CINXE.COM
Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae -- Hall et al. 4 (6): 1102 -- Eukaryotic Cell
<html> <head><script type="text/javascript" src="/_static/js/bundle-playback.js?v=HxkREWBo" charset="utf-8"></script> <script type="text/javascript" src="/_static/js/wombat.js?v=txqj7nKC" charset="utf-8"></script> <script>window.RufflePlayer=window.RufflePlayer||{};window.RufflePlayer.config={"autoplay":"on","unmuteOverlay":"hidden"};</script> <script type="text/javascript" src="/_static/js/ruffle/ruffle.js"></script> <script type="text/javascript"> __wm.init("https://web.archive.org/web"); __wm.wombat("http://ec.asm.org/cgi/content/full/4/6/1102","20081006113455","https://web.archive.org/","web","/_static/", "1223292895"); </script> <link rel="stylesheet" type="text/css" href="/_static/css/banner-styles.css?v=S1zqJCYt" /> <link rel="stylesheet" type="text/css" href="/_static/css/iconochive.css?v=3PDvdIFv" /> <!-- End Wayback Rewrite JS Include --> <title> Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae -- Hall et al. 4 (6): 1102 -- Eukaryotic Cell</title> <script language="JavaScript"> <!-- function startTarget(windowname,wid,hei) { var dotpos = windowname.indexOf("."); if (dotpos > -1) { var tempwn = windowname.substring(0,dotpos) + windowname.substring(dotpos + 1, windowname.length); windowname = tempwn; } var sizestring = 'width=' + wid + ',height=' + hei; window.open('',windowname,'scrollbars,resizable,' + sizestring + '\''); } // --> </script> <!-- has inhead tag --> <script language="JavaScript"> <!-- if ( top != self ) { top.location.href = unescape(window.location.pathname); } //--> </script> <script language="JavaScript"> <!-- function RightslinkPopUp( title, date, issueNum, volumeNum, startPage, endPage, author, contentID ) { var url = "https://web.archive.org/web/20081006113455/https://s100.copyright.com/AppDispatchServlet"; var location = url + "?publisherName=" + escape("asm") + "&publication=" + escape("eukcell") + "&title=" + escape(title) + "&publicationDate=" + escape(date) + "&issueNum=" + escape(issueNum) + "&volumeNum=" + escape(volumeNum) + "&startPage=" + escape(startPage) + "&endPage=" + escape(endPage) + "&author=" + escape(author) + "&contentID=" + escape(contentID) + "&orderBeanReset=true" PopUp = window.open( location,'Rightslink','location=no,toolbar=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=yes,width=650,height=550'); } // --> </script> <style type="text/css"><!-- table.content_box_outer_table { padding-left:10px; padding-bottom:5px; padding-top:0px; padding-right:0px; } table.content_box_outer_table_in_sidebar_frame { padding-left:10px; padding-bottom:0px; padding-top:10px; padding-right:10px; } table.content_box_inner_table { background-color:#f0f0f0; font-family:Verdana,Arial,Helvetica,sans-serif; font-size:65%; padding-top:0px; padding-left:0px; padding-right:0px; padding-bottom:5px; } table.content_box_pdfinframes { padding-top:0px; padding-left:0px; padding-right:0px; padding-bottom:4px; } td.content_box_title_highlight { font-family:"Trebuchet MS",Verdana,Arial,Helvetica,sans-serif; font-style:italic; color:#ffffff; background-color:#17A7C4; font-size:120%; font-weight:bold; text-align:center; padding:1px; vertical-align:middle; } td.content_box_title { font-family:"Trebuchet MS",Verdana,Arial,Helvetica,sans-serif; font-style:italic; color:#ffffff; background-color:#828282; font-size:120%; font-weight:bold; padding:1px; text-align:center; vertical-align:middle; } td.content_box_space_between_sections { padding-top:2px; } td.content_box_arrow { text-align:right; padding-left:5px; padding-right:0px; padding-top:0px; padding-bottom:3px; } td.content_box_item { text-align:left; vertical-align:top; padding-left:3px; padding-right:5px; padding-top:0px; padding-bottom:3px; } td.content_box_pdfinframes_citation_cell { background-color:#ffffff; border:1px #000000 