7%A7%B0%E5%85%B3%E7%B3%BB" title="对称关系">对称关系</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>无交集于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>,同于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>无交集于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>。<tt>E</tt>命题允许两个推理方向,从元素属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>推出它不属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>,从元素属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>推出它不属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>。<tt>E</tt>命题确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的<a href="/wiki/%E4%BA%A4%E9%9B%86" title="交集">交集</a>是<a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a>。</li> <li><tt>I</tt>(特称肯定)命题:有些<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>的元素是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的元素,确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>是“有<a href="/wiki/%E4%BA%A4%E9%9B%86" title="交集">交集</a>”的关系,这是一种<a href="/wiki/%E5%AF%B9%E7%A7%B0%E5%85%B3%E7%B3%BB" title="对称关系">对称关系</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>有交集于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>,同于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>有交集于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>。<tt>I</tt>命题确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的<a href="/wiki/%E4%BA%A4%E9%9B%86" title="交集">交集</a>不是<a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a>。</li> <li><tt>O</tt>(特称否定)命题:有些<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>的元素不是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的元素,确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>“不<a href="/wiki/%E5%8C%85%E5%90%AB" class="mw-redirect" title="包含">包含</a>于”<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的关系。<tt>O</tt>命题确定了<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,M\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>M</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,M\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab62b678b50c63bdaa4367ee1faeaeebc2d00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.176ex;" alt="{\displaystyle \,M\,}"></span>减<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,N\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,N\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e546b9564ac9b89b7699116fa86e6fa16a40cd24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.838ex; height:2.176ex;" alt="{\displaystyle \,N\,}"></span>的<a href="/wiki/%E5%B7%AE%E9%9B%86" class="mw-redirect" title="差集">差集</a>不是<a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a>。</li></ul> <p>两个全称命题可以推出一个新的全称命题,一个全称命题和一个特称命题可以推出一个新的特称命题,两个特称命题无法推理。<tt>A</tt>命题可以和所有四种命题組合。<tt>E</tt>命题还可以和<tt>I</tt>命题組合,两个否定命题和<tt>IE</tt>组合,不能得出屬於四種命題之一的結論。故而有效的論式,要在<tt>AA</tt>、<tt>AE</tt>、<tt>EA</tt>、<tt>AI</tt>、<tt>IA</tt>、<tt>AO</tt>、<tt>OA</tt>、<tt>EI</tt>這8種組合乘以4種格,共32種情況中找出。 </p><p><tt>AA</tt>组合中AAA-1是直接推出的;第4格<tt>AA</tt>組合推论出谓词包含於主词的关系,这不是四种命题之一,只能在谓词确实有元素存在的前提下弱化为AAI-4。<tt>AE</tt>组合中AEE-4是直接推出的,<tt>EA</tt>组合中EAE-1是直接推出的。第3格<tt>AA</tt>組合和<tt>EA</tt>組合,在中項確定有元素存在的前提下,形成AAI-3和EAO-3。AAA-1、AAI-4、AAI-3没有等价者。通過對換其前提<tt>E</tt>命題中主詞和謂詞的位置,從AEE-4得出其等價者AEE-2,從EAE-1的得出其等價者EAE-2,從EAO-3得出其等價者EAO-4。 </p><p>AII-1、IAI-4是直接推出的,通過對換其前提<tt>I</tt>命題中主詞和謂詞的位置,從AII-1得出其等價者AII-3,從IAI-4得出其等價者IAI-3。AOO-2和OAO-3在歷史上採用了<a href="/wiki/%E5%8F%8D%E8%AD%89%E6%B3%95" title="反證法">反證法</a>,这里采用了<a href="/wiki/%E7%9B%B4%E6%8E%A5%E6%8E%A8%E7%90%86" title="直接推理">直接推理</a>中的“对置法”,AOO-2、OAO-3沒有等價者。EIO-1是直接推出的,通過對換其前提<tt>E</tt>命题<span class="ilh-all" data-orig-title="及/或" data-lang-code="en" data-lang-name="英语" data-foreign-title="And/or"><span class="ilh-page"><a href="/w/index.php?title=%E5%8F%8A/%E6%88%96&amp;action=edit&amp;redlink=1" class="new" title="及/或(页面不存在)">及/或</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/And/or" class="extiw" title="en:And/or"><span lang="en" dir="auto">And/or</span></a></span>)</span></span><tt>I</tt>命題中主詞和謂詞的位置,從EIO-1得出其等價者EIO-2、EIO-3、EIO-4。 </p> <div class="mw-heading mw-heading2"><h2 id="24論式圖示"><span id="24.E8.AB.96.E5.BC.8F.E5.9C.96.E7.A4.BA"></span>24論式圖示</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=14" title="编辑章节:24論式圖示"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>下表以<a href="/wiki/%E6%96%87%E6%B0%8F%E5%9B%BE" title="文氏图">文氏圖</a>展示24個有效直言三段論,不同欄表示不同的前提,不同外框顏色表示不同的結論,需要<a href="/wiki/%E5%AD%98%E5%9C%A8%E6%80%A7%E9%A0%90%E8%A8%AD" class="mw-redirect" title="存在性預設">存在性預設</a>的推理以虛線與斜體字標示。 </p> <table class="wikitable" style="background: #FFF;width:98%; text-align:center;"> <tbody><tr> <td rowspan="2" style="background: #AAA;"><small><b>格</b></small> </td> <td style="border:0;border-left:2px solid #999;"><b>A</b> ∧ <b>A</b> </td> <td style="border:0;"> </td> <td style="border:0;border-left:2px solid #999;"><b>A</b> ∧ <b>E</b> </td> <td style="border:0;"> </td> <td style="border:0;"> </td> <td style="border:0;"> </td> <td style="border:0;border-left:2px solid #999;"><b>A</b> ∧ <b>I</b> </td> <td style="border:0;"> </td> <td style="border:0;border-left:2px solid #999;"><b>A</b> ∧ <b>O</b> </td> <td style="border:0;"> </td> <td style="border:0;border-left:2px solid #999;"><b>E</b> ∧ <b>I</b> </td></tr> <tr> <td>AAA</td> <td><i>AAI</i></td> <td>AEE</td> <td><i>AEO</i></td> <td>EAE</td> <td><i>EAO</i></td> <td>AII</td> <td>IAI</td> <td>AOO</td> <td>OAO</td> <td>EIO </td></tr> <tr> <td style="background: #AAA;"><b>1</b> </td> <td style="outline-offset:-5px;outline:2px solid #8F8;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Barbara.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Modus_Barbara.svg/80px-Modus_Barbara.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Modus_Barbara.svg/120px-Modus_Barbara.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/86/Modus_Barbara.svg/160px-Modus_Barbara.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Barbara.svg" title="File:Modus Barbara.svg">Barbara</a></small> </td> <td style="outline-offset:-5px;outline:2px dashed #88F;"><span typeof="mw:File"><a href="/wiki/File:Modus_Barbari.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Modus_Barbari.svg/76px-Modus_Barbari.svg.png" decoding="async" width="76" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Modus_Barbari.svg/114px-Modus_Barbari.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Modus_Barbari.svg/152px-Modus_Barbari.svg.png 2x" data-file-width="718" data-file-height="986" /></a></span><br /><small><a href="/wiki/File:Modus_Barbari.svg" title="File:Modus Barbari.svg"><i>Barbari</i></a></small> </td> <td style="border-left:2px solid #999;"> </td> <td> </td> <td style="outline-offset:-5px;outline:2px solid #F88;"><span typeof="mw:File"><a href="/wiki/File:Modus_Celarent.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Modus_Celarent.svg/80px-Modus_Celarent.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Modus_Celarent.svg/120px-Modus_Celarent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Modus_Celarent.svg/160px-Modus_Celarent.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Celarent.svg" title="File:Modus Celarent.svg">Celarent</a></small> </td> <td style="outline-offset:-5px;outline:2px dashed #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Celaront.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Modus_Celaront.svg/76px-Modus_Celaront.svg.png" decoding="async" width="76" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Modus_Celaront.svg/114px-Modus_Celaront.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Modus_Celaront.svg/152px-Modus_Celaront.svg.png 2x" data-file-width="718" data-file-height="986" /></a></span><br /><small><a href="/wiki/File:Modus_Celaront.svg" title="File:Modus Celaront.svg"><i>Celaront</i></a></small> </td> <td style="outline-offset:-5px;outline:2px solid #88F; border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Darii.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Modus_Darii.svg/80px-Modus_Darii.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Modus_Darii.svg/120px-Modus_Darii.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Modus_Darii.svg/160px-Modus_Darii.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Darii.svg" title="File:Modus Darii.svg">Darii</a></small> </td> <td> </td> <td style="border-left:2px solid #999;"> </td> <td> </td> <td style="outline-offset:-5px;outline:2px solid #FC4;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Ferio.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Ferio.svg/80px-Modus_Ferio.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Ferio.svg/120px-Modus_Ferio.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Ferio.svg/160px-Modus_Ferio.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Ferio.svg" title="File:Modus Ferio.svg">Ferio</a></small> </td></tr> <tr> <td style="background: #AAA;"><b>2</b> </td> <td style="border-left:2px solid #999;"> </td> <td> </td> <td style="outline-offset:-5px;outline:2px solid #F88;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Camestres.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Modus_Camestres.svg/80px-Modus_Camestres.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Modus_Camestres.svg/120px-Modus_Camestres.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Modus_Camestres.svg/160px-Modus_Camestres.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Camestres.svg" title="File:Modus Camestres.svg">Camestres</a></small> </td> <td style="outline-offset:-5px;outline:2px dashed #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Camestros.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Modus_Camestros.svg/76px-Modus_Camestros.svg.png" decoding="async" width="76" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Modus_Camestros.svg/114px-Modus_Camestros.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Modus_Camestros.svg/152px-Modus_Camestros.svg.png 2x" data-file-width="718" data-file-height="986" /></a></span><br /><small><a href="/wiki/File:Modus_Camestros.svg" title="File:Modus Camestros.svg"><i>Camestros</i></a></small> </td> <td style="outline-offset:-5px;outline:2px solid #F88;"><span typeof="mw:File"><a href="/wiki/File:Modus_Cesare.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Modus_Cesare.svg/80px-Modus_Cesare.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Modus_Cesare.svg/120px-Modus_Cesare.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Modus_Cesare.svg/160px-Modus_Cesare.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Cesare.svg" title="File:Modus Cesare.svg">Cesare</a></small> </td> <td style="outline-offset:-5px;outline:2px dashed #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Cesaro.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Modus_Cesaro.svg/80px-Modus_Cesaro.svg.png" decoding="async" width="80" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Modus_Cesaro.svg/120px-Modus_Cesaro.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Modus_Cesaro.svg/160px-Modus_Cesaro.svg.png 2x" data-file-width="718" data-file-height="986" /></a></span><br /><small><a href="/wiki/File:Modus_Cesaro.svg" title="File:Modus Cesaro.svg"><i>Cesaro</i></a></small> </td> <td style="border-left:2px solid #999;"> </td> <td> </td> <td style="outline-offset:-5px;outline:2px solid #FC4;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Baroco.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Modus_Baroco.svg/80px-Modus_Baroco.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Modus_Baroco.svg/120px-Modus_Baroco.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Modus_Baroco.svg/160px-Modus_Baroco.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Baroco.svg" title="File:Modus Baroco.svg">Baroco</a></small> </td> <td> </td> <td style="outline-offset:-5px;outline:2px solid #FC4;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Festino.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Modus_Festino.svg/80px-Modus_Festino.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Modus_Festino.svg/120px-Modus_Festino.