CINXE.COM

Search results for: impact simulation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: impact simulation</title> <meta name="description" content="Search results for: impact simulation"> <meta name="keywords" content="impact simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="impact simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="impact simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15478</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: impact simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15478</span> Impact Characteristics of Fragile Cover Based on Numerical Simulation and Experimental Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejin%20Chen">Dejin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Lin"> Bin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20LI"> Xiaohui LI</a>, <a href="https://publications.waset.org/abstracts/search?q=Haobin%20Tian"> Haobin Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to acquire stable impact performance of cover, the factors influencing the impact force of the cover were analyzed and researched. The influence of impact factors such as impact velocity, impact weight and fillet radius of warhead was studied by Orthogonal experiment. Through the range analysis and numerical simulation, the results show that the impact velocity has significant influences on impact force of cover. The impact force decreases with the increase of impact velocity and impact weight. The test results are similar to the numerical simulation. The cover broke up into four parts along the groove. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragile%20cover" title="fragile cover">fragile cover</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20force" title=" impact force"> impact force</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20foam" title=" epoxy foam"> epoxy foam</a> </p> <a href="https://publications.waset.org/abstracts/136873/impact-characteristics-of-fragile-cover-based-on-numerical-simulation-and-experimental-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15477</span> Concussion Prediction for Speed Skater Impacting on Crash Mats by Computer Simulation Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yilin%20Liao">Yilin Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hewen%20Li"> Hewen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20McConvey"> Paula McConvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concussion for speed skaters often occurs when skaters fall on the ice and impact the crash mats during practices and competition races. Gaining insight into the impact of interactions is of essential interest as it is directly related to skaters’ potential health risks and injuries. Precise concussion measurements are challenging and very difficult, making computer simulation the only reliable way to analyze accidents. This research aims to create the crash mat and skater’s multi-body model using Solidworks, develop a computer simulation model for skater-mat impact using ANSYS software, and predict the skater’s concussion degree by evaluating the “head injury criteria” (HIC) through the resulting accelerations. The developed method and results help understand the relationship between impact parameters and concussion risk for speed skaters and inform the design of crash mats and skating rink layouts more specifically by considering athletes’ health risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation%20modeling" title="computer simulation modeling">computer simulation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=concussion" title=" concussion"> concussion</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20skater" title=" speed skater"> speed skater</a> </p> <a href="https://publications.waset.org/abstracts/169553/concussion-prediction-for-speed-skater-impacting-on-crash-mats-by-computer-simulation-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15476</span> Performance Evaluation of Flexible Manufacturing System: A Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali">Mohammed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, evaluation of flexible manufacturing system is made under different manufacturing strategies. The objective of this paper is to test the impact of pallets and routing flexibility on system performance operating at different sequencing rules, dispatching rules and at unbalanced load condition. A computer simulation model is developed to evaluate the effects of aforementioned manufacturing strategies on the make-span performance of flexible manufacturing system. The impact of number of pallets is shown with the different levels of routing flexibility. In this paper, the same manufacturing system is modeled under different combination of sequencing and dispatching rules. A series of simulation experiments are conducted and results analyzed. The result of the simulation shows that there is impact of pallets and routing flexibility on the performance of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexibility" title="flexibility">flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system" title=" flexible manufacturing system"> flexible manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=pallets" title=" pallets"> pallets</a>, <a href="https://publications.waset.org/abstracts/search?q=make-span" title=" make-span"> make-span</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/49277/performance-evaluation-of-flexible-manufacturing-system-a-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15475</span> Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Chul%20Hwang">Sung-Chul Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Di%20Ren"> Di Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Moon%20Yoon"> Sang-Moon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chun%20Park"> Jong-Chun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Khayyer"> Abbas Khayyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Gotoh"> Hitoshi Gotoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title="fluid-structure interaction">fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20particle%20semi-implicit%20%28MPS%29%20method" title=" moving particle semi-implicit (MPS) method"> moving particle semi-implicit (MPS) method</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20structure" title=" elastic structure"> elastic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=incompressible%20flow" title=" incompressible flow"> incompressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20slamming%20impact" title=" wedge slamming impact"> wedge slamming impact</a> </p> <a