solid; padding:3px; font-family:Verdana,Arial,Helvetica,sans-serif; font-size:65%; text-align:left; } font.openaccess { font-weight:bold; padding-left:3px; padding-right:3px; background-color:#ffffff; } font.openaccess_open { color:#000000; } font.openaccess_access { color:#cc0000; } font.openaccess_oa { } .content_box_openaccess_title { text-align:center; white-space:nowrap; background-color:#BABABA; } div.referrer-based-search-line { font-family: arial,sans-serif; font-size: 0.75em; background-color: #009918; padding: 3px 25px; margin: 0px 4px 5px 0px; } div.referrer-based-search-line .search-terms{ font-weight: bold; } div.referrer-based-search-line .collection-name{ font-style: italic; } @media screen,print,handheld { .notonscreen { display: none; } } --></style> <style type="text/css"><!-- @media screen,print,handheld { .notonscreen { display: none; } } --></style> <!-- ac in the head available --> <script language="javascript"> <!-- function popwin(url,wid,hei,fromtop,fromleft) { var winPref = "channelmode=no,toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=auto,resizable=no,width=" + wid + ",height=" + hei + ",top=" + fromtop + ",left=" + fromleft; window.open(url, "popwin", winPref); } // --> </script> <script type="text/javascript" src="/web/20081006113455js_/http://ec.asm.org/javascript/ajax/xmlhttprequest.js"></script> <script type="text/javascript" src="/web/20081006113455js_/http://ec.asm.org/javascript/ajax/utility.js"></script> <script type="text/javascript" src="/web/20081006113455js_/http://ec.asm.org/javascript/entrez/callback.js"></script> <meta name="robots" content="nofollow"> <meta name="citation_journal_title" content="Eukaryotic Cell"> <meta name="citation_publisher" content="Am Soc Microbiol"> <meta name="citation_authors" content="Hall, Charles; Brachat, Sophie; Dietrich, Fred S."> <meta name="citation_title" content="Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae"> <meta name="citation_date" content="06/01/2005"> <meta name="citation_volume" content="4"> <meta name="citation_issue" content="6"> <meta name="citation_firstpage" content="1102"> <meta name="citation_id" content="4/6/1102"> <meta name="citation_mjid" content="eukcell;4/6/1102"> <meta name="citation_doi" content="10.1128/EC.4.6.1102-1115.2005"> <meta name="citation_abstract_html_url" content="http://ec.asm.org/cgi/content/abstract/4/6/1102"> <meta name="citation_fulltext_html_url" content="http://ec.asm.org/cgi/content/full/4/6/1102"> <meta name="citation_pdf_url" content="http://ec.asm.org/cgi/reprint/4/6/1102.pdf"> <meta name="citation_pmid" content="15947202"> <meta name="dc.Contributor" content="Hall, Charles"> <meta name="dc.Contributor" content="Brachat, Sophie"> <meta name="dc.Contributor" content="Dietrich, Fred S."> <meta name="dc.Title" content="Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae"> <meta name="dc.Identifier" content="10.1128/EC.4.6.1102-1115.2005"> <meta name="dc.Date" content="06/01/2005"> <meta name="ROBOTS" content="NOARCHIVE"> </head> <body onload="entrez_callback('15947202','https://web.archive.org/web/20081006113455/http://ec.asm.org/cgi/ajax/entrez/15947202');" bgcolor="#FFFFFF"> <a name="top"><!-- null --></a> <nobr> <a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/"><img border="0" width="220" height="44" alt="Eukaryotic Cell" src="/web/20081006113455im_/http://ec.asm.org/icons/banner/title.gif"></a> <!