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Modus_Festino.svg/160px-Modus_Festino.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Festino.svg" title="File:Modus Festino.svg">Festino</a></small> </td></tr> <tr> <td style="background: #AAA;"><b>3</b> </td> <td style="border-left:2px solid #999;"> </td> <td style="outline-offset:-5px;outline:2px dashed #88F;"><span typeof="mw:File"><a href="/wiki/File:Modus_Darapti.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Modus_Darapti.svg/66px-Modus_Darapti.svg.png" decoding="async" width="66" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Modus_Darapti.svg/99px-Modus_Darapti.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Modus_Darapti.svg/132px-Modus_Darapti.svg.png 2x" data-file-width="718" data-file-height="1094" /></a></span><br /><small><a href="/wiki/File:Modus_Darapti.svg" title="File:Modus Darapti.svg"><i>Darapti</i></a></small> </td> <td style="border-left:2px solid #999;"> </td> <td> </td> <td> </td> <td style="outline-offset:-5px;outline:2px dashed #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Felapton.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Modus_Felapton.svg/66px-Modus_Felapton.svg.png" decoding="async" width="66" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Modus_Felapton.svg/99px-Modus_Felapton.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Modus_Felapton.svg/132px-Modus_Felapton.svg.png 2x" data-file-width="718" data-file-height="1094" /></a></span><br /><small><a href="/wiki/File:Modus_Felapton.svg" title="File:Modus Felapton.svg"><i>Felapton</i></a></small> </td> <td style="outline-offset:-5px;outline:2px solid #88F;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Datisi.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Modus_Datisi.svg/80px-Modus_Datisi.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Modus_Datisi.svg/120px-Modus_Datisi.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Modus_Datisi.svg/160px-Modus_Datisi.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Datisi.svg" title="File:Modus Datisi.svg">Datisi</a></small> </td> <td style="outline-offset:-5px;outline:2px solid #88F;"><span typeof="mw:File"><a href="/wiki/File:Modus_Disamis.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Modus_Disamis.svg/80px-Modus_Disamis.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Modus_Disamis.svg/120px-Modus_Disamis.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Modus_Disamis.svg/160px-Modus_Disamis.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Disamis.svg" title="File:Modus Disamis.svg">Disamis</a></small> </td> <td style="border-left:2px solid #999;"> </td> <td style="outline-offset:-5px;outline:2px solid #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Bocardo.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Modus_Bocardo.svg/80px-Modus_Bocardo.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Modus_Bocardo.svg/120px-Modus_Bocardo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Modus_Bocardo.svg/160px-Modus_Bocardo.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Bocardo.svg" title="File:Modus Bocardo.svg">Bocardo</a></small> </td> <td style="outline-offset:-5px;outline:2px solid #FC4;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Ferison.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Modus_Ferison.svg/80px-Modus_Ferison.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Modus_Ferison.svg/120px-Modus_Ferison.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Modus_Ferison.svg/160px-Modus_Ferison.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Ferison.svg" title="File:Modus Ferison.svg">Ferison</a></small> </td></tr> <tr> <td style="background: #AAA;"><b>4</b> </td> <td style="border-left:2px solid #999;"> </td> <td style="outline-offset:-5px;outline:2px dashed #88F;"><span typeof="mw:File"><a href="/wiki/File:Modus_Bamalip.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Modus_Bamalip.svg/76px-Modus_Bamalip.svg.png" decoding="async" width="76" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Modus_Bamalip.svg/114px-Modus_Bamalip.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Modus_Bamalip.svg/152px-Modus_Bamalip.svg.png 2x" data-file-width="718" data-file-height="986" /></a></span><br /><small><a href="/wiki/File:Modus_Bamalip.svg" title="File:Modus Bamalip.svg"><i>Bamalip</i></a></small> </td> <td style="outline-offset:-5px;outline:2px solid #F88;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Calemes.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Modus_Calemes.svg/80px-Modus_Calemes.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Modus_Calemes.svg/120px-Modus_Calemes.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Modus_Calemes.svg/160px-Modus_Calemes.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Calemes.svg" title="File:Modus Calemes.svg">Calemes</a></small> </td> <td style="outline-offset:-5px;outline:2px dashed #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Calemos.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Modus_Calemos.svg/76px-Modus_Calemos.svg.png" decoding="async" width="76" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Modus_Calemos.svg/114px-Modus_Calemos.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Modus_Calemos.svg/152px-Modus_Calemos.svg.png 2x" data-file-width="718" data-file-height="986" /></a></span><br /><small><a href="/wiki/File:Modus_Calemos.svg" title="File:Modus Calemos.svg"><i>Calemos</i></a></small> </td> <td> </td> <td style="outline-offset:-5px;outline:2px dashed #FC4;"><span typeof="mw:File"><a href="/wiki/File:Modus_Fesapo.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Modus_Fesapo.svg/66px-Modus_Fesapo.svg.png" decoding="async" width="66" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Modus_Fesapo.svg/99px-Modus_Fesapo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ef/Modus_Fesapo.svg/132px-Modus_Fesapo.svg.png 2x" data-file-width="718" data-file-height="1094" /></a></span><br /><small><a href="/wiki/File:Modus_Fesapo.svg" title="File:Modus Fesapo.svg"><i>Fesapo</i></a></small> </td> <td style="border-left:2px solid #999;"> </td> <td style="outline-offset:-5px;outline:2px solid #88F;"><span typeof="mw:File"><a href="/wiki/File:Modus_Dimatis.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Modus_Dimatis.svg/80px-Modus_Dimatis.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Modus_Dimatis.svg/120px-Modus_Dimatis.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Modus_Dimatis.svg/160px-Modus_Dimatis.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Dimatis.svg" title="File:Modus Dimatis.svg">Dimatis</a></small> </td> <td style="border-left:2px solid #999;"> </td> <td> </td> <td style="outline-offset:-5px;outline:2px solid #FC4;border-left:2px solid #999;"><span typeof="mw:File"><a href="/wiki/File:Modus_Fresison.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Fresison.svg/80px-Modus_Fresison.svg.png" decoding="async" width="80" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Fresison.svg/120px-Modus_Fresison.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Modus_Fresison.svg/160px-Modus_Fresison.svg.png 2x" data-file-width="718" data-file-height="934" /></a></span><br /><small><a href="/wiki/File:Modus_Fresison.svg" title="File:Modus Fresison.svg">Fresison</a></small> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="参见"><span id=".E5.8F.82.E8.A7.81"></span>参见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=15" title="编辑章节:参见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E7%9B%B4%E6%8E%A5%E6%8E%A8%E7%90%86" title="直接推理">直接推理</a></li> <li><a href="/wiki/%E4%BC%A0%E7%BB%9F%E9%80%BB%E8%BE%91" title="传统逻辑">传统逻辑</a></li> <li><a href="/wiki/%E8%B0%93%E8%AF%8D%E6%BC%94%E7%AE%97" class="mw-redirect" title="谓词演算">谓词演算</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="註解"><span id=".E8.A8.BB.E8.A7.A3"></span>註解</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=16" title="编辑章节:註解"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns references-column-count references-column-count-2" style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><cite class="citation book">中国社会科学院语言研究所词典编辑室. <a rel="nofollow" class="external text" href="https://archive.org/details/modern-chinese-dictionary_7th-edition">现代汉语词典</a> 2016年9月第七版. 商务印书馆. 2016: <a rel="nofollow" class="external text" href="https://archive.org/details/modern-chinese-dictionary_7th-edition/page/n43">1121</a>-1122 <span class="reference-accessdate"> &#91;<span class="nowrap">2020-07-05</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-100-12450-8" title="Special:网络书源/978-7-100-12450-8"><span title="国际标准书号">ISBN</span>&#160;978-7-100-12450-8</a> <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到中文(大陆简体)网页">(中文(大陆简体))</span>. <q>.......【三段论】.......由大前提和小前提推出结论。如“凡金属都能导电”(大前提),“铜是金属”(小前提),“所以铜能导电”(结论)。.......</q></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;rft.au=%E4%B8%AD%E5%9B%BD%E7%A4%BE%E4%BC%9A%E7%A7%91%E5%AD%A6%E9%99%A2%E8%AF%AD%E8%A8%80%E7%A0%94%E7%A9%B6%E6%89%80%E8%AF%8D%E5%85%B8%E7%BC%96%E8%BE%91%E5%AE%A4&amp;rft.btitle=%E7%8E%B0%E4%BB%A3%E6%B1%89%E8%AF%AD%E8%AF%8D%E5%85%B8&amp;rft.date=2016&amp;rft.edition=2016%E5%B9%B49%E6%9C%88%E7%AC%AC%E4%B8%83%E7%89%88&amp;rft.genre=book&amp;rft.isbn=978-7-100-12450-8&amp;rft.pages=1121-1122&amp;rft.pub=%E5%95%86%E5%8A%A1%E5%8D%B0%E4%B9%A6%E9%A6%86&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmodern-chinese-dictionary_7th-edition&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33"> 引文格式1维护:未识别语文类型 (<a href="/wiki/Category:%E5%BC%95%E6%96%87%E6%A0%BC%E5%BC%8F1%E7%BB%B4%E6%8A%A4%EF%BC%9A%E6%9C%AA%E8%AF%86%E5%88%AB%E8%AF%AD%E6%96%87%E7%B1%BB%E5%9E%8B" title="Category:引文格式1维护:未识别语文类型">link</a>)</span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">这个论式还可以推导为:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))}{\forall x(P(x)\rightarrow \lnot (\lnot M(x)))}}{\forall x((\lnot M(x))\rightarrow \lnot P(x))}}\quad {\cfrac {\forall x(S(x)\rightarrow \lnot M(x))}{\forall x(S(x)\rightarrow (\lnot M(x)))}}}{\forall x(S(x)\rightarrow \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))}{\forall x(P(x)\rightarrow \lnot (\lnot M(x)))}}{\forall x((\lnot M(x))\rightarrow \lnot P(x))}}\quad {\cfrac {\forall x(S(x)\rightarrow \lnot M(x))}{\forall x(S(x)\rightarrow (\lnot M(x)))}}}{\forall x(S(x)\rightarrow \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/687bccd57443afbf5ae6c1277e089bf8aa9a4377" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:50.713ex; height:14.343ex;" alt="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(P(x)\rightarrow M(x))}{\forall x(P(x)\rightarrow \lnot (\lnot M(x)))}}{\forall x((\lnot M(x))\rightarrow \lnot P(x))}}\quad {\cfrac {\forall x(S(x)\rightarrow \lnot M(x))}{\forall x(S(x)\rightarrow (\lnot M(x)))}}}{\forall x(S(x)\rightarrow \lnot P(x))}}}"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">这个论式还可以采用<a href="/wiki/%E5%8F%8D%E8%AF%81%E6%B3%95" class="mw-redirect" title="反证法">反证法</a>来推导:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\cfrac {{\cfrac {{\begin{matrix}\quad \\\forall x(P(x)\rightarrow M(x))\end{matrix}}\quad {\cfrac {\lnot (\exists x(S(x)\land \lnot P(x)))}{\forall x(S(x)\rightarrow P(x))}}}{\forall x(S(x)\rightarrow M(x))}}\quad {\cfrac {\exists x(S(x)\land \lnot M(x))}{\exists x((\lnot M(x))\land S(x))}}}{\cfrac {\exists x((\lnot M(x))\land M(x))}{\bot }}}\\\implies &amp;{\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \exists x(S(x)\land \lnot M(x))}{\exists x(S(x)\land \lnot P(x))}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A5;<!