href="https://publications.waset.org/abstracts/32919/numerical-simulation-of-fluid-structure-interaction-on-wedge-slamming-impact-by-using-particle-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15474</span> The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta">Jiří Barta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computer%20Simulation" title="Computer Simulation">Computer Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Symos97" title=" Symos97"> Symos97</a>, <a href="https://publications.waset.org/abstracts/search?q=Spread" title=" Spread"> Spread</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulation%20Software" title=" Simulation Software"> Simulation Software</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmful%20Substances" title=" Harmful Substances"> Harmful Substances</a> </p> <a href="https://publications.waset.org/abstracts/38195/the-use-of-simulation-programs-of-leakage-of-harmful-substances-for-crisis-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15473</span> Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhao">Wei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxuan%20Yao"> Yuxuan Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Chen"> Hao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title="battery module">battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20battery" title=" power battery"> power battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20angle" title=" packing angle"> packing angle</a> </p> <a href="https://publications.waset.org/abstracts/182236/mechanical-properties-of-lithium-ion-battery-at-different-packing-angles-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15472</span> 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phinyo%20Mueangmeesap">Phinyo Mueangmeesap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverter%20simulation" title="inverter simulation">inverter simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM%20signal" title=" PWM signal"> PWM signal</a>, <a href="https://publications.waset.org/abstracts/search?q=single-phase%20inverter" title=" single-phase inverter"> single-phase inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20inverter" title=" sinusoidal inverter"> sinusoidal inverter</a> </p> <a href="https://publications.waset.org/abstracts/58872/156vdc-to-110vac-sinusoidal-inverter-simulation-and-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15471</span> Planning of Construction Material Flow Using Hybrid Simulation Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Naraghi">A. M. Naraghi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gonzalez"> V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O%27Sullivan"> M. O&#039;Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Walker"> C. G. Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poshdar"> M. Poshdar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ying"> F. Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmegid"> M. Abdelmegid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20supply-chain%20management" title="construction supply-chain management">construction supply-chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modeling" title=" simulation modeling"> simulation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-support%20tools" title=" decision-support tools"> decision-support tools</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20simulation" title=" hybrid simulation"> hybrid simulation</a> </p> <a href="https://publications.waset.org/abstracts/103280/planning-of-construction-material-flow-using-hybrid-simulation-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15470</span> The Effect of Damper Attachment on Tennis Racket Vibration: A Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuangyou%20B.%20Cheng">Kuangyou B. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tennis is among the most popular sports worldwide. During ball-racket impact, substantial vibration transmitted to the hand/arm may be the cause of “tennis elbow”. Although it is common for athletes to attach a “vibration damper” to the spring-bed, the effect remains unclear. To avoid subjective factors and errors in data recording, the effect of damper attachment on racket handle end vibration was investigated with computer simulation. The tennis racket was modeled as a beam with free-free ends (similar to loosely holding the racket). Finite difference method with 40 segments was used to simulate ball-racket impact response. The effect of attaching a damper was modeled as having a segment with increased mass. It was found that the damper has the largest effect when installed at the spring-bed center. However, this is not a practical location due to interference with ball-racket impact. Vibration amplitude changed very slightly when the damper was near the top or bottom of the spring-bed. The damper works only slightly better at the bottom than at the top of the spring-bed. In addition, heavier dampers work better than lighter ones. These simulation results were comparable with experimental recordings in which the selection of damper locations was restricted by ball impact locations. It was concluded that mathematical model simulations were able to objectively investigate the effect of damper attachment on racket vibration. In addition, with very slight difference in grip end vibration amplitude when the damper was attached at the top or bottom of the spring-bed, whether the effect can really be felt by athletes is questionable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title="finite difference">finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20amplitude" title=" vibration amplitude"> vibration amplitude</a> </p> <a href="https://publications.waset.org/abstracts/60427/the-effect-of-damper-attachment-on-tennis-racket-vibration-a-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15469</span> Molecular Dynamic Simulation of Cold Spray Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneesh%20Joshi">Aneesh Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagil%20James"> Sagil James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spray%20process" title="cold spray process">cold spray process</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20impact" title=" particle impact"> particle impact</a> </p> <a href="https://publications.waset.org/abstracts/69846/molecular-dynamic-simulation-of-cold-spray-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15468</span> Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rahnamoun">Ali Rahnamoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Adri%20van%20Duin"> Adri van Duin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20materials" title="spacecraft materials">spacecraft materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hypervelocity%20impact" title=" hypervelocity