--#echo var="HTTP_AD_HTML_STRING_1"--> </nobr> <br> <nobr> <table cellpadding="2" cellspacing="2" width="450"> <tr> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">HOME</font></a></td> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/help/"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">HELP</font></a></td> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/cgi/feedback"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">FEEDBACK</font></a></td> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/subscriptions/"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">SUBSCRIPTIONS</font></a></td> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/contents-by-date.0.shtml"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">ARCHIVE</font></a></td> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/search.dtl"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">SEARCH</font></a></td> <td align="CENTER" valign="TOP" bgcolor="17A7C4" nowrap><a target="_top" style="text-decoration: none" href="/web/20081006113455/http://ec.asm.org/content/vol4/issue6/"><font size="-2" color="#FFFFFF" face="verdana,arial,helvetica">TABLE OF CONTENTS</font></a></td> </tr> </table> </nobr> <!-- subline logic: standard default --> <!-- NOT GUEST --> <hr width="450" align="LEFT" size="1" color="#000000" noshade> <table class="content_box_outer_table" align="right"> <tr> <td> <!-- beginning of inner table --> <table class="content_box_inner_table"> <!-- citation --> <tr><td class="content_box_title_highlight" colspan="2">This Article</td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/content/abstract/4/6/1102"> Abstract</a></strong> <img alt="Freely available" width="32" height="7" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/toc/free.gif"/> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong> <a href="/web/20081006113455/http://ec.asm.org/cgi/reprint/4/6/1102"> <strong>Full Text</strong> (PDF)</a> </strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/DC1"> Supplemental material</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=eukcell;4/6/1102&return_type=article&return_url=http%3A%2F%2Fec.asm.org%2Fcgi%2Fcontent%2Ffull%2F4%2F6%2F1102"> Alert me when this article is cited</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/alerts/ctalert?alertType=correction&addAlert=correction&saveAlert=no&correction_criteria_value=4/6/1102&return_type=article&return_url=http%3A%2F%2Fec.asm.org%2Fcgi%2Fcontent%2Ffull%2F4%2F6%2F1102"> Alert me if a correction is posted</a></strong> </td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr><tr><td class="content_box_title" colspan="2">Services</td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong> <a href="/web/20081006113455/http://ec.asm.org/cgi/search?qbe=eukcell;4/6/1102&journalcode=eukcell&minscore=4000"> Similar articles in this journal</a> </strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=15947202&link_type=MED_NBRS"> Similar articles in PubMed</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="https://web.archive.org/web/20081006113455/http://journals.asm.org/cgi/alerts/etoc"> Alert me to new issues of the journal</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/citmgr?gca=eukcell;4/6/1102"> Download to citation manager</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"><strong><a href="#" onclick="RightslinkPopUp('Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae','06/01/2005','6','4','1102','1115','Charles Hall, Sophie Brachat, Fred S. Dietrich','eukcell/4/6/1102'); return false;">Reprints and Permissions</a></strong></td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><strong><a href="https://web.archive.org/web/20081006113455/http://www.journals.asm.org/misc/terms.shtml">Copyright Information</a></strong></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><strong><a href="https://web.archive.org/web/20081006113455/http://www.asmpress.org/">Books from ASM Press</a></strong></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><strong><a href="https://web.archive.org/web/20081006113455/http://www.microbeworld.org/">MicrobeWorld</a></strong></strong> </td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr><tr><td class="content_box_title" colspan="2">Citing Articles</td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="#otherarticles"> Citing Articles via HighWire</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a target="_blank" href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=http://ec.asm.org/cgi/content/abstract/4/6/1102&link_type=GOOGLESCHOLAR">Citing Articles via Google Scholar</a></strong> </td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr><tr><td class="content_box_title" colspan="2">Google Scholar</td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a target="_blank" href="https://web.archive.org/web/20081006113455/http://scholar.google.com/scholar?q=%22author%3AC.