-- ⊥ --></mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\cfrac {{\cfrac {{\begin{matrix}\quad \\\forall x(P(x)\rightarrow M(x))\end{matrix}}\quad {\cfrac {\lnot (\exists x(S(x)\land \lnot P(x)))}{\forall x(S(x)\rightarrow P(x))}}}{\forall x(S(x)\rightarrow M(x))}}\quad {\cfrac {\exists x(S(x)\land \lnot M(x))}{\exists x((\lnot M(x))\land S(x))}}}{\cfrac {\exists x((\lnot M(x))\land M(x))}{\bot }}}\\\implies &amp;{\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \exists x(S(x)\land \lnot M(x))}{\exists x(S(x)\land \lnot P(x))}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9185a7fc43cf92e77f843afe6f0a9d3c796bd205" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.804ex; margin-bottom: -0.2ex; width:75.139ex; height:25.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\cfrac {{\cfrac {{\begin{matrix}\quad \\\forall x(P(x)\rightarrow M(x))\end{matrix}}\quad {\cfrac {\lnot (\exists x(S(x)\land \lnot P(x)))}{\forall x(S(x)\rightarrow P(x))}}}{\forall x(S(x)\rightarrow M(x))}}\quad {\cfrac {\exists x(S(x)\land \lnot M(x))}{\exists x((\lnot M(x))\land S(x))}}}{\cfrac {\exists x((\lnot M(x))\land M(x))}{\bot }}}\\\implies &amp;{\cfrac {\forall x(P(x)\rightarrow M(x))\qquad \exists x(S(x)\land \lnot M(x))}{\exists x(S(x)\land \lnot P(x))}}\end{aligned}}}"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">直接結論是:所有M是P且S。<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow (P(x)\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land P(x)))}}\qquad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow (P(x)\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land P(x)))}}\qquad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f99645e05c202d5473f0aab9cb9e3cbd034834ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:57.53ex; height:14.343ex;" alt="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(M(x)\rightarrow P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow (P(x)\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land P(x)))}}\qquad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land P(x))}}}"></span></span> </li> <li id="cite_note-#1-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-#1_5-0">^</a></b></span> <span class="reference-text">直接結論是:所有M是S且非P。<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow ((\lnot P(x))\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land \lnot P(x)))}}\quad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow ((\lnot P(x))\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land \lnot P(x)))}}\quad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff8282619ce38e35a35b90d6d4b14f914ae410e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:56.757ex; height:14.343ex;" alt="{\displaystyle {\cfrac {{\cfrac {\cfrac {\forall x(M(x)\rightarrow \lnot P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\forall x(M(x)\rightarrow ((\lnot P(x))\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land \lnot P(x)))}}\quad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">这个论式还可以采用<a href="/wiki/%E5%8F%8D%E8%AF%81%E6%B3%95" class="mw-redirect" title="反证法">反证法</a>来推导:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\cfrac {{\cfrac {{\cfrac {\lnot (\exists x(S(x)\land \lnot P(x)))}{\forall x(S(x)\rightarrow P(x))}}\quad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow P(x))}}\quad {\cfrac {\exists x(M(x)\land \lnot P(x))}{\exists x((\lnot P(x))\land M(x))}}}{\cfrac {\exists x((\lnot P(x))\land P(x))}{\bot }}}\\\implies &amp;{\cfrac {\exists x(M(x)\land \lnot P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\exists x(S(x)\land \lnot P(x))}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A5;<!-- ⊥ --></mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\cfrac {{\cfrac {{\cfrac {\lnot (\exists x(S(x)\land \lnot P(x)))}{\forall x(S(x)\rightarrow P(x))}}\quad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow P(x))}}\quad {\cfrac {\exists x(M(x)\land \lnot P(x))}{\exists x((\lnot P(x))\land M(x))}}}{\cfrac {\exists x((\lnot P(x))\land P(x))}{\bot }}}\\\implies &amp;{\cfrac {\exists x(M(x)\land \lnot P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\exists x(S(x)\land \lnot P(x))}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/965ff5d71ecb75995d93da0bba92e3b2c0522a44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.804ex; margin-bottom: -0.2ex; width:75.139ex; height:25.176ex;" alt="{\displaystyle {\begin{aligned}&amp;{\cfrac {{\cfrac {{\cfrac {\lnot (\exists x(S(x)\land \lnot P(x)))}{\forall x(S(x)\rightarrow P(x))}}\quad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow P(x))}}\quad {\cfrac {\exists x(M(x)\land \lnot P(x))}{\exists x((\lnot P(x))\land M(x))}}}{\cfrac {\exists x((\lnot P(x))\land P(x))}{\bot }}}\\\implies &amp;{\cfrac {\exists x(M(x)\land \lnot P(x))\qquad \forall x(M(x)\rightarrow S(x))}{\exists x(S(x)\land \lnot P(x))}}\end{aligned}}}"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">在<a href="/wiki/%E4%BA%9E%E9%87%8C%E5%A3%AB%E5%A4%9A%E5%BE%B7" class="mw-redirect" title="亞里士多德">亞里士多德</a>《<a href="/w/index.php?title=%E5%89%8D%E5%88%86%E6%9E%90%E7%AF%87&amp;action=edit&amp;redlink=1" class="new" title="前分析篇(页面不存在)">前分析篇</a>》裡關於AEE-2的論證中,對小前提進行對換主詞與謂詞位置之後,得出第4格的AEE-4,亞里士多德稱之為再次得到了第1格,沒有因為大項和小項位置顛倒而專門稱之為第4格。在亞里士多德的定義中第1格為中項既是一個前提的主詞又是另一個前提的謂詞。第4格中有4個論式是其他格的等價形式、1個論式是結論弱化形式,因此亞里士多德三段論體系並無缺失。</span> </li> <li id="cite_note-#2-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-#2_8-0">^</a></b></span> <span class="reference-text">直接結論是:所有M是S且非P。<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow ((\lnot P(x))\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land \lnot P(x)))}}\quad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow ((\lnot P(x))\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land \lnot P(x)))}}\quad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d05e7fb0cd75830953e9b6004aafda5511526acf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:58.345ex; height:18.009ex;" alt="{\displaystyle {\cfrac {{\cfrac {\cfrac {{\cfrac {\forall x(P(x)\rightarrow \lnot M(x))}{\forall x(M(x)\rightarrow \lnot P(x))}}\qquad {\begin{matrix}\quad \\\forall x(M(x)\rightarrow S(x))\end{matrix}}}{\forall x(M(x)\rightarrow ((\lnot P(x))\land S(x)))}}{\forall x(M(x)\rightarrow (S(x)\land \lnot P(x)))}}\quad {\begin{matrix}\quad \\\exists xM(x)\end{matrix}}}{\exists x(S(x)\land \lnot P(x))}}}"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="引用"><span id=".E5.BC.95.E7.94.A8"></span>引用</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=17" title="编辑章节:引用"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Aristotle" class="mw-redirect" title="Aristotle">Aristotle</a>, <i><a href="/w/index.php?title=Prior_Analytics&amp;action=edit&amp;redlink=1" class="new" title="Prior Analytics(页面不存在)">Prior Analytics</a></i>. transl. <a href="/w/index.php?title=Robin_Smith&amp;action=edit&amp;redlink=1" class="new" title="Robin Smith(页面不存在)">Robin Smith</a>(Hackett, 1989)<a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0872200647" class="internal mw-magiclink-isbn">ISBN 0-87220-064-7</a>.</li> <li><a href="/w/index.php?title=Simon_Blackburn&amp;action=edit&amp;redlink=1" class="new" title="Simon Blackburn(页面不存在)">Blackburn, Simon</a>, 1996. "Syllogism" in the <i>Oxford Dictionary of Philosophy</i>. Oxford University Press. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0192831348" class="internal mw-magiclink-isbn">ISBN 0-19-283134-8</a>.</li> <li>Broadie, Alexander, 1993. <i>Introduction to Medieval Logic</i>. Oxford University Press. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0198240260" class="internal mw-magiclink-isbn">ISBN 0-19-824026-0</a>.</li> <li><a href="/w/index.php?title=Irving_Copi&amp;action=edit&amp;redlink=1" class="new" title="Irving Copi(页面不存在)">Irving Copi</a>, 1969. <i>Introduction to Logic</i>, 3rd ed. Macmillan Company.</li> <li><a href="/w/index.php?title=Charles_Leonard_Hamblin&amp;action=edit&amp;redlink=1" class="new" title="Charles Leonard Hamblin(页面不存在)">Hamblin, Charles L.</a>, 1970. <i>Fallacies</i>, Methuen&#160;: London, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0416700705" class="internal mw-magiclink-isbn">ISBN 0-416-70070-5</a>. Cf. on validity of syllogisms: "A simple set of rules of validity was finally produced in the later Middle Ages, based on the concept of Distribution.“</li> <li><a href="/wiki/Jan_%C5%81ukasiewicz" class="mw-redirect" title="Jan Łukasiewicz">Jan Łukasiewicz</a>, 1987 (1957). <i>Aristotle's Syllogistic from the Standpoint of Modern Formal Logic</i>. New York: Garland Publishers. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0824069242" class="internal mw-magiclink-isbn">ISBN 0824069242</a>. OCLC 15015545.</li></ul> <div class="mw-heading mw-heading2"><h2 id="外部連結"><span id=".E5.A4.96.E9.83.A8.E9.80.A3.E7.B5.90"></span>外部連結</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;section=18" title="编辑章节:外部連結"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation encyclopaedia">Robin Smith. <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/aristotle-logic/">Aristotle's Logic</a>. <a href="/wiki/%E7%88%B1%E5%BE%B7%E5%8D%8E%C2%B7%E6%89%8E%E5%B0%94%E5%A1%94" title="爱德华·扎尔塔">扎尔塔, 爱德华·N</a> (编). 《<a href="/wiki/%E5%8F%B2%E4%B8%B9%E4%BD%9B%E5%93%B2%E5%AD%B8%E7%99%BE%E7%A7%91%E5%85%A8%E6%9B%B8" title="史丹佛哲學百科全書">斯坦福哲学百科全书</a>》.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;rft.atitle=Aristotle%27s+Logic&amp;rft.au=Robin+Smith&amp;rft.btitle=%E3%80%8A-%7Bzh-hans%3A%E6%96%AF%E5%9D%A6%E7%A6%8F%3B+zh-tw%3A%E5%8F%B2%E4%B8%B9%E4%BD%9B%3Bzh-mo%3A%E5%8F%B2%E4%B8%B9%E7%A6%8F%3Bzh-hk%3A%E5%8F%B2%E4%B8%B9%E7%A6%8F%7D-%E5%93%B2%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6%E3%80%8B&amp;rft.genre=bookitem&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Faristotle-logic%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation encyclopaedia">Terence Parsons. <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/square/">The Traditional Square of Opposition</a>. <a href="/wiki/%E7%88%B1%E5%BE%B7%E5%8D%8E%C2%B7%E6%89%8E%E5%B0%94%E5%A1%94" title="爱德华·扎尔塔">扎尔塔, 爱德华·N</a> (编). 《<a href="/wiki/%E5%8F%B2%E4%B8%B9%E4%BD%9B%E5%93%B2%E5%AD%B8%E7%99%BE%E7%A7%91%E5%85%A8%E6%9B%B8" title="史丹佛哲學百科全書">斯坦福哲学百科全书</a>》.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;rft.atitle=The+Traditional+Square+of+Opposition&amp;rft.au=Terence+Parsons&amp;rft.btitle=%E3%80%8A-%7Bzh-hans%3A%E6%96%AF%E5%9D%A6%E7%A6%8F%3B+zh-tw%3A%E5%8F%B2%E4%B8%B9%E4%BD%9B%3Bzh-mo%3A%E5%8F%B2%E4%B8%B9%E7%A6%8F%3Bzh-hk%3A%E5%8F%B2%E4%B8%B9%E7%A6%8F%7D-%E5%93%B2%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6%E3%80%8B&amp;rft.genre=bookitem&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fsquare%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation encyclopaedia">Henrik Lagerlund. <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/medieval-syllogism/">Medieval Theories of the Syllogism</a>. <a href="/wiki/%E7%88%B1%E5%BE%B7%E5%8D%8E%C2%B7%E6%89%8E%E5%B0%94%E5%A1%94" title="爱德华·扎尔塔">扎尔塔, 爱德华·N</a> (编). 《<a href="/wiki/%E5%8F%B2%E4%B8%B9%E4%BD%9B%E5%93%B2%E5%AD%B8%E7%99%BE%E7%A7%91%E5%85%A8%E6%9B%B8" title="史丹佛哲學百科全書">斯坦福哲学百科全书</a>》.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;rft.atitle=Medieval+Theories+of+the+Syllogism&amp;rft.au=Henrik+Lagerlund&amp;rft.btitle=%E3%80%8A-%7Bzh-hans%3A%E6%96%AF%E5%9D%A6%E7%A6%8F%3B+zh-tw%3A%E5%8F%B2%E4%B8%B9%E4%BD%9B%3Bzh-mo%3A%E5%8F%B2%E4%B8%B9%E7%A6%8F%3Bzh-hk%3A%E5%8F%B2%E4%B8%B9%E7%A6%8F%7D-%E5%93%B2%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6%E3%80%8B&amp;rft.genre=bookitem&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fmedieval-syllogism%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><a rel="nofollow" class="external text" href="http://www.formalontology.it/aristotle-syllogism-categorical.htm">Aristotle's Prior Analytics: the Theory of Categorical Syllogism</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20100416120736/http://www.formalontology.it/aristotle-syllogism-categorical.htm">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) an annotated bibliography on Aristotle's syllogistic</li> <li><a rel="nofollow" class="external text" href="http://www.humanities.mq.edu.au/Ockham/x52t06.html">Abbreviatio Montana</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20100507181444/http://www.humanities.mq.edu.au/Ockham/x52t06.