impact"> hypervelocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20molecular%20dynamics%20simulation" title=" reactive molecular dynamics simulation"> reactive molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica" title=" amorphous silica"> amorphous silica</a> </p> <a href="https://publications.waset.org/abstracts/17234/study-of-water-cluster-amorphous-silica-collisions-in-the-extreme-space-environment-using-the-reaxff-reactive-force-field-molecular-dynamics-simulation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15467</span> The Impact of the European Single Market on the Austrian Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reinhard%20Neck">Reinhard Neck</a>, <a href="https://publications.waset.org/abstracts/search?q=Guido%20Sch%C3%A4fer"> Guido Schäfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependence and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse side-effects on any macroeconomic target variable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macroeconomics" title="macroeconomics">macroeconomics</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Union" title=" European Union"> European Union</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/29213/the-impact-of-the-european-single-market-on-the-austrian-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15466</span> An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwak">Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Gyung"> Hyo-Gyung</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang"> Gang</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Gul"> Han Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strain%20rate%20concrete" title="high strain rate concrete">high strain rate concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20simulation" title=" penetration simulation"> penetration simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20strain" title=" failure strain"> failure strain</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh-dependency" title=" mesh-dependency"> mesh-dependency</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20energy" title=" fracture energy"> fracture energy</a> </p> <a href="https://publications.waset.org/abstracts/18943/an-criterion-to-minimize-fe-mesh-dependency-in-concrete-plate-subjected-to-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15465</span> Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100 nm Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zina%20Saheb">Zina Saheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezz%20El-Masry"> Ezz El-Masry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As CMOS technology scaling down, Silicon oxide thickness (SiO2) become very thin (few Nano meters). When SiO2 is less than 3nm, gate direct tunneling (DT) leakage current becomes a dormant problem that impacts the transistor performance. Floating gate MOSFET (FGMOSFET) has been used in many low-voltage and low-power applications. Most of the available simulation models of FGMOSFET for analog circuit design does not account for gate DT current and there is no accurate analysis for the gate DT. It is a crucial to use an accurate mode in order to get a realistic simulation result that account for that DT impact on FGMOSFET performance effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20transistor" title="CMOS transistor">CMOS transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-tunneling%20current" title=" direct-tunneling current"> direct-tunneling current</a>, <a href="https://publications.waset.org/abstracts/search?q=floating-gate" title=" floating-gate"> floating-gate</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-leakage%20current" title=" gate-leakage current"> gate-leakage current</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a> </p> <a href="https://publications.waset.org/abstracts/30655/practical-simulation-model-of-floating-gate-mos-transistor-in-sub-100-nm-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15464</span> Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galu%20Papy%20Yuma">Galu Papy Yuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GUPFC" title="GUPFC">GUPFC</a>, <a href="https://publications.waset.org/abstracts/search?q=IC-HS%20algorithm" title=" IC-HS algorithm"> IC-HS algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab%2FSimulink" title=" Matlab/Simulink"> Matlab/Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20oscillation" title=" damping oscillation"> damping oscillation</a> </p> <a href="https://publications.waset.org/abstracts/6263/damping-function-and-dynamic-simulation-of-gupfc-using-ic-hs-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15463</span> Investigation of Single Particle Breakage inside an Impact Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi%20Ardi">E. Ghasemi Ardi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Dong"> K. J. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Yu"> A. B. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Y.%20Yang"> R. Y. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20particle%20breakage" title="single particle breakage">single particle breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20dynamic" title=" particle dynamic"> particle dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20model" title=" population balance model"> population balance model</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/76339/investigation-of-single-particle-breakage-inside-an-impact-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15462</span> The Impact of Window Opening Occupant Behavior Models on Building Energy Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Tkubet%20Ebuy">Habtamu Tkubet Ebuy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupant%20behavior" title="occupant behavior">occupant behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=co-simulation" title=" co-simulation"> co-simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/161479/the-impact-of-window-opening-occupant-behavior-models-on-building-energy-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15461</span> Simulation Programs to Education of Crisis Management Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Barta">Jiri Barta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure" title=" critical infrastructure"> critical infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=dangerous%20substance" title=" dangerous substance"> dangerous substance</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20programs" title=" simulation programs"> simulation programs</a> </p> <a href="https://publications.waset.org/abstracts/18144/simulation-programs-to-education-of-crisis-management-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15460</span> Harvesting of Kinetic Energy of the Raindrops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20R.Perera">K. C. R.Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20C%20Dassanayake"> V. P. C Dassanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Hapuwatte"> B. M. Hapuwatte</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Smapath"> B. G. Smapath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a methodology to harvest the kinetic energy of the raindrops using piezoelectric devices. In the study 1m×1m PVDF (Polyvinylidene fluoride) piezoelectric membrane, which is fixed by the four edges, is considered for the numerical simulation on deformation of the membrane due to the impact of the raindrops. Then according to the drop size of the rain, the simulation is performed classifying the rainfall types into three categories as light stratiform rain, moderate stratiform rain and heavy thundershower. The impact force of the raindrop is dependent on the terminal velocity of the raindrop, which is a function of raindrop diameter. The results were then analyzed to calculate the harvestable energy from the deformation of the piezoelectric membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raindrop" title="raindrop">raindrop</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20velocity" title=" terminal velocity"> terminal velocity</a> </p> <a href="https://publications.waset.org/abstracts/4366/harvesting-of-kinetic-energy-of-the-raindrops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15459</span> Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Sun">Xuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingbo%20Tong"> Mingbo Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stiffened" title="stiffened">stiffened</a>, <a href="https://publications.waset.org/abstracts/search?q=low-velocity%20impact" title=" low-velocity impact"> low-velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title=" Abaqus"> Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20energy" title=" impact energy"> impact energy</a> </p> <a href="https://publications.waset.org/abstracts/11275/finite-element-analysis-of-low-velocity-impact-damage-on-stiffened-composite-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15458</span> Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Herrera">Leonardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Shield%20B.%20Lin"> Shield B. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20J.%20Montgomery-Smith"> Stephen J. Montgomery-Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziraguen%20O.%20Williams"> Ziraguen O. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controller" title="controller">controller</a>, <a href="https://publications.waset.org/abstracts/search?q=Stewart%20platform" title=" Stewart platform"> Stewart platform</a>, <a href="https://publications.waset.org/abstracts/search?q=docking%20operation" title=" docking operation"> docking operation</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/185802/control-of-a-stewart-platform-for-minimizing-impact-energy-in-simulating-spacecraft-docking-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15457</span> Electricity Market Categorization for Smart Grid Market Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebeca%20Ramirez%20Acosta">Rebeca Ramirez Acosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Lenhoff"> Sebastian Lenhoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decision makers worldwide need to determine if the implementation of a new market mechanism will contribute to the sustainability and resilience of the power system. Due to smart grid technologies, new products in the distribution and transmission system can be traded; however, the impact of changing a market rule will differ between several regions. To test systematically those impacts, a market categorization has been compiled and organized in a smart grid market testing toolbox. This toolbox maps all actual energy products and sets the basis for running a co-simulation test with the new rule to be implemented. It will help to measure the impact of the new rule, based on the sustainable and resilience indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-simulation" title="co-simulation">co-simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20market" title=" electricity market"> electricity market</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid%20market" title=" smart grid market"> smart grid market</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20testing" title=" market testing"> market testing</a> </p> <a href="https://publications.waset.org/abstracts/131159/electricity-market-categorization-for-smart-grid-market-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15456</span> Simulation of I–V Characteristics of Lateral PIN Diode on Polysilicon Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Rabhi">Abdelaziz Rabhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amrani"> Mohamed Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrazek%20Ziane"> Abderrazek Ziane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Belkadi"> Nabil Belkadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelraouf%20Hocini"> Abdelraouf Hocini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a bedimensional simulation program of the electric characteristics of reverse biased lateral polysilicon PIN diode is presented. In this case we have numerically solved the system of partial differential equations formed by Poisson's equation and both continuity equations that take into account the effect of impact ionization. Therefore we will obtain the current-voltage characteristics (I-V) of the reverse-biased structure which may include the effect of breakdown.The geometrical model assumes that the polysilicon layer is composed by a succession of defined mean grain size crystallites, separated by lateral grain boundaries which are parallel to the metallurgic junction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown" title="breakdown">breakdown</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20silicon" title=" polycrystalline silicon"> polycrystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN" title=" PIN"> PIN</a>, <a href="https://publications.waset.org/abstracts/search?q=grain" title=" grain"> grain</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20ionization" title=" impact ionization"> impact ionization</a> </p> <a href="https://publications.waset.org/abstracts/1337/simulation-of-i-v-characteristics-of-lateral-pin-diode-on-polysilicon-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15455</span> Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ola%20Jon%20Mork">Ola Jon Mork</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Andre%20Giske"> Lars