+author%3AHall%22"> Articles by Hall, C.</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a target="_blank" href="https://web.archive.org/web/20081006113455/http://scholar.google.com/scholar?q=%22author%3AF. S.+author%3ADietrich%22"> Articles by Dietrich, F. S.</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a target="_blank" href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=http://ec.asm.org/cgi/content/abstract/4/6/1102&link_type=GOOGLESCHOLARRELATED">Search for Related Content</a></strong> </td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr><tr><td class="content_box_title" colspan="2">PubMed</td></tr> <tr><td class="content_box_space_between_sections" colspan="2"><img alt=" " width="200" height="1" src="/web/20081006113455im_/http://ec.asm.org/icons/spacer.gif"/></td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=15947202&link_type=PUBMED"> PubMed Citation</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a target="_blank" href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=Hall+C&link_type=AUTHORSEARCH"> Articles by Hall, C.</a></strong> </td></tr> <tr><td width="4" class="content_box_arrow" valign="top"><img alt="Right arrow" width="4" height="11" border="0" src="/web/20081006113455im_/http://ec.asm.org/icons/shared/misc/arrowTtrim.gif"/></td><td class="content_box_item"> <strong><a target="_blank" href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=Dietrich+FS&link_type=AUTHORSEARCH"> Articles by Dietrich, F. S.</a></strong> </td></tr> <tr id="entrez_callback_15947202"><td></td></tr> </td></tr></table> </td></tr></table> <p><a href="/web/20081006113455/http://ec.asm.org/cgi/content/short/4/6/1088"><img src="/web/20081006113455im_/http://ec.asm.org/icons/toc/toc_arrowprev.gif" border="0"></a><font size="-1" face="arial,helvetica"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/short/4/6/1088">Previous Article</a></font> <b>|</b> <font size="-1" face="arial,helvetica"><a href="/web/20081006113455/http://ec.asm.org/cgi/content/short/4/6/1116">Next Article</a></font> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/short/4/6/1116"><img src="/web/20081006113455im_/http://ec.asm.org/icons/toc/toc_arrownext.gif" border="0"></a><p> <font size="-1"> Eukaryotic Cell, June 2005, p. 1102-1115, Vol. 4, No. 6<br> 1535-9778/05/$08.00+0     doi:10.1128/EC.4.6.1102-1115.2005<br> <a href="/web/20081006113455/http://ec.asm.org/misc/terms.shtml">Copyright © 2005</a>, <a href="https://web.archive.org/web/20081006113455/http://www.asm.org/">American Society for Microbiology</a>. All Rights Reserved. </font><br> <h2> Contribution of Horizontal Gene Transfer to the Evolution of <i>Saccharomyces cerevisiae</i><a name="RFN1"></a><sup><a href="#FN1"><img src="/web/20081006113455im_/http://ec.asm.org/math/link/large/dagger.gif" alt="{dagger}" border="0"></a></sup> </h2> <strong> Charles Hall,<sup>1</sup> Sophie Brachat,<sup>2</sup> and Fred S. Dietrich<sup>1</sup><a name="RCOR1"></a><sup><a href="#COR1">*</a></sup> </strong> <p> Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina,<sup>1</sup> Biozentrum der Universität Basel, CH-4056 Basel, Switzerland<sup>2</sup><p> Received 17 November 2004/ Accepted 17 March 2005<p> <a name="ABS"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> ABSTRACT </font></th></tr></table> <table align="right" cellpadding="5" border><tr><th align="left"><font size="-1"> <a href="#top"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Top<br></a> <img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/dot.gif"><font