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) article by Prof. R. J. Kilcullen of Macquarie University on the medieval classification of syllogisms.</li> <li><a rel="nofollow" class="external text" href="http://www.multicians.org/thvv/petrus-hispanius.html">The Figures of the Syllogism</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20100328202209/http://www.multicians.org/thvv/petrus-hispanius.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) is a brief table listing the forms of the syllogism.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090817004242/http://www.fibonicci.co.uk/syllogisms">www.fibonicci.co.uk/syllogisms</a> some fun syllogism tests/quizzes</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110304101320/http://www.understandingthemind.org/syllogism.pdf">Syllogistic Reasoning in Buddhism - Example &amp; Worksheet</a></li></ul> <table style="margin:0 auto;" align="center" width="80%" class="toccolours"> <tbody><tr> <td align="center" style="background:#f3f9ff"><a href="/wiki/%E4%BC%A0%E7%BB%9F%E9%80%BB%E8%BE%91" title="传统逻辑">传统逻辑</a>:<b><a href="/wiki/%E4%B8%89%E6%AE%B5%E8%AB%96" title="三段論">三段論</a></b> </td></tr> <tr> <td align="center"><b>形式</b>:<b><a class="mw-selflink selflink">直言三段论</a></b> | <a href="/wiki/%E9%80%89%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="选言三段论">选言三段论</a> | <a href="/wiki/%E5%81%87%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA" title="假言三段论">假言三段论</a> | <a href="/w/index.php?title=%E5%A4%8D%E5%90%88%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="复合三段论(页面不存在)">复合三段论</a> | <a href="/wiki/%E6%BA%96%E4%B8%89%E6%AE%B5%E8%AB%96" title="準三段論">準三段論</a> | <a href="/w/index.php?title=%E7%BB%9F%E8%AE%A1%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="统计三段论(页面不存在)">统计三段论</a> </td></tr> <tr> <td align="center"><b>其他</b>:<a href="/wiki/%E5%AF%B9%E7%AB%8B%E5%9B%9B%E8%BE%B9%E5%BD%A2" title="对立四边形">对立四边形</a> | <a href="/wiki/%E5%B8%83%E5%B0%94%E4%B8%89%E6%AE%B5%E8%AE%BA" title="布尔三段论">布尔三段论</a> | <a href="/w/index.php?title=%E4%B8%89%E6%AE%B5%E8%AE%BA%E8%B0%AC%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="三段论谬论(页面不存在)">三段论谬论</a> </td></tr></tbody></table> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84261037">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{text-align:center;padding-left:1em;padding-right:1em}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf;position:relative}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em;width:auto;padding-left:0.2em;position:absolute;left:1em}.mw-parser-output .navbox .mw-collapsible-toggle{margin-left:0.5em;position:absolute;right:1em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="数理逻辑" style="padding:3px"><table class="nowraplinks mw-collapsible expanded navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="collapsible-title navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><style data-mw-deduplicate="TemplateStyles:r84244141">.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:110%;margin:0 8em}.mw-parser-output .navbar-ct-mini{font-size:110%;margin:0 5em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91" title="Template:数理逻辑"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91" title="Template talk:数理逻辑"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91" title="Special:编辑页面/Template:数理逻辑"><abbr title="编辑该模板">编</abbr></a></li></ul></div><div id="数理逻辑" style="font-size:110%;margin:0 5em"><a href="/wiki/%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91" title="数理逻辑">数理逻辑</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">基本概念</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%85%AC%E7%90%86" title="公理">公理</a> <ul><li><a href="/wiki/%E5%85%AC%E7%90%86%E5%88%97%E8%A1%A8" title="公理列表">列表</a></li></ul></li> <li><a href="/wiki/%E5%8A%BF_(%E6%95%B0%E5%AD%A6)" title="势 (数学)">势</a></li> <li><a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91" title="一阶逻辑">一阶逻辑</a></li> <li><span class="ilh-all" data-orig-title="形式证法" data-lang-code="en" data-lang-name="英语" data-foreign-title="Formal proof"><span class="ilh-page"><a href="/w/index.php?title=%E5%BD%A2%E5%BC%8F%E8%AF%81%E6%B3%95&amp;action=edit&amp;redlink=1" class="new" title="形式证法(页面不存在)">形式证法</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Formal_proof" class="extiw" title="en:Formal proof"><span lang="en" dir="auto">Formal proof</span></a></span>)</span></span></li> <li><a href="/wiki/%E9%82%8F%E8%BC%AF%E8%AA%9E%E7%BE%A9%E5%AD%B8" title="邏輯語義學">邏輯語義學</a></li> <li><a href="/wiki/%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80" title="数学基础">数学基础</a></li> <li><a href="/wiki/%E4%BF%A1%E6%81%AF%E8%AE%BA" title="信息论">信息论</a></li> <li><a href="/wiki/%E8%95%B4%E6%B6%B5" title="蕴涵">蕴涵</a></li> <li><a href="/wiki/%E7%BB%93%E6%9E%84_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="结构 (数理逻辑)">结构</a></li> <li><a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a></li> <li><a href="/wiki/%E5%AE%9A%E7%90%86" title="定理">定理</a></li> <li><a href="/wiki/%E5%85%AC%E7%90%86%E7%B3%BB%E7%BB%9F" title="公理系统">形式理论</a></li> <li><a href="/wiki/%E7%B1%BB%E5%9E%8B%E8%AE%BA" title="类型论">类型论</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">定理<br />(<span class="ilh-all" data-orig-title="Category:数学基础定理" data-lang-code="en" data-lang-name="英语" data-foreign-title="Category:Theorems in the foundations of mathematics"><span class="ilh-page"><a href="/w/index.php?title=Category:%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80%E5%AE%9A%E7%90%86&amp;action=edit&amp;redlink=1" class="new" title="Category:数学基础定理(页面不存在)">列表</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Category:Theorems_in_the_foundations_of_mathematics" class="extiw" title="en:Category:Theorems in the foundations of mathematics"><span lang="en" dir="auto">Category:Theorems in the foundations of mathematics</span></a></span>)</span></span>及<span class="ilh-all" data-orig-title="集合论悖论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Paradoxes of set theory"><span class="ilh-page"><a href="/w/index.php?title=%E9%9B%86%E5%90%88%E8%AE%BA%E6%82%96%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="集合论悖论(页面不存在)">悖论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Paradoxes_of_set_theory" class="extiw" title="en:Paradoxes of set theory"><span lang="en" dir="auto">Paradoxes of set theory</span></a></span>)</span></span>)</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/%E5%93%A5%E5%BE%B7%E5%B0%94%E5%AE%8C%E5%A4%87%E6%80%A7%E5%AE%9A%E7%90%86" title="哥德尔完备性定理">哥德尔完备性定理</a>及<a href="/wiki/%E5%93%A5%E5%BE%B7%E5%B0%94%E4%B8%8D%E5%AE%8C%E5%A4%87%E5%AE%9A%E7%90%86" title="哥德尔不完备定理">哥德尔不完备定理</a></span></li> <li><a href="/wiki/%E5%A1%94%E6%96%AF%E5%9F%BA%E4%B8%8D%E5%8F%AF%E5%AE%9A%E7%BE%A9%E5%AE%9A%E7%90%86" title="塔斯基不可定義定理">塔斯基不可定義定理</a></li> <li><a href="/wiki/%E5%B7%B4%E6%8B%BF%E8%B5%AB-%E5%A1%94%E6%96%AF%E5%9F%BA%E5%AE%9A%E7%90%86" title="巴拿赫-塔斯基定理">巴拿赫-塔斯基定理</a></li> <li><span class="nowrap">康托尔&#160;<a href="/wiki/%E5%BA%B7%E6%89%98%E5%B0%94%E5%AE%9A%E7%90%86" title="康托尔定理">定理</a>、<a href="/wiki/%E5%BA%B7%E6%89%98%E5%B0%94%E6%82%96%E8%AE%BA" title="康托尔悖论">悖论</a>和<a href="/wiki/%E5%B0%8D%E8%A7%92%E8%AB%96%E8%AD%89%E6%B3%95" title="對角論證法">對角論證法</a></span></li> <li><a href="/wiki/%E7%B4%A7%E8%87%B4%E6%80%A7%E5%AE%9A%E7%90%86" title="紧致性定理">紧致性定理</a></li> <li><a href="/wiki/%E5%81%9C%E6%9C%BA%E9%97%AE%E9%A2%98" title="停机问题">停机问题</a></li> <li><span class="ilh-all" data-orig-title="林德斯特伦定理" data-lang-code="en" data-lang-name="英语" data-foreign-title="Lindström&#39;s theorem"><span class="ilh-page"><a href="/w/index.php?title=%E6%9E%97%E5%BE%B7%E6%96%AF%E7%89%B9%E4%BC%A6%E5%AE%9A%E7%90%86&amp;action=edit&amp;redlink=1" class="new" title="林德斯特伦定理(页面不存在)">林德斯特伦定理</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Lindstr%C3%B6m%27s_theorem" class="extiw" title="en:Lindström&#39;s theorem"><span lang="en" dir="auto">Lindström's theorem</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%8B%92%E6%96%87%E6%B5%B7%E5%A7%86%E2%80%93%E6%96%AF%E7%A7%91%E4%BC%A6%E5%AE%9A%E7%90%86" title="勒文海姆–斯科伦定理">勒文海姆–斯科伦定理</a></li> <li><a href="/wiki/%E7%BD%97%E7%B4%A0%E6%82%96%E8%AE%BA" title="罗素悖论">罗素悖论</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E9%80%BB%E8%BE%91" title="逻辑">逻辑</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="传统逻辑" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E4%BC%A0%E7%BB%9F%E9%80%BB%E8%BE%91" title="传统逻辑">传统逻辑</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%82%8F%E8%BC%AF%E7%9C%9F%E7%90%86" title="邏輯真理">邏輯真理</a></li> <li><a href="/wiki/%E6%81%86%E7%9C%9F%E5%BC%8F" title="恆真式">恆真式</a></li> <li><a href="/wiki/%E5%91%BD%E9%A2%98" title="命题">命题</a></li> <li><a href="/wiki/%E6%8E%A8%E7%90%86" title="推理">推理</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E7%AD%89%E4%BB%B7" title="逻辑等价">逻辑等价</a></li> <li><a href="/wiki/%E4%B8%80%E8%87%B4%E6%80%A7_(%E9%82%8F%E8%BC%AF)" title="一致性 (邏輯)">一致性</a> <ul><li><span class="ilh-all" data-orig-title="相同一致性" data-lang-code="en" data-lang-name="英语" data-foreign-title="Equiconsistency"><span class="ilh-page"><a href="/w/index.php?title=%E7%9B%B8%E5%90%8C%E4%B8%80%E8%87%B4%E6%80%A7&amp;action=edit&amp;redlink=1" class="new" title="相同一致性(页面不存在)">相同一致性</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Equiconsistency" class="extiw" title="en:Equiconsistency"><span lang="en" dir="auto">Equiconsistency</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E8%AE%BA%E8%AF%81" title="逻辑论证">逻辑论证</a></li> <li><a href="/wiki/%E5%8F%AF%E9%9D%A0%E6%80%A7%E5%AE%9A%E7%90%86" title="可靠性定理">可靠性定理</a></li> <li><a href="/wiki/%E6%9C%89%E6%95%88%E6%80%A7" title="有效性">有效性</a></li> <li><a class="mw-selflink selflink">直言三段论</a></li> <li><a href="/wiki/%E5%AF%B9%E7%AB%8B%E5%9B%9B%E8%BE%B9%E5%BD%A2" title="对立四边形">对立四边形</a></li> <li><a href="/wiki/%E6%96%87%E6%B0%8F%E5%9B%BE" title="文氏图">文氏图</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E5%91%BD%E9%A2%98%E9%80%BB%E8%BE%91" title="命题逻辑">命题逻辑</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%80%BB%E8%BE%91%E4%BB%A3%E6%95%B0" title="逻辑代数">逻辑代数</a></li> <li><a href="/wiki/%E5%B8%83%E5%B0%94%E5%87%BD%E6%95%B0" title="布尔函数">布尔函数</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E8%BF%90%E7%AE%97%E7%AC%A6" title="逻辑运算符">逻辑运算符</a></li> <li><a href="/wiki/%E5%91%BD%E9%A2%98%E9%80%BB%E8%BE%91" title="命题逻辑">命题逻辑</a></li> <li><a href="/wiki/%E5%85%AC%E5%BC%8F_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="公式 (数理逻辑)">命题公式</a></li> <li><a href="/wiki/%E7%9C%9F%E5%80%BC%E8%A1%A8" title="真值表">真值表</a></li> <li><a href="/wiki/%E5%A4%9A%E5%80%BC%E9%80%BB%E8%BE%91" title="多值逻辑">多值逻辑</a> <ul><li><a href="/wiki/%E4%B8%89%E5%80%BC%E9%80%BB%E8%BE%91" title="三值逻辑">三值</a></li> <li><span class="ilh-all" data-orig-title="有限值逻辑" data-lang-code="en" data-lang-name="英语" data-foreign-title="Finite-valued logic"><span class="ilh-page"><a href="/w/index.php?title=%E6%9C%89%E9%99%90%E5%80%BC%E9%80%BB%E8%BE%91&amp;action=edit&amp;redlink=1" class="new" title="有限值逻辑(页面不存在)">有限值</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Finite-valued_logic" class="extiw" title="en:Finite-valued logic"><span lang="en" dir="auto">Finite-valued logic</span></a></span>)</span></span></li> <li><a href="/wiki/%E6%97%A0%E9%99%90%E5%80%BC%E9%80%BB%E8%BE%91" title="无限值逻辑">无限值</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E7%BB%8F%E5%85%B8%E9%80%BB%E8%BE%91" title="经典逻辑">经典逻辑</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%BB%8F%E5%85%B8%E9%80%BB%E8%BE%91" title="经典逻辑">经典逻辑</a></li> <li><a href="/wiki/%E4%B8%80%E9%98%B6%E9%80%BB%E8%BE%91" title="一阶逻辑">一阶逻辑</a></li> <li><a href="/wiki/%E4%BA%8C%E9%9A%8E%E9%82%8F%E8%BC%AF" title="二階邏輯">二階邏輯</a> <ul><li><span class="ilh-all" data-orig-title="一元二阶逻辑" data-lang-code="en" data-lang-name="英语" data-foreign-title="Monadic second-order logic"><span class="ilh-page"><a