Andre Giske</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Bj%C3%B8rlykhaug"> Emil Bjørlykhaug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20process" title=" welding process"> welding process</a> </p> <a href="https://publications.waset.org/abstracts/54605/simulation-a-tool-for-stabilization-of-welding-processes-in-lean-production-concepts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15454</span> Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunita%20Ratih%20Wijayanti">Yunita Ratih Wijayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Rahmawati"> Dwi Rahmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Turniningtyas%20Ayu%20Rahmawati"> Turniningtyas Ayu Rahmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title="flood hazard">flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20inundation" title=" potential inundation"> potential inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20mapper" title=" global mapper"> global mapper</a>, <a href="https://publications.waset.org/abstracts/search?q=Gresik%20Regency" title=" Gresik Regency"> Gresik Regency</a> </p> <a href="https://publications.waset.org/abstracts/155596/flood-hazard-impact-based-on-simulation-model-of-potential-flood-inundation-in-lamong-river-gresik-regency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15453</span> Impact of Tourists on HIV (Human Immunodeficiency Virus) Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ofosuhene%20O.%20Apenteng">Ofosuhene O. Apenteng</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Azina%20Ismail"> Noor Azina Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently tourism is a major foreign exchange earner in the World. In this paper, we propose the mathematical model to study the impact of tourists on the spread of HIV incidences using compartmental differential equation models. Simulation studies of reproduction number are used to demonstrate new insights on the spread of HIV disease. The periodogram analysis of a time series was used to determine the speed at which the disease is spread. The results indicate that with the persistent flow of tourism into a country, the disease status has increased the epidemic rate. The result suggests that the government must put more control on illegal prostitution, unprotected sexual activity as well as to emphasis on prevention policies that include the safe sexual activity through the campaign by the tourism board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%2FAIDS" title="HIV/AIDS">HIV/AIDS</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20transmission%20modeling" title=" mathematical transmission modeling"> mathematical transmission modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=tourists" title=" tourists"> tourists</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation "> simulation </a> </p> <a href="https://publications.waset.org/abstracts/37089/impact-of-tourists-on-hiv-human-immunodeficiency-virus-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15452</span> Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yilin%20Liao">Yilin Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hewen%20Li"> Hewen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20McConvey"> Paula McConvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=concussion" title=" concussion"> concussion</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20skater" title=" speed skater"> speed skater</a> </p> <a href="https://publications.waset.org/abstracts/169585/applying-artificial-neural-networks-to-predict-speed-skater-impact-concussion-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15451</span> Impact of Fin Cross Section Shape on Potential Distribution of Nanoscale Trapezoidal FinFETs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Nassim%20Moulai%20Khatir">Ahmed Nassim Moulai Khatir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fin field effect transistors (FinFETs) deliver superior levels of scalability than the classical structure of MOSFETs by offering the elimination of short channel effects. Modern FinFETs are 3D structures that rise above the planar substrate, but some of these structures have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections usually used. Fin cross section shape of FinFETs results in some device issues, like potential distribution performance. This work analyzes that impact with three-dimensional numeric simulation of several triple-gate FinFETs with various top and bottom widths of fin. Results of the simulation show that the potential distribution and the electrical field in the fin depend on the sidewall inclination angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FinFET" title="FinFET">FinFET</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20section%20shape" title=" cross section shape"> cross section shape</a>, <a href="https://publications.waset.org/abstracts/search?q=SILVACO" title=" SILVACO"> SILVACO</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20FinFETs" title=" trapezoidal FinFETs"> trapezoidal FinFETs</a> </p> <a href="https://publications.waset.org/abstracts/186029/impact-of-fin-cross-section-shape-on-potential-distribution-of-nanoscale-trapezoidal-finfets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15450</span> A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawei%20Liang">Yawei Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=naval%20resource%20management" title=" naval resource management"> naval resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=weapon-target%20allocation%2Fassignment" title=" weapon-target allocation/assignment"> weapon-target allocation/assignment</a> </p> <a href="https://publications.waset.org/abstracts/159439/a-saturation-attack-simulation-on-a-navy-warship-based-on-discrete-event-simulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15449</span> An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehvish%20Bilal">Mehvish Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Singh"> Navneet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasir%20Mushtaq"> Jasir Mushtaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=QUAL2K" title=" QUAL2K"> QUAL2K</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=physiochemical%20parameters" title=" physiochemical parameters"> physiochemical parameters</a> </p> <a href="https://publications.waset.org/abstracts/158566/an-artificial-intelligence-supported-qual2k-model-for-the-simulation-of-various-physiochemical-parameters-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=515">515</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=516">516</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=impact%20simulation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10