color="464c53">Abstract</font><br> <a href="#BDY"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Introduction<br></a> <a href="#SEC1"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Materials and Methods<br></a> <a href="#SEC2"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Results<br></a> <a href="#SEC3"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Discussion<br></a> <a href="#BIBL"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">References<br></a> </font></th></tr></table> <br> The genomes of the hemiascomycetes <i>Saccharomyces cerevisiae</i><sup> </sup>and <i>Ashbya gossypii</i> have been completely sequenced, allowing<sup> </sup>a comparative analysis of these two genomes, which reveals that<sup> </sup>a small number of genes appear to have entered these genomes<sup> </sup>as a result of horizontal gene transfer from bacterial sources.<sup> </sup>One potential case of horizontal gene transfer in <i>A. gossypii</i><sup> </sup>and 10 potential cases in <i>S. cerevisiae</i> were identified, of<sup> </sup>which two were investigated further. One gene, encoding the<sup> </sup>enzyme dihydroorotate dehydrogenase (DHOD), is potentially a<sup> </sup>case of horizontal gene transfer, as shown by sequencing of<sup> </sup>this gene from additional bacterial and fungal species to generate<sup> </sup>sufficient data to construct a well-supported phylogeny. The<sup> </sup>DHOD-encoding gene found in <i>S. cerevisiae</i>, <i>URA1</i> (YKL216W), appears<sup> </sup>to have entered the <i>Saccharomycetaceae</i> after the divergence<sup> </sup>of the <i>S. cerevisiae</i> lineage from the <i>Candida albicans</i> lineage<sup> </sup>and possibly since the divergence from the <i>A. gossypii</i> lineage.<sup> </sup>This gene appears to have come from the <i>Lactobacillales</i>, and<sup> </sup>following its acquisition the endogenous eukaryotic DHOD gene<sup> </sup>was lost. It was also shown that the bacterially derived horizontally<sup> </sup>transferred DHOD is required for anaerobic synthesis of uracil<sup> </sup>in <i>S. cerevisiae.</i> The other gene discussed in detail is <i>BDS1</i>,<sup> </sup>an aryl- and alkyl-sulfatase gene of bacterial origin that we<sup> </sup>have shown allows utilization of sulfate from several organic<sup> </sup>sources. Among the eukaryotes, this gene is found in <i>S. cerevisiae</i><sup> </sup>and <i>Saccharomyces bayanus</i> and appears to derive from the alpha-proteobacteria.<sup> </sup><p> <a name="BDY"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> INTRODUCTION </font></th></tr></table> <table align="right" cellpadding="5" border><tr><th align="left"><font size="-1"> <a href="#top"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Top<br></a> <a href="#ABS"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Abstract<br></a> <img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/dot.gif"><font color="464c53">Introduction</font><br> <a href="#SEC1"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Materials and Methods<br></a> <a href="#SEC2"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Results<br></a> <a href="#SEC3"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Discussion<br></a> <a href="#BIBL"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">References<br></a> </font></th></tr></table> <br> In eukaryotes, a few examples of horizontal gene transfer have<sup> </sup>been well documented. Eukaryote-to-eukaryote horizontal transfer<sup> </sup>of mitochondrial genes has been recently reported between parasitic<sup> </sup>plants and their plant hosts (<a href="#R33">33</a>). Two examples of interkingdom<sup> </sup>horizontal transfer from prokaryotes to eukaryotes are also<sup> </sup>well known: the transfer of genetic information by <i>Agrobacterium<sup> </sup>tumefaciens</i> into its plant symbiont (<a href="#R59">59</a>) and the transfer of<sup> </sup>genetic