href="/w/index.php?title=%E4%B8%80%E5%85%83%E4%BA%8C%E9%98%B6%E9%80%BB%E8%BE%91&amp;action=edit&amp;redlink=1" class="new" title="一元二阶逻辑(页面不存在)">一元</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Monadic_second-order_logic" class="extiw" title="en:Monadic second-order logic"><span lang="en" dir="auto">Monadic second-order logic</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E9%AB%98%E9%98%B6%E9%80%BB%E8%BE%91" title="高阶逻辑">高阶逻辑</a></li> <li><a href="/wiki/%E8%87%AA%E7%94%B1%E9%80%BB%E8%BE%91" title="自由逻辑">自由逻辑</a></li> <li><a href="/wiki/%E9%87%8F%E5%8C%96_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="量化 (数理逻辑)">量化</a></li> <li><span class="ilh-all" data-orig-title="谓词 (数理逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Predicate (mathematical logic)"><span class="ilh-page"><a href="/w/index.php?title=%E8%B0%93%E8%AF%8D_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="谓词 (数理逻辑)(页面不存在)">谓词</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)" class="extiw" title="en:Predicate (mathematical logic)"><span lang="en" dir="auto">Predicate (mathematical logic)</span></a></span>)</span></span></li> <li><a href="/wiki/%E4%B8%80%E5%85%83%E8%B0%93%E8%AF%8D%E6%BC%94%E7%AE%97" title="一元谓词演算">一元谓词演算</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E9%9B%86%E5%90%88%E8%AE%BA" title="集合论">集合论</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a> <ul><li><span class="ilh-all" data-orig-title="遗传集" data-lang-code="en" data-lang-name="英语" data-foreign-title="Hereditary set"><span class="ilh-page"><a href="/w/index.php?title=%E9%81%97%E4%BC%A0%E9%9B%86&amp;action=edit&amp;redlink=1" class="new" title="遗传集(页面不存在)">遗传集</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Hereditary_set" class="extiw" title="en:Hereditary set"><span lang="en" dir="auto">Hereditary set</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E7%B1%BB_(%E6%95%B0%E5%AD%A6)" title="类 (数学)">类</a></li> <li>(<a href="/wiki/%E5%9F%BA%E6%9C%AC%E5%85%83%E7%B4%A0" title="基本元素">基本</a>)<a href="/wiki/%E5%85%83%E7%B4%A0_(%E6%95%B8%E5%AD%B8)" title="元素 (數學)">元素</a></li> <li><a href="/wiki/%E6%9C%89%E5%BA%8F%E5%AF%B9" title="有序对">有序对</a></li> <li><a href="/wiki/%E5%BA%8F%E6%95%B0" title="序数">序数</a></li> <li><a href="/wiki/%E5%AD%90%E9%9B%86" title="子集">子集</a></li> <li><a href="/wiki/%E7%9B%B8%E7%AD%89" title="相等">相等</a></li> <li><a href="/wiki/%E5%A4%96%E5%BB%B6%E6%80%A7" title="外延性">外延性</a></li> <li><a href="/wiki/%E5%8A%9B%E8%BF%AB" title="力迫">力迫</a></li> <li><a href="/wiki/%E5%85%B3%E7%B3%BB_(%E6%95%B0%E5%AD%A6)" title="关系 (数学)">关系</a> <ul><li><a href="/wiki/%E7%AD%89%E4%BB%B7%E5%85%B3%E7%B3%BB" title="等价关系">等价关系</a></li> <li><a href="/wiki/%E9%9B%86%E5%90%88%E5%88%92%E5%88%86" title="集合划分">集合划分</a></li></ul></li> <li>集合运算 <ul><li><a href="/wiki/%E4%BA%A4%E9%9B%86" title="交集">交集</a></li> <li><a href="/wiki/%E5%B9%B6%E9%9B%86" title="并集">并集</a></li> <li><a href="/wiki/%E8%A1%A5%E9%9B%86" title="补集">补集</a></li> <li><a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%84%BF%E7%A7%AF" title="笛卡儿积">笛卡儿积</a></li> <li><a href="/wiki/%E5%86%AA%E9%9B%86" title="冪集">冪集</a></li> <li><span class="ilh-all" data-orig-title="集合的同一性和关系列表" data-lang-code="en" data-lang-name="英语" data-foreign-title="List of set identities and relations"><span class="ilh-page"><a href="/w/index.php?title=%E9%9B%86%E5%90%88%E7%9A%84%E5%90%8C%E4%B8%80%E6%80%A7%E5%92%8C%E5%85%B3%E7%B3%BB%E5%88%97%E8%A1%A8&amp;action=edit&amp;redlink=1" class="new" title="集合的同一性和关系列表(页面不存在)">同一性</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/List_of_set_identities_and_relations" class="extiw" title="en:List of set identities and relations"><span lang="en" dir="auto">List of set identities and relations</span></a></span>)</span></span></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)" title="集合 (数学)">集合</a>种类</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%8F%AF%E6%95%B8%E9%9B%86" title="可數集">可數集</a></li> <li><a href="/wiki/%E4%B8%8D%E5%8F%AF%E6%95%B8%E9%9B%86" title="不可數集">不可數集</a></li> <li><a href="/wiki/%E7%A9%BA%E9%9B%86" title="空集">空集</a></li> <li><span class="ilh-all" data-orig-title="居集" data-lang-code="en" data-lang-name="英语" data-foreign-title="Inhabited set"><span class="ilh-page"><a href="/w/index.php?title=%E5%B1%85%E9%9B%86&amp;action=edit&amp;redlink=1" class="new" title="居集(页面不存在)">居集</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Inhabited_set" class="extiw" title="en:Inhabited set"><span lang="en" dir="auto">Inhabited set</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%8D%95%E5%85%83%E7%B4%A0%E9%9B%86%E5%90%88" title="单元素集合">单元素集合</a></li> <li><a href="/wiki/%E6%9C%89%E9%99%90%E9%9B%86%E5%90%88" title="有限集合">有限集合</a></li> <li><a href="/wiki/%E6%97%A0%E9%99%90%E9%9B%86%E5%90%88" title="无限集合">无限集合</a></li> <li><a href="/wiki/%E4%BC%A0%E9%80%92%E9%9B%86%E5%90%88" title="传递集合">传递集合</a></li> <li><span class="ilh-all" data-orig-title="超滤子 (集合论)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Ultrafilter (set theory)"><span class="ilh-page"><a href="/w/index.php?title=%E8%B6%85%E6%BB%A4%E5%AD%90_(%E9%9B%86%E5%90%88%E8%AE%BA)&amp;action=edit&amp;redlink=1" class="new" title="超滤子 (集合论)(页面不存在)">超滤子</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Ultrafilter_(set_theory)" class="extiw" title="en:Ultrafilter (set theory)"><span lang="en" dir="auto">Ultrafilter (set theory)</span></a></span>)</span></span></li> <li><a href="/wiki/%E9%80%92%E5%BD%92%E9%9B%86%E5%90%88" title="递归集合">递归集合</a></li> <li><a href="/wiki/%E6%A8%A1%E7%B3%8A%E9%9B%86" title="模糊集">模糊集</a></li> <li><a href="/wiki/%E5%85%A8%E9%9B%86" title="全集">全集</a> <ul><li><span class="ilh-all" data-orig-title="哥德尔可构造全集" data-lang-code="en" data-lang-name="英语" data-foreign-title="Constructible universe"><span class="ilh-page"><a href="/w/index.php?title=%E5%93%A5%E5%BE%B7%E5%B0%94%E5%8F%AF%E6%9E%84%E9%80%A0%E5%85%A8%E9%9B%86&amp;action=edit&amp;redlink=1" class="new" title="哥德尔可构造全集(页面不存在)">可构造全集</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Constructible_universe" class="extiw" title="en:Constructible universe"><span lang="en" dir="auto">Constructible universe</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="格伦迪克全集" data-lang-code="en" data-lang-name="英语" data-foreign-title="Grothendieck universe"><span class="ilh-page"><a href="/w/index.php?title=%E6%A0%BC%E4%BC%A6%E8%BF%AA%E5%85%8B%E5%85%A8%E9%9B%86&amp;action=edit&amp;redlink=1" class="new" title="格伦迪克全集(页面不存在)">格伦迪克全集</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Grothendieck_universe" class="extiw" title="en:Grothendieck universe"><span lang="en" dir="auto">Grothendieck universe</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%86%AF%C2%B7%E8%AF%BA%E4%BC%8A%E6%9B%BC%E5%85%A8%E9%9B%86" title="冯·诺伊曼全集">冯·诺伊曼全集</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E6%98%A0%E5%B0%84" title="映射">映射</a>与<a href="/wiki/%E5%8A%BF_(%E6%95%B0%E5%AD%A6)" title="势 (数学)">势</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%87%BD%E6%95%B0" title="函数">函数</a>、<a href="/wiki/%E6%98%A0%E5%B0%84" title="映射">映射</a> <ul><li><a href="/wiki/%E5%AE%9A%E4%B9%89%E5%9F%9F" title="定义域">定义域</a></li> <li><a href="/wiki/%E5%88%B0%E8%BE%BE%E5%9F%9F" title="到达域">到达域</a></li> <li><a href="/wiki/%E5%83%8F_(%E6%95%B8%E5%AD%B8)" title="像 (數學)">像</a></li></ul></li> <li><a href="/wiki/%E5%8D%95%E5%B0%84" title="单射">单射</a>、<a href="/wiki/%E6%BB%A1%E5%B0%84" title="满射">满射</a>、<a href="/wiki/%E5%8F%8C%E5%B0%84" title="双射">双射</a></li> <li><a href="/wiki/%E5%BA%B7%E6%89%98%E5%B0%94-%E4%BC%AF%E6%81%A9%E6%96%AF%E5%9D%A6-%E6%96%BD%E7%BD%97%E5%BE%B7%E5%AE%9A%E7%90%86" title="康托尔-伯恩斯坦-施罗德定理">康托尔-伯恩斯坦-施罗德定理</a></li> <li><a href="/wiki/%E5%90%8C%E6%9E%84" title="同构">同构</a></li> <li><a href="/wiki/%E5%93%A5%E5%BE%B7%E5%B0%94%E6%95%B0" title="哥德尔数">哥德尔数</a></li> <li><a href="/wiki/%E5%88%97%E4%B8%BE%E6%B3%95_(%E9%9B%86%E5%90%88%E8%AE%BA)" title="列举法 (集合论)">列举法</a></li> <li><a href="/wiki/%E5%A4%A7%E5%9F%BA%E6%95%B0" title="大基数">大基数</a> <ul><li><a href="/wiki/%E4%B8%8D%E5%8F%AF%E9%81%94%E5%9F%BA%E6%95%B8" title="不可達基數">不可達基數</a></li></ul></li> <li><a href="/wiki/%E9%98%BF%E5%88%97%E5%A4%AB%E6%95%B8" title="阿列夫數">阿列夫數</a></li> <li><a href="/wiki/%E8%BF%90%E7%AE%97" title="运算">运算</a> <ul><li><a href="/wiki/%E4%BA%8C%E5%85%83%E8%BF%90%E7%AE%97" title="二元运算">二元运算</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">集合理论</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%AD%96%E6%A2%85%E6%B4%9B-%E5%BC%97%E5%85%B0%E5%85%8B%E5%B0%94%E9%9B%86%E5%90%88%E8%AE%BA" title="策梅洛-弗兰克尔集合论">策梅洛-弗兰克尔 (ZFC)</a> <ul><li><a href="/wiki/%E9%80%89%E6%8B%A9%E5%85%AC%E7%90%86" title="选择公理">选择公理</a></li> <li><a href="/wiki/%E8%BF%9E%E7%BB%AD%E7%BB%9F%E5%81%87%E8%AE%BE" title="连续统假设">连续统假设</a></li></ul></li> <li><span class="ilh-all" data-orig-title="广义集合论" data-lang-code="en" data-lang-name="英语" data-foreign-title="General set theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%B9%BF%E4%B9%89%E9%9B%86%E5%90%88%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="广义集合论(页面不存在)">广义集合论 (GST)</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/General_set_theory" class="extiw" title="en:General set theory"><span lang="en" dir="auto">General set theory</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="克里普克-普拉克集合论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Kripke–Platek set theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%85%8B%E9%87%8C%E6%99%AE%E5%85%8B-%E6%99%AE%E6%8B%89%E5%85%8B%E9%9B%86%E5%90%88%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="克里普克-普拉克集合论(页面不存在)">克里普克-普拉克 (KP)</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Kripke%E2%80%93Platek_set_theory" class="extiw" title="en:Kripke–Platek set theory"><span lang="en" dir="auto">Kripke–Platek set theory</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="莫尔斯-凯利集合论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Morse–Kelley set theory"><span class="ilh-page"><a href="/w/index.php?title=%E8%8E%AB%E5%B0%94%E6%96%AF-%E5%87%AF%E5%88%A9%E9%9B%86%E5%90%88%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="莫尔斯-凯利集合论(页面不存在)">莫尔斯-凯利集合论 (MK)</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Morse%E2%80%93Kelley_set_theory" class="extiw" title="en:Morse–Kelley set theory"><span lang="en" dir="auto">Morse–Kelley set theory</span></a></span>)</span></span></li> <li><a href="/wiki/%E6%9C%B4%E7%B4%A0%E9%9B%86%E5%90%88%E8%AE%BA" title="朴素集合论">朴素集合论</a></li> <li><a href="/wiki/%E6%96%B0%E5%9F%BA%E7%A1%80%E9%9B%86%E5%90%88%E8%AE%BA" title="新基础集合论">新基础集合论</a></li> <li><span class="ilh-all" data-orig-title="塔斯基-格罗滕迪克集合论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Tarski–Grothendieck set theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%A1%94%E6%96%AF%E5%9F%BA-%E6%A0%BC%E7%BD%97%E6%BB%95%E8%BF%AA%E5%85%8B%E9%9B%86%E5%90%88%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="塔斯基-格罗滕迪克集合论(页面不存在)">塔斯基-格罗滕迪克 (TG)</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Tarski%E2%80%93Grothendieck_set_theory" class="extiw" title="en:Tarski–Grothendieck set theory"><span lang="en" dir="auto">Tarski–Grothendieck set theory</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%86%AF%E8%AF%BA%E4%BC%8A%E6%9B%BC-%E5%8D%9A%E5%86%85%E6%96%AF-%E5%93%A5%E5%BE%B7%E5%B0%94%E9%9B%86%E5%90%88%E8%AE%BA" title="冯诺伊曼-博内斯-哥德尔集合论">冯·诺伊曼-博内斯-哥德尔 (NBG)</a></li> <li><span class="ilh-all" data-orig-title="建构式集合论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Constructive set theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%BB%BA%E6%9E%84%E5%BC%8F%E9%9B%86%E5%90%88%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="建构式集合论(页面不存在)">建构式集合论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Constructive_set_theory" class="extiw" title="en:Constructive set theory"><span lang="en" dir="auto">Constructive set theory</span></a></span>)</span></span></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="ilh-all" data-orig-title="语法 (逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Syntax (logic)"><span