information from mitochondria and chloroplasts to the<sup> </sup>nuclear genome (<a href="#R19">19</a>). Beyond these two special cases, however,<sup> </sup>the frequency of transfer of genetic information from bacteria<sup> </sup>into eukaryotes, though postulated in a number of cases, is<sup> </sup>still a matter of debate. Prokaryotic genomic sequencing has<sup> </sup>revealed horizontal gene transfer as an important evolutionary<sup> </sup>mechanism among these organisms (<a href="#R30">30</a>, <a href="#R37">37</a>). As the number of available<sup> </sup>sequenced eukaryotic genomes increases, these data can be used<sup> </sup>to determine the existence and/or frequency of horizontal gene<sup> </sup>transfer in specific lineages. Several cases of horizontal gene<sup> </sup>transfer from prokaryotes to microbial eukaryotes have been<sup> </sup>previously postulated including the 3-hydroxy-3-methylglutaryl-coenzyme<sup> </sup>A class 2 reductase found in <i>Giardia</i> (<a href="#R6">6</a>), iron hydrogenase found<sup> </sup>in <i>Nyctotherus</i> (<a href="#R20">20</a>), and the fungal catalases (see references<sup> </sup><a href="#R24">24</a> and <a href="#R27">27</a> for reviews). A recent report by Dujon et al. (<a href="#R13">13</a>)<sup> </sup>suggests that eight genes from <i>Yarrowia lipolytica</i>, five genes<sup> </sup>from <i>Kluyveromyces lactis</i>, and one gene from <i>Debaryomyces hansenii</i><sup> </sup>are horizontally transferred. The phylogeny of horizontally<sup> </sup>transferred genes is characteristically different from the species<sup> </sup>phylogeny; these phylogenetic differences can also arise by<sup> </sup>means other than horizontal gene transfer such as accelerated<sup> </sup>gene evolution, gene loss, or horizontal transfer from a eukaryote<sup> </sup>to a prokaryote. Differences can also result from species misassignment<sup> </sup>of sequences due to DNA contamination. Cases of accelerated<sup> </sup>gene evolution in <i>Saccharomyces cerevisiae</i>, such as the gene<sup> </sup>for kinesin (<a href="#R31">31</a>), and of gene loss (<a href="#R7">7</a>) have been documented.<sup> </sup>Thus, to demonstrate that a gene has entered the <i>S. cerevisiae</i><sup> </sup>or <i>A. gossypii</i> lineages by horizontal gene transfer, it is necessary<sup> </sup>to construct an extensive gene phylogeny to rule out potential<sup> </sup>alternative explanations such as those listed above.<sup> </sup><p> In order to determine a broader estimate of horizontal gene<sup> </sup>transfer in a specific eukaryotic lineage, we employed a genome-wide<sup> </sup>comparative screen to determine the extent of horizontal gene<sup> </sup>transfer in the <i>S. cerevisiae</i> and <i>A. gossypii</i> lineages. This<sup> </sup>comparison allows us to identify potential cases of horizontal<sup> </sup>gene transfer since the divergence of these species; we expect<sup> </sup>these recent transfer events to be more readily identified and<sup> </sup>more easily experimentally supported than more ancient events.<sup> </sup><p> In addition to being the best-studied eukaryotic model system,<sup> </sup><i>S. cerevisiae</i> is the first eukaryote whose genome was completely<sup> </sup>sequenced (<a href="#R16">16</a>). The <i>S. cerevisiae</i> genome encodes about 5,570<sup> </sup>proteins (<a href="#R56">56</a>) and is an ideal system in which to try to detect<sup> </sup>horizontal gene transfer from prokaryotes to eukaryotes. For<sup> </sup>comparative purposes a fungal genome sequence separated from<sup> </sup><i>S. cerevisiae</i> by an appropriate evolutionary distance is needed.<sup> </sup>Closely related <i>Saccharomyces</i> species such as the <i>Saccharomyces</i><sup> </sup>sensu stricto species (<a href="#R10">10</a>, <a href="#R26">26</a>) contain a very similar gene set<sup> </sup>to that of <i>S. cerevisiae</i>, whereas in more distantly related<sup> </sup>fungi such as <i>Neurospora crassa</i> (<a href="#R15">15</a>) homologues of only around<sup> </sup>50% of <i>S. cerevisiae</i> genes can be identified. More useful evolutionary<sup> </sup>distances are represented by the recently published <i>A. gossypii</i><sup> </sup>(<a href="#R11">11</a>) and <i>Kluyveromyces waltii</i> (<a href="#R25">25</a>) genomes, where approximately<sup> </sup>95% of the genes have identifiable homologs with <i>S. cerevisiae</i>.<sup> </sup>Genes horizontally transferred since the divergence of these<sup> </sup>species with <i>S. cerevisiae</i> are to be found among the remaining<sup> </sup>5% of genes lacking homologs between these species. In this<sup> </sup>work we focused on identifying genes horizontally transferred<sup> </sup>since the divergence of the <i>S. cerevisiae</i> and <i>A. gossypii</i> lineages,<sup> </sup>as we expect more recent transfer events to be more clearly<sup> </sup>identifiable. The work of Gojkovic et al. (<a href="#R17">17</a>) has previously<sup> </sup>shown that <i>URA1</i> (GenPept accession no. <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=P28272&link_type=GEN">P28272</a>) is of bacterial<sup> </sup>origin. We show additional evidence supporting this claim and<sup> </sup>also that the <i>BDS1</i> (GenPept Q08347<!-- HIGHWIRE EXLINK_ID="4:6:1102:1" VALUE="Q08347" TYPEGUESS="GEN, PIRDB, SPROT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=Q08347&link_type=PIRDB">[GenBank]</a> <!-- /HIGHWIRE -->) gene of <i>S</i>. <i>cerevisiae</i> is<sup> </sup>of bacterial origin. <i>URA1</i> is the best-supported horizontal gene<sup> </sup>candidate in <i>S. cerevisiae</i>, and <i>ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> cells present an identifiable<sup> </sup>phenotype. Previous work by Nara et al. speculated that <i>URA1</i><sup> </sup>might be horizontally transferred (<a href="#R36">36</a>); as <i>URA1</i> from <i>S. cerevisiae</i><sup> </sup>was the only fungal sequence included in their analysis insufficient<sup> </sup>data were provided to support this speculation. Further supporting<sup> </sup>evidence for a bacterial origin of <i>URA1</i> has been reported based<sup> </sup>on sequences from <i>Saccharomyces kluyveri</i> (<a href="#R17">17</a>, <a href="#R58">58</a>). <i>URA1</i> encodes<sup> </sup>the 315-amino-acid protein dihydroorotate dehydrogenase (DHOD)<sup> </sup>(<a href="#R46">46</a>). This enzyme catalyzes the conversion of dihydroorotate<sup> </sup>to orotate, the fourth step of the de novo pyrimidine biosynthetic<sup> </sup>pathway (<a href="#R22">22</a>, <a href="#R35">35</a>). DHOD enzymes are grouped into families 1a,<sup> </sup>1b, and 2. These groupings are based on nucleotide and biochemical<sup> </sup>characteristics (<a href="#R22">22</a>). Eukaryotes typically have the family 2<sup> </sup>DHOD enzyme. In this work we demonstrate that the family 2 DHOD<sup> </sup>from <i>A. gossypii</i> can complement the uracil auxotrophy of a <i>S.<sup> </sup>cerevisiae ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0">; however, it is unable to do so under anaerobic<sup> </sup>conditions.<sup> </sup><p> <i>BDS1</i> is a 1,941-bp open reading frame located in a subtelomeric<sup> </sup>position on chromosome XV. Though previously of unknown function,<sup> </sup><i>BDS1</i> has high sequence identity at the protein level to bacterial<sup> </sup>alkyl-sulfatases. Sulfatases catalyze hydrolytic cleavage of<sup> </sup>sulfate ester bonds, liberating sulfate and the corresponding<sup> </sup>alcohol (<a href="#R41">41</a>). They are present in a wide variety of species,<sup> </sup>ranging from bacteria to humans. Sulfatases are involved in<sup> </sup>a wide range of lineage-specific biological activities. In mammals,<sup> </sup>sulfatases are involved in the desulfation of sulfated glycolipids,<sup> </sup>glycosaminoglycans, and steroids. The aryl-sulfatase gene <i>ars-1</i><sup> </sup>of <i>N. crassa</i> has been extensively studied (<a href="#R39">39</a>). In <i>N. crassa</i><sup> </sup>aryl-sulfatase is up regulated by sulfur starvation and appears<sup> </sup>to function as a mechanism for sulfur scavenging. The primary<sup> </sup>roles of bacterial sulfatases are in assimilation of sulfur<sup> </sup>and in the provision of carbon (<a href="#R23">23</a>, <a href="#R41">41</a>).