class="ilh-page"><a href="/w/index.php?title=%E8%AF%AD%E6%B3%95_(%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="语法 (逻辑)(页面不存在)">句法</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Syntax_(logic)" class="extiw" title="en:Syntax (logic)"><span lang="en" dir="auto">Syntax (logic)</span></a></span>)</span></span>及<a href="/wiki/%E5%BD%A2%E5%BC%8F%E8%AF%AD%E8%A8%80" title="形式语言">语言</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%AD%97%E6%AF%8D%E8%A1%A8_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6)" title="字母表 (计算机科学)">字母表</a></li> <li><a href="/wiki/%E5%85%83%E6%95%B0" title="元数">元数</a></li> <li><a href="/wiki/%E8%87%AA%E5%8B%95%E6%A9%9F%E7%90%86%E8%AB%96" title="自動機理論">自動機理論</a></li> <li><a href="/wiki/%E5%85%AC%E7%90%86%E6%A8%A1%E5%BC%8F" title="公理模式">公理模式</a></li> <li><a href="/wiki/%E8%A1%A8%E9%81%94%E5%BC%8F" title="表達式">表達式</a> <ul><li><span class="ilh-all" data-orig-title="基础表达式" data-lang-code="en" data-lang-name="英语" data-foreign-title="Ground expression"><span class="ilh-page"><a href="/w/index.php?title=%E5%9F%BA%E7%A1%80%E8%A1%A8%E8%BE%BE%E5%BC%8F&amp;action=edit&amp;redlink=1" class="new" title="基础表达式(页面不存在)">基础表达式</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Ground_expression" class="extiw" title="en:Ground expression"><span lang="en" dir="auto">Ground expression</span></a></span>)</span></span></li></ul></li> <li><span class="ilh-all" data-orig-title="通过新的常数和函数名称进行扩展" data-lang-code="en" data-lang-name="英语" data-foreign-title="Extension by new constant and function names"><span class="ilh-page"><a href="/w/index.php?title=%E9%80%9A%E8%BF%87%E6%96%B0%E7%9A%84%E5%B8%B8%E6%95%B0%E5%92%8C%E5%87%BD%E6%95%B0%E5%90%8D%E7%A7%B0%E8%BF%9B%E8%A1%8C%E6%89%A9%E5%B1%95&amp;action=edit&amp;redlink=1" class="new" title="通过新的常数和函数名称进行扩展(页面不存在)">扩展</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Extension_by_new_constant_and_function_names" class="extiw" title="en:Extension by new constant and function names"><span lang="en" dir="auto">Extension by new constant and function names</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%85%B3%E7%B3%BB_(%E6%95%B0%E5%AD%A6)" title="关系 (数学)">关系</a></li> <li>形式 <ul><li><a href="/wiki/%E5%BD%A2%E5%BC%8F%E6%96%87%E6%B3%95" title="形式文法">文法</a></li> <li><a href="/wiki/%E5%BD%A2%E5%BC%8F%E8%AF%AD%E8%A8%80" title="形式语言">语言</a></li> <li><a href="/wiki/%E5%85%AC%E7%90%86%E7%B3%BB%E7%BB%9F" title="公理系统">证明</a></li> <li><a href="/wiki/%E5%BD%A2%E5%BC%8F%E7%B3%BB%E7%B5%B1" title="形式系統">系统</a></li> <li><a href="/wiki/%E5%85%AC%E7%90%86%E7%B3%BB%E7%BB%9F" title="公理系统">理论</a></li></ul></li> <li><span class="ilh-all" data-orig-title="形成规则" data-lang-code="en" data-lang-name="英语" data-foreign-title="Formation rule"><span class="ilh-page"><a href="/w/index.php?title=%E5%BD%A2%E6%88%90%E8%A7%84%E5%88%99&amp;action=edit&amp;redlink=1" class="new" title="形成规则(页面不存在)">形成规则</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Formation_rule" class="extiw" title="en:Formation rule"><span lang="en" dir="auto">Formation rule</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%90%88%E5%BC%8F%E5%85%AC%E5%BC%8F" title="合式公式">合式公式</a> <ul><li><a href="/wiki/%E5%8E%9F%E5%AD%90%E5%85%AC%E5%BC%8F" title="原子公式">原子公式</a></li> <li><a href="/wiki/%E5%8F%A5%E5%AD%90_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="句子 (数理逻辑)">封闭式</a></li> <li><span class="ilh-all" data-orig-title="基本式" data-lang-code="en" data-lang-name="英语" data-foreign-title="Ground formula"><span class="ilh-page"><a href="/w/index.php?title=%E5%9F%BA%E6%9C%AC%E5%BC%8F&amp;action=edit&amp;redlink=1" class="new" title="基本式(页面不存在)">基本式</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Ground_formula" class="extiw" title="en:Ground formula"><span lang="en" dir="auto">Ground formula</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%BC%80%E6%94%BE%E5%8F%A5%E5%AD%90" title="开放句子">开放式</a></li></ul></li> <li><a href="/wiki/%E8%87%AA%E7%94%B1%E5%8F%98%E9%87%8F%E5%92%8C%E7%BA%A6%E6%9D%9F%E5%8F%98%E9%87%8F" title="自由变量和约束变量">自由变量和约束变量</a></li> <li><a href="/wiki/%E5%85%83%E8%AA%9E%E8%A8%80" title="元語言">元語言</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E8%BF%90%E7%AE%97%E7%AC%A6" title="逻辑运算符">逻辑运算符</a> <ul><li><a href="/wiki/%E9%80%BB%E8%BE%91%E9%9D%9E" title="逻辑非">¬</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E6%88%96" title="逻辑或">∨</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E4%B8%8E" title="逻辑与">∧</a></li> <li><a href="/wiki/%E5%AE%9E%E8%B4%A8%E6%9D%A1%E4%BB%B6" title="实质条件">→</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E5%8F%8C%E6%9D%A1%E4%BB%B6" class="mw-redirect" title="逻辑双条件">↔</a></li> <li><span class="ilh-all" data-orig-title="逻辑相等" data-lang-code="en" data-lang-name="英语" data-foreign-title="Logical equality"><span class="ilh-page"><a href="/w/index.php?title=%E9%80%BB%E8%BE%91%E7%9B%B8%E7%AD%89&amp;action=edit&amp;redlink=1" class="new" title="逻辑相等(页面不存在)">逻辑相等</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Logical_equality" class="extiw" title="en:Logical equality"><span lang="en" dir="auto">Logical equality</span></a></span>)</span></span></li></ul></li> <li><span class="ilh-all" data-orig-title="谓词 (数理逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Predicate (mathematical logic)"><span class="ilh-page"><a href="/w/index.php?title=%E8%B0%93%E8%AF%8D_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="谓词 (数理逻辑)(页面不存在)">谓词</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)" class="extiw" title="en:Predicate (mathematical logic)"><span lang="en" dir="auto">Predicate (mathematical logic)</span></a></span>)</span></span> <ul><li><a href="/wiki/%E6%B3%9B%E5%87%BD%E8%B0%93%E8%AF%8D" title="泛函谓词">泛函谓词</a></li> <li><a href="/wiki/%E8%B0%93%E8%AF%8D%E5%8F%98%E9%87%8F" title="谓词变量">谓词变量</a></li> <li><a href="/wiki/%E5%91%BD%E9%A2%98%E5%8F%98%E9%87%8F" title="命题变量">命题变量</a></li></ul></li> <li><a href="/wiki/%E9%87%8F%E5%8C%96_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="量化 (数理逻辑)">量化</a> <ul><li><a href="/wiki/%E5%AD%98%E5%9C%A8%E9%87%8F%E5%8C%96" title="存在量化">∃</a></li> <li><a href="/wiki/%E5%94%AF%E4%B8%80%E9%87%8F%E5%8C%96" title="唯一量化">!</a></li> <li><a href="/wiki/%E5%85%A8%E7%A7%B0%E9%87%8F%E5%8C%96" title="全称量化">∀</a></li> <li><span class="ilh-all" data-orig-title="量词级别" data-lang-code="en" data-lang-name="英语" data-foreign-title="Quantifier rank"><span class="ilh-page"><a href="/w/index.php?title=%E9%87%8F%E8%AF%8D%E7%BA%A7%E5%88%AB&amp;action=edit&amp;redlink=1" class="new" title="量词级别(页面不存在)">级别</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Quantifier_rank" class="extiw" title="en:Quantifier rank"><span lang="en" dir="auto">Quantifier rank</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E5%8F%A5%E5%AD%90_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="句子 (数理逻辑)">句子</a> <ul><li><a href="/wiki/%E5%8E%9F%E5%AD%90%E5%8F%A5%E5%AD%90" title="原子句子">原子句子</a></li></ul></li> <li><span class="ilh-all" data-orig-title="签名 (逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Signature (logic)"><span class="ilh-page"><a href="/w/index.php?title=%E7%AD%BE%E5%90%8D_(%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="签名 (逻辑)(页面不存在)">逻辑签名</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Signature_(logic)" class="extiw" title="en:Signature (logic)"><span lang="en" dir="auto">Signature (logic)</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%AD%97%E7%AC%A6%E4%B8%B2" title="字符串">字符串</a></li> <li><span class="ilh-all" data-orig-title="替换法 (逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Substitution (logic)"><span class="ilh-page"><a href="/w/index.php?title=%E6%9B%BF%E6%8D%A2%E6%B3%95_(%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="替换法 (逻辑)(页面不存在)">替换法</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Substitution_(logic)" class="extiw" title="en:Substitution (logic)"><span lang="en" dir="auto">Substitution (logic)</span></a></span>)</span></span></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E7%AC%A6%E5%8F%B7%E8%A1%A8" title="逻辑符号表">逻辑符号</a> <ul><li><a href="/wiki/%E5%87%BD%E6%95%B0%E7%AC%A6%E5%8F%B7" class="mw-redirect" title="函数符号">函数符号</a></li> <li><span class="ilh-all" data-orig-title="逻辑常量" data-lang-code="en" data-lang-name="英语" data-foreign-title="Logical constant"><span class="ilh-page"><a href="/w/index.php?title=%E9%80%BB%E8%BE%91%E5%B8%B8%E9%87%8F&amp;action=edit&amp;redlink=1" class="new" title="逻辑常量(页面不存在)">逻辑常量</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Logical_constant" class="extiw" title="en:Logical constant"><span lang="en" dir="auto">Logical constant</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="非逻辑符号" data-lang-code="en" data-lang-name="英语" data-foreign-title="Non-logical symbol"><span class="ilh-page"><a href="/w/index.php?title=%E9%9D%9E%E9%80%BB%E8%BE%91%E7%AC%A6%E5%8F%B7&amp;action=edit&amp;redlink=1" class="new" title="非逻辑符号(页面不存在)">非逻辑符号</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Non-logical_symbol" class="extiw" title="en:Non-logical symbol"><span lang="en" dir="auto">Non-logical symbol</span></a></span>)</span></span></li> <li><a href="/wiki/%E8%AE%8A%E6%95%B8" title="變數">變數</a></li></ul></li> <li><span class="ilh-all" data-orig-title="逻辑术语" data-lang-code="en" data-lang-name="英语" data-foreign-title="Term (logic)"><span class="ilh-page"><a href="/w/index.php?title=%E9%80%BB%E8%BE%91%E6%9C%AF%E8%AF%AD&amp;action=edit&amp;redlink=1" class="new" title="逻辑术语(页面不存在)">逻辑术语</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Term_(logic)" class="extiw" title="en:Term (logic)"><span lang="en" dir="auto">Term (logic)</span></a></span>)</span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E5%85%AC%E7%90%86%E7%B3%BB%E7%BB%9F" title="公理系统">公理系统</a>示例<br /><span style="font-size:smaller;">(<span class="ilh-all" data-orig-title="一阶理论列表" data-lang-code="en" data-lang-name="英语" data-foreign-title="List of first-order theories"><span class="ilh-page"><a href="/w/index.php?title=%E4%B8%80%E9%98%B6%E7%90%86%E8%AE%BA%E5%88%97%E8%A1%A8&amp;action=edit&amp;redlink=1" class="new" title="一阶理论列表(页面不存在)">列表</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/List_of_first-order_theories" class="extiw" title="en:List of first-order theories"><span lang="en" dir="auto">List of first-order theories</span></a></span>)</span></span>)</span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="ilh-all" data-orig-title="实算术" data-lang-code="en" data-lang-name="英语" data-foreign-title="True arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E5%AE%9E%E7%AE%97%E6%9C%AF&amp;action=edit&amp;redlink=1" class="new" title="实算术(页面不存在)">实算术</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/True_arithmetic" class="extiw" title="en:True arithmetic"><span lang="en" dir="auto">True arithmetic</span></a></span>)</span></span> <ul><li><a href="/wiki/%E7%9A%AE%E4%BA%9A%E8%AF%BA%E5%85%AC%E7%90%86" title="皮亚诺公理">皮亚诺公理</a></li> <li><span class="ilh-all" data-orig-title="二阶算术" data-lang-code="en" data-lang-name="英语" data-foreign-title="Second-order arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E4%BA%8C%E9%98%B6%E7%AE%97%E6%9C%AF&amp;action=edit&amp;redlink=1" class="new" title="二阶算术(页面不存在)">二阶</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Second-order_arithmetic" class="extiw" title="en:Second-order arithmetic"><span lang="en" dir="auto">Second-order arithmetic</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="初等函数算术" data-lang-code="en" data-lang-name="英语" data-foreign-title="Elementary function arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E5%88%9D%E7%AD%89%E5%87%BD%E6%95%B0%E7%AE%97%E6%9C%AF&amp;action=edit&amp;redlink=1" class="new" title="初等函数算术(页面不存在)">初等函数</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Elementary_function_arithmetic" class="extiw" title="en:Elementary function arithmetic"><span lang="en" dir="auto">Elementary function arithmetic</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="原始递归算术" data-lang-code="en" data-lang-name="英语" data-foreign-title="Primitive recursive arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E5%8E%9F%E5%A7%8B%E9%80%92%E5%BD%92%E7%AE%97%E6%9C%AF&amp;action=edit&amp;redlink=1" class="new" title="原始递归算术(页面不存在)">原始递归</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Primitive_recursive_arithmetic" class="extiw" title="en:Primitive recursive arithmetic"><span lang="en" dir="auto">Primitive recursive arithmetic</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="罗宾逊算术" data-lang-code="en" data-lang-name="英语" data-foreign-title="Robinson arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E7%BD%97%E5%AE%BE%E9%80%8A%E7%AE%97%E6%9C%AF&amp;action=edit&amp;redlink=1" class="new" title="罗宾逊算术(页面不存在)">罗宾逊算术</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Robinson_arithmetic" class="extiw" title="en:Robinson arithmetic"><span lang="en" dir="auto">Robinson arithmetic</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="斯科勒姆算术" data-lang-code="en" data-lang-name="英语" data-foreign-title="Skolem arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E6%96%AF%E7%A7%91%E5%8B%92%E5%A7%86%E7%AE%97%E6%9C%AF&amp;action=edit&amp;redlink=1" class="new" title="斯科勒姆算术(页面不存在)">斯科勒姆算术</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Skolem_arithmetic" class="extiw" title="en:Skolem arithmetic"><span lang="en" dir="auto">Skolem arithmetic</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E5%AF%A6%E6%95%B8%E7%9A%84%E6%A7%8B%E9%80%A0" title="實數的構造">實數的構造</a> <ul><li><span class="ilh-all" data-orig-title="塔尔斯基的实数公理化" data-lang-code="en" data-lang-name="英语" data-foreign-title="Tarski&#39;s axiomatization of the reals"><span class="ilh-page"><a href="/w/index.php?title=%E5%A1%94%E5%B0%94%E6%96%AF%E5%9F%BA%E7%9A%84%E5%AE%9E%E6%95%B0%E5%85%AC%E7%90%86%E5%8C%96&amp;action=edit&amp;redlink=1" class="new" title="塔尔斯基的实数公理化(页面不存在)">塔尔斯基公理化</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Tarski%27s_axiomatization_of_the_reals" class="extiw" title="en:Tarski&#39;s axiomatization of the reals"><span lang="en" dir="auto">Tarski's axiomatization of the reals</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E5%B8%83%E5%B0%94%E4%BB%A3%E6%95%B0" title="布尔代数">布尔代数</a> <ul><li><span class="ilh-all" data-orig-title="布尔代数的正则定义" data-lang-code="en" data-lang-name="英语" data-foreign-title="Boolean algebras canonically defined"><span class="ilh-page"><a href="/w/index.php?title=%E5%B8%83%E5%B0%94%E4%BB%A3%E6%95%B0%E7%9A%84%E6%AD%A3%E5%88%99%E5%AE%9A%E4%B9%89&amp;action=edit&amp;redlink=1" class="new" title="布尔代数的正则定义(页面不存在)">正则定义</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Boolean_algebras_canonically_defined" class="extiw" title="en:Boolean algebras canonically defined"><span lang="en" dir="auto">Boolean algebras canonically defined</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="布尔代数的最小公理" data-lang-code="en" data-lang-name="英语" data-foreign-title="Minimal axioms for Boolean algebra"><span class="ilh-page"><a href="/w/index.php?title=%E5%B8%83%E5%B0%94%E4%BB%A3%E6%95%B0%E7%9A%84%E6%9C%80%E5%B0%8F%E5%85%AC%E7%90%86&amp;action=edit&amp;redlink=1" class="new" title="布尔代数的最小公理(页面不存在)">最小公理</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Minimal_axioms_for_Boolean_algebra" class="extiw" title="en:Minimal axioms for Boolean algebra"><span lang="en" dir="auto">Minimal axioms for Boolean algebra</span></a></span>)</span></span></li></ul></li> <li><span class="ilh-all" data-orig-title="几何基础" data-lang-code="en" data-lang-name="英语" data-foreign-title="Foundations of geometry"><span class="ilh-page"><a href="/w/index.php?title=%E5%87%A0%E4%BD%95%E5%9F%BA%E7%A1%80&amp;action=edit&amp;redlink=1" class="new" title="几何基础(页面不存在)">几何</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Foundations_of_geometry" class="extiw" title="en:Foundations of geometry"><span lang="en" dir="auto">Foundations of geometry</span></a></span>)</span></span> <ul><li><a href="/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E5%87%A0%E4%BD%95" title="欧几里得几何">欧几里得几何</a></li> <li><a href="/wiki/%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC" title="几何原本">《原本》</a></li> <li><a href="/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E5%85%AC%E7%90%86" title="希尔伯特公理">希尔伯特公理</a></li> <li><a href="/wiki/%E9%9D%9E%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E5%87%A0%E4%BD%95" title="非欧几里得几何">非欧几里得几何</a></li> <li><span class="ilh-all" data-orig-title="塔尔斯基公理" data-lang-code="en" data-lang-name="英语" data-foreign-title="Tarski&#39;s axioms"><span class="ilh-page"><a href="/w/index.php?title=%E5%A1%94%E5%B0%94%E6%96%AF%E5%9F%BA%E5%85%AC%E7%90%86&amp;action=edit&amp;redlink=1" class="new" title="塔尔斯基公理(页面不存在)">塔尔斯基公理</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Tarski%27s_axioms" class="extiw" title="en:Tarski&#39;s axioms"><span lang="en" dir="auto">Tarski's axioms</span></a></span>)</span></span></li></ul></li> <li>《<a href="/wiki/%E6%95%B0%E5%AD%A6%E5%8E%9F%E7%90%86" title="数学原理">数学原理</a>》</li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E8%AF%81%E6%98%8E%E8%AE%BA" title="证明论">证明论</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%85%AC%E7%90%86%E7%B3%BB%E7%BB%9F" title="公理系统">形式证明</a></li> <li><a href="/wiki/%E8%87%AA%E7%84%B6%E6%BC%94%E7%BB%8E" title="自然演绎">自然演绎</a></li> <li><a href="/wiki/%E8%95%B4%E6%B6%B5" title="蕴涵">蕴涵</a></li> <li><a href="/wiki/%E6%8E%A8%E7%90%86%E8%A7%84%E5%88%99" title="推理规则">推理规则</a></li> <li><a href="/wiki/%E7%9B%B8%E7%BB%A7%E5%BC%8F%E6%BC%94%E7%AE%97" title="相继式演算">相继式演算</a></li> <li><a href="/wiki/%E5%AE%9A%E7%90%86" title="定理">定理</a></li> <li>系统 <ul><li><a href="/wiki/%E5%BD%A2%E5%BC%8F%E7%B3%BB%E7%B5%B1" title="形式系統">形式</a></li> <li><a href="/wiki/%E5%85%AC%E7%90%86%E7%B3%BB%E7%BB%9F" title="公理系统">公理</a></li> <li><a href="/wiki/%E5%BD%A2%E5%BC%8F%E7%B3%BB%E7%B5%B1" title="形式系統">演绎</a></li> <li><a href="/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E6%BC%94%E7%BB%8E%E7%B3%BB%E7%BB%9F" title="希尔伯特演绎系统">希尔伯特演绎系统</a> <ul><li><span class="ilh-all" data-orig-title="希尔伯特系统列表" data-lang-code="en" data-lang-name="英语" data-foreign-title="List of Hilbert systems"><span class="ilh-page"><a href="/w/index.php?title=%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%B3%BB%E7%BB%9F%E5%88%97%E8%A1%A8&amp;action=edit&amp;redlink=1" class="new" title="希尔伯特系统列表(页面不存在)">列表</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/List_of_Hilbert_systems" class="extiw" title="en:List of Hilbert systems"><span lang="en" dir="auto">List of Hilbert systems</span></a></span>)</span></span></li></ul></li></ul></li> <li><span class="ilh-all" data-orig-title="完备理论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Complete theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%AE%8C%E5%A4%87%E7%90%86%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="完备理论(页面不存在)">完备理论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Complete_theory" class="extiw" title="en:Complete theory"><span lang="en" dir="auto">Complete theory</span></a></span>)</span></span></li> <li><a href="/wiki/%E7%AD%96%E6%A2%85%E6%B4%9B-%E5%BC%97%E5%85%B0%E5%85%8B%E5%B0%94%E9%9B%86%E5%90%88%E8%AE%BA" title="策梅洛-弗兰克尔集合论">ZFC</a>系统的<span class="ilh-all" data-orig-title="独立性 (数理逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Independence (mathematical logic)"><span class="ilh-page"><a href="/wiki/%E7%8D%A8%E7%AB%8B%E6%80%A7_(%E6%95%B8%E7%90%86%E9%82%8F%E8%BC%AF)" title="獨立性 (數理邏輯)">独立性</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Independence_(mathematical_logic)" class="extiw" title="en:Independence (mathematical logic)"><span lang="en" dir="auto">Independence (mathematical logic)</span></a></span>)</span></span> <ul><li><a href="/wiki/ZFC%E7%B3%BB%E7%B5%B1%E7%84%A1%E6%B3%95%E7%A2%BA%E5%AE%9A%E7%9A%84%E5%91%BD%E9%A1%8C%E5%88%97%E8%A1%A8" title="ZFC系統無法確定的命題列表">列表</a></li></ul></li> <li><span class="ilh-all" data-orig-title="不可能证明" data-lang-code="en" data-lang-name="英语" data-foreign-title="Proof of impossibility"><span class="ilh-page"><a href="/w/index.php?title=%E4%B8%8D%E5%8F%AF%E8%83%BD%E8%AF%81%E6%98%8E&amp;action=edit&amp;redlink=1" class="new" title="不可能证明(页面不存在)">不可能证明</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Proof_of_impossibility" class="extiw" title="en:Proof of impossibility"><span lang="en" dir="auto">Proof of impossibility</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="序数分析" data-lang-code="en" data-lang-name="英语" data-foreign-title="Ordinal analysis"><span class="ilh-page"><a href="/w/index.php?title=%E5%BA%8F%E6%95%B0%E5%88%86%E6%9E%90&amp;action=edit&amp;redlink=1" class="new" title="序数分析(页面不存在)">序数分析</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Ordinal_analysis" class="extiw" title="en:Ordinal analysis"><span lang="en" dir="auto">Ordinal analysis</span></a></span>)</span></span></li> <li><a href="/wiki/%E9%80%86%E6%95%B0%E5%AD%A6" title="逆数学">逆数学</a></li> <li><span class="ilh-all" data-orig-title="自恰理论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Self-verifying theories"><span class="ilh-page"><a href="/w/index.php?title=%E8%87%AA%E6%81%B0%E7%90%86%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="自恰理论(页面不存在)">自恰理论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Self-verifying_theories" class="extiw" title="en:Self-verifying theories"><span lang="en" dir="auto">Self-verifying theories</span></a></span>)</span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E6%A8%A1%E5%9E%8B%E8%AE%BA" title="模型论">模型论</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E8%A7%A3%E9%87%8B_(%E9%82%8F%E8%BC%AF)" title="解釋 (邏輯)">解释</a></li> <li><a href="/wiki/%E7%BB%93%E6%9E%84_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)" title="结构 (数理逻辑)">结构</a> <ul><li><a href="/wiki/%E5%88%9D%E7%AD%89%E7%AD%89%E4%BB%B7" title="初等等价">初等等价</a></li> <li><span class="ilh-all" data-orig-title="有限模型理论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Finite model theory"><span class="ilh-page"><a href="/w/index.php?title=%E6%9C%89%E9%99%90%E6%A8%A1%E5%9E%8B%E7%90%86%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="有限模型理论(页面不存在)">有限模型</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Finite_model_theory" class="extiw" title="en:Finite model theory"><span lang="en" dir="auto">Finite model theory</span></a></span>)</span></span></li> <li><a href="/wiki/%E9%A3%BD%E5%92%8C%E6%A8%A1%E5%9E%8B" title="飽和模型">飽和模型</a></li> <li><a href="/wiki/%E5%AD%90%E7%BB%93%E6%9E%84" title="子结构">子结构</a></li></ul></li> <li><a href="/wiki/%E9%9D%9E%E6%A0%87%E5%87%86%E6%A8%A1%E5%9E%8B" title="非标准模型">非标准模型</a> <ul><li><span class="ilh-all" data-orig-title="非标准的算术模型" data-lang-code="en" data-lang-name="英语" data-foreign-title="Non-standard model of arithmetic"><span class="ilh-page"><a href="/w/index.php?title=%E9%9D%9E%E6%A0%87%E5%87%86%E7%9A%84%E7%AE%97%E6%9C%AF%E6%A8%A1%E5%9E%8B&amp;action=edit&amp;redlink=1" class="new" title="非标准的算术模型(页面不存在)">算术</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Non-standard_model_of_arithmetic" class="extiw" title="en:Non-standard model of arithmetic"><span lang="en" dir="auto">Non-standard model of arithmetic</span></a></span>)</span></span></li></ul></li> <li><span class="ilh-all" data-orig-title="结构图 (数理逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Diagram (mathematical logic)"><span class="ilh-page"><a href="/w/index.php?title=%E7%BB%93%E6%9E%84%E5%9B%BE_(%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="结构图 (数理逻辑)(页面不存在)">结构图</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Diagram_(mathematical_logic)" class="extiw" title="en:Diagram (mathematical logic)"><span lang="en" dir="auto">Diagram (mathematical logic)</span></a></span>)</span></span> <ul><li><span class="ilh-all" data-orig-title="基本结构图" data-lang-code="en" data-lang-name="英语" data-foreign-title="Elementary diagram"><span class="ilh-page"><a href="/w/index.php?title=%E5%9F%BA%E6%9C%AC%E7%BB%93%E6%9E%84%E5%9B%BE&amp;action=edit&amp;redlink=1" class="new" title="基本结构图(页面不存在)">基本图</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Elementary_diagram" class="extiw" title="en:Elementary diagram"><span lang="en" dir="auto">Elementary diagram</span></a></span>)</span></span></li></ul></li> <li><span class="ilh-all" data-orig-title="分类理论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Categorical theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%88%86%E7%B1%BB%E7%90%86%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="分类理论(页面不存在)">分类理论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Categorical_theory" class="extiw" title="en:Categorical theory"><span lang="en" dir="auto">Categorical theory</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="完备模型论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Model complete theory"><span class="ilh-page"><a href="/w/index.php?title=%E5%AE%8C%E5%A4%87%E6%A8%A1%E5%9E%8B%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="完备模型论(页面不存在)">完备模型论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Model_complete_theory" class="extiw" title="en:Model complete theory"><span lang="en" dir="auto">Model complete theory</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="可满足性" data-lang-code="en" data-lang-name="英语" data-foreign-title="Satisfiability"><span class="ilh-page"><a href="/w/index.php?title=%E5%8F%AF%E6%BB%A1%E8%B6%B3%E6%80%A7&amp;action=edit&amp;redlink=1" class="new" title="可满足性(页面不存在)">可满足性</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Satisfiability" class="extiw" title="en:Satisfiability"><span lang="en" dir="auto">Satisfiability</span></a></span>)</span></span></li> <li><a href="/wiki/%E9%82%8F%E8%BC%AF%E8%AA%9E%E7%BE%A9%E5%AD%B8" title="邏輯語義學">邏輯語義學</a></li> <li><span class="ilh-all" data-orig-title="强度 (模型论)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Strength (mathematical logic)"><span class="ilh-page"><a href="/w/index.php?title=%E5%BC%BA%E5%BA%A6_(%E6%A8%A1%E5%9E%8B%E8%AE%BA)&amp;action=edit&amp;redlink=1" class="new" title="强度 (模型论)(页面不存在)">强度</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Strength_(mathematical_logic)" class="extiw" title="en:Strength (mathematical logic)"><span lang="en" dir="auto">Strength (mathematical logic)</span></a></span>)</span></span></li> <li><a href="/wiki/%E7%9C%9F%E7%90%86" title="真理">真理</a> <ul><li><a href="/wiki/%E7%9C%9F%E7%90%86%E7%9A%84%E8%AF%AD%E4%B9%89%E7%90%86%E8%AE%BA" title="真理的语义理论">语义理论</a></li> <li><a href="/wiki/%E7%9C%9F%E7%90%86%E7%9A%84%E8%AF%AD%E4%B9%89%E7%90%86%E8%AE%BA" title="真理的语义理论">塔尔斯基</a></li> <li><a href="/wiki/%E7%9C%9F%E7%90%86%E7%9A%84%E8%AF%AD%E4%B9%89%E7%90%86%E8%AE%BA" title="真理的语义理论">克里普克</a></li></ul></li> <li><a href="/wiki/T-%E6%A8%A1%E5%BC%8F" title="T-模式">T-模式</a></li> <li><span class="ilh-all" data-orig-title="转移原则" data-lang-code="en" data-lang-name="英语" data-foreign-title="Transfer principle"><span class="ilh-page"><a href="/w/index.php?title=%E8%BD%AC%E7%A7%BB%E5%8E%9F%E5%88%99&amp;action=edit&amp;redlink=1" class="new" title="转移原则(页面不存在)">转移原则</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Transfer_principle" class="extiw" title="en:Transfer principle"><span lang="en" dir="auto">Transfer principle</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="真理谓词" data-lang-code="en" data-lang-name="英语" data-foreign-title="Truth predicate"><span class="ilh-page"><a href="/w/index.php?title=%E7%9C%9F%E7%90%86%E8%B0%93%E8%AF%8D&amp;action=edit&amp;redlink=1" class="new" title="真理谓词(页面不存在)">真理谓词</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Truth_predicate" class="extiw" title="en:Truth predicate"><span lang="en" dir="auto">Truth predicate</span></a></span>)</span></span></li> <li><a href="/wiki/%E7%9C%9F%E5%80%BC" title="真值">真值</a></li> <li><a href="/wiki/%E5%9E%8B_(%E6%A8%A1%E5%9E%8B%E8%AE%BA)" title="型 (模型论)">型</a></li> <li><a href="/wiki/%E8%B6%85%E7%A9%8D" title="超積">超積</a></li> <li><a href="/wiki/%E6%9C%89%E6%95%88%E6%80%A7" title="有效性">有效性</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E5%8F%AF%E8%AE%A1%E7%AE%97%E6%80%A7%E7%90%86%E8%AE%BA" title="可计算性理论">可计算性理论</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%82%B1%E5%A5%87%E6%95%B0" title="邱奇数">邱奇数</a></li> <li><a href="/wiki/%E9%82%B1%E5%A5%87-%E5%9B%BE%E7%81%B5%E8%AE%BA%E9%A2%98" title="邱奇-图灵论题">邱奇-图灵论题</a></li> <li><a href="/wiki/%E9%80%92%E5%BD%92%E5%8F%AF%E6%9E%9A%E4%B8%BE%E9%9B%86%E5%90%88" title="递归可枚举集合">递归可枚举集合</a></li> <li><a href="/wiki/%E5%8F%AF%E8%AE%A1%E7%AE%97%E5%87%BD%E6%95%B0" title="可计算函数">可计算函数</a></li> <li><a href="/wiki/%E9%80%92%E5%BD%92%E9%9B%86%E5%90%88" title="递归集合">递归集合</a></li> <li><a href="/wiki/%E6%B1%BA%E5%AE%9A%E6%80%A7%E5%95%8F%E9%A1%8C" title="決定性問題">決定性問題</a> <ul><li><span class="ilh-all" data-orig-title="可决定性 (逻辑)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Decidability (logic)"><span class="ilh-page"><a href="/w/index.php?title=%E5%8F%AF%E5%86%B3%E5%AE%9A%E6%80%A7_(%E9%80%BB%E8%BE%91)&amp;action=edit&amp;redlink=1" class="new" title="可决定性 (逻辑)(页面不存在)">可决定性</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Decidability_(logic)" class="extiw" title="en:Decidability (logic)"><span lang="en" dir="auto">Decidability (logic)</span></a></span>)</span></span></li> <li><a href="/wiki/%E4%B8%8D%E5%8F%AF%E5%88%A4%E5%AE%9A%E9%97%AE%E9%A2%98" title="不可判定问题">不可决定性</a></li> <li><a href="/wiki/P_(%E8%A4%87%E9%9B%9C%E5%BA%A6)" title="P (複雜度)">P</a></li> <li><a href="/wiki/NP_(%E8%A4%87%E9%9B%9C%E5%BA%A6)" title="NP (複雜度)">NP</a></li> <li><a href="/wiki/P/NP%E9%97%AE%E9%A2%98" title="P/NP问题">P/NP问题</a></li></ul></li> <li><a href="/wiki/%E6%9F%AF%E6%B0%8F%E5%A4%8D%E6%9D%82%E6%80%A7" title="柯氏复杂性">柯氏复杂性</a></li> <li><a href="/wiki/%CE%9B%E6%BC%94%E7%AE%97" title="Λ演算">Λ演算</a></li> <li><a href="/wiki/%E5%8E%9F%E5%A7%8B%E9%80%92%E5%BD%92%E5%87%BD%E6%95%B0" title="原始递归函数">原始递归函数</a></li> <li><a href="/wiki/%E9%80%92%E5%BD%92" title="递归">递归</a></li> <li><a href="/wiki/%E9%80%92%E5%BD%92%E9%9B%86%E5%90%88" title="递归集合">递归集合</a></li> <li><a href="/wiki/%E5%9B%BE%E7%81%B5%E6%9C%BA" title="图灵机">图灵机</a></li> <li><a href="/wiki/%E7%B1%BB%E5%9E%8B%E8%AE%BA" title="类型论">类型论</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">其他相关</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="ilh-all" data-orig-title="抽象逻辑" data-lang-code="en" data-lang-name="英语" data-foreign-title="Abstract logic"><span class="ilh-page"><a href="/w/index.php?title=%E6%8A%BD%E8%B1%A1%E9%80%BB%E8%BE%91&amp;action=edit&amp;redlink=1" class="new" title="抽象逻辑(页面不存在)">抽象逻辑</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Abstract_logic" class="extiw" title="en:Abstract logic"><span lang="en" dir="auto">Abstract logic</span></a></span>)</span></span></li> <li><a href="/wiki/%E8%8C%83%E7%95%B4%E8%AE%BA" title="范畴论">范畴论</a></li> <li><a href="/wiki/%E5%85%B7%E9%AB%94%E7%AF%84%E7%96%87" title="具體範疇">具象范畴</a>、<a href="/wiki/%E7%AF%84%E7%96%87_(%E6%95%B8%E5%AD%B8)" title="範疇 (數學)">抽象范畴</a></li> <li><a href="/wiki/%E9%9B%86%E5%90%88%E8%8C%83%E7%95%B4" title="集合范畴">集合范畴</a></li> <li><a href="/wiki/%E9%80%BB%E8%BE%91%E5%8F%B2" title="逻辑史">逻辑史</a></li> <li><a href="/wiki/%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91" title="数理逻辑">数理逻辑</a> <ul><li><span class="ilh-all" data-orig-title="数理逻辑年表" data-lang-code="en" data-lang-name="英语" data-foreign-title="Timeline of mathematical logic"><span class="ilh-page"><a href="/w/index.php?title=%E6%95%B0%E7%90%86%E9%80%BB%E8%BE%91%E5%B9%B4%E8%A1%A8&amp;action=edit&amp;redlink=1" class="new" title="数理逻辑年表(页面不存在)">历史年表</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Timeline_of_mathematical_logic" class="extiw" title="en:Timeline of mathematical logic"><span lang="en" dir="auto">Timeline of mathematical logic</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E9%82%8F%E8%BC%AF%E4%B8%BB%E7%BE%A9" title="邏輯主義">邏輯主義</a></li> <li><a href="/wiki/%E6%95%B0%E5%AD%A6%E5%AF%B9%E8%B1%A1" title="数学对象">数学对象</a></li> <li><a href="/wiki/%E6%95%B0%E5%AD%A6%E5%93%B2%E5%AD%A6" title="数学哲学">数学哲学</a></li> <li><span class="ilh-all" data-orig-title="超任务" data-lang-code="en" data-lang-name="英语" data-foreign-title="Supertask"><span class="ilh-page"><a href="/w/index.php?title=%E8%B6%85%E4%BB%BB%E5%8A%A1&amp;action=edit&amp;redlink=1" class="new" title="超任务(页面不存在)">超任务</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Supertask" class="extiw" title="en:Supertask"><span lang="en" dir="auto">Supertask</span></a></span>)</span></span></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> <a href="/wiki/Portal:%E6%95%B0%E5%AD%A6" title="Portal:数学">数学主题</a></b></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐spwbb Cached time: 20241124085331 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.680 seconds Real time usage: 0.957 seconds Preprocessor visited node count: 3659/1000000 Post‐expand include size: 243119/2097152 bytes Template argument size: 6105/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 64/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 16290/5000000 bytes Lua time usage: 0.241/10.000 seconds Lua memory usage: 3995357/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 432.002 1 -total 94.21% 406.997 4 Template:Navbox 69.06% 298.352 1 Template:数理逻辑 32.86% 141.971 57 Template:Tsl 14.85% 64.132 1 Template:Reflist 11.00% 47.536 1 Template:Cite_book 7.07% 30.552 1 Template:En-link 5.04% 21.757 3 Template:Sep_entry 4.30% 18.566 7 Template:Le 3.75% 16.215 3 Template:Cite_encyclopaedia --> <!-- Saved in parser cache with key zhwiki:pcache:idhash:184516-0!canonical!zh and timestamp 20241124085331 and revision id 83607832. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=直言三段论&amp;oldid=83607832">https://zh.wikipedia.org/w/index.php?title=直言三段论&amp;oldid=83607832</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:​<ul><li><a href="/wiki/Category:%E6%8E%A8%E7%90%86%E8%A7%84%E5%88%99" title="Category:推理规则">推理规则</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:​<ul><li><a href="/wiki/Category:%E5%BC%95%E6%96%87%E6%A0%BC%E5%BC%8F1%E7%BB%B4%E6%8A%A4%EF%BC%9A%E6%9C%AA%E8%AF%86%E5%88%AB%E8%AF%AD%E6%96%87%E7%B1%BB%E5%9E%8B" title="Category:引文格式1维护:未识别语文类型">引文格式1维护:未识别语文类型</a></li><li><a href="/wiki/Category:%E4%BD%BF%E7%94%A8ISBN%E9%AD%94%E6%9C%AF%E9%93%BE%E6%8E%A5%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:使用ISBN魔术链接的页面">使用ISBN魔术链接的页面</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2024年7月30日 (星期二) 00:28。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia&#174;和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基&#8482;是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-5g68k","wgBackendResponseTime":284,"wgPageParseReport":{"limitreport":{"cputime":"0.680","walltime":"0.957","ppvisitednodes":{"value":3659,"limit":1000000},"postexpandincludesize":{"value":243119,"limit":2097152},"templateargumentsize":{"value":6105,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":64,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":16290,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 432.002 1 -total"," 94.21% 406.997 4 Template:Navbox"," 69.06% 298.352 1 Template:数理逻辑"," 32.86% 141.971 57 Template:Tsl"," 14.85% 64.132 1 Template:Reflist"," 11.00% 47.536 1 Template:Cite_book"," 7.07% 30.552 1 Template:En-link"," 5.04% 21.757 3 Template:Sep_entry"," 4.30% 18.566 7 Template:Le"," 3.75% 16.215 3 Template:Cite_encyclopaedia"]},"scribunto":{"limitreport-timeusage":{"value":"0.241","limit":"10.000"},"limitreport-memusage":{"value":3995357,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-spwbb","timestamp":"20241124085331","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u76f4\u8a00\u4e09\u6bb5\u8bba","url":"https:\/\/zh.wikipedia.org\/wiki\/%E7%9B%B4%E8%A8%80%E4%B8%89%E6%AE%B5%E8%AE%BA","sameAs":"http:\/\/www.wikidata.org\/entity\/Q107342","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q107342","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-11-16T08:55:24Z","dateModified":"2024-07-30T00:28:49Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10