<sup> </sup><p> Alkyl-sulfatases hydrolyze organic sulfate esters of primary<sup> </sup>or secondary alkyl alcohols. Most of the work on alkyl-sulfatases<sup> </sup>has been carried out with bacterial species, particularly of<sup> </sup>the genus <i>Pseudomonas</i>. In this work we show that the <i>BDS1</i> gene<sup> </sup>of <i>S. cerevisiae</i> is a gene of bacterial origin encoding a sulfatase<sup> </sup>with a broad substrate range, including primary alkyl-sulfates<sup> </sup>and aryl-sulfates. Wild-type <i>S. cerevisiae</i> cells are capable<sup> </sup>of utilizing the alkyl-sulfates sodium dodecyl sulfate (SDS)<sup> </sup>and sodium octyl sulfate as sources of sulfur. A disruption<sup> </sup>of the <i>BDS1</i> open reading frame abolishes this activity. The<sup> </sup>same result was obtained using an aryl-sulfate as a sole sulfur<sup> </sup>source. A photometric assay for aryl-sulfatase activity shows<sup> </sup>that <i>BDS1</i> is the primary aryl-sulfatase of <i>S. cerevisiae</i>.<sup> </sup><p> These findings clearly demonstrate that the horizontal transfer<sup> </sup>of a DHOD from a lactic acid bacterial lineage and a sulfatase<sup> </sup>from <img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0">-proteobacteria contributed to the evolution of the <i>S.<sup> </sup>cerevisiae</i> lineage. The bacterially derived DHOD facilitates<sup> </sup>anaerobic growth of <i>S. cerevisiae</i>, and the bacterial sulfatase<sup> </sup>allows for the utilization of organic sulfur compounds previously<sup> </sup>not available to the lineage of <i>S. cerevisiae</i>.<sup> </sup><p> <a name="SEC1"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> MATERIALS AND METHODS </font></th></tr></table> <table align="right" cellpadding="5" border><tr><th align="left"><font size="-1"> <a href="#top"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Top<br></a> <a href="#ABS"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Abstract<br></a> <a href="#BDY"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Introduction<br></a> <img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/dot.gif"><font color="464c53">Materials and Methods</font><br> <a href="#SEC2"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Results<br></a> <a href="#SEC3"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Discussion<br></a> <a href="#BIBL"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">References<br></a> </font></th></tr></table> <br> <strong>Identification of potentially horizontally transferred genes.</strong> The <i>S. cerevisiae</i> protein set (<a href="#R16">16</a>), <i>A. gossypii</i> protein set<sup> </sup>(<a href="#R11">11</a>), and a database of all available bacterial protein sequences<sup> </sup>were compared to each other by tFASTA (<a href="#R40">40</a>). To determine whether<sup> </sup><i>S. cerevisiae</i> genes with better alignments to bacterial genes<sup> </sup>than <i>A. gossypii</i> genes were present in other eukaryotes, all<sup> </sup><i>S. cerevisiae</i> genes with better alignments to bacterial genes<sup> </sup>were compared by BLAST (<a href="#R1">1</a>) to general and fungal databases as<sup> </sup>described in Results. BLAST results were evaluated by comparison<sup> </sup>of relative E values with a minimal E-value cutoff of –10.<sup> </sup><p> <strong>Strains.</strong> Strains used in this analysis were <i>A. gossypii</i> ATCC 10895, <i>Candida<sup> </sup>albicans</i> MMRL2010, <i>Candida glabrata</i> CBS138, <i>Enterococcus faecalis</i><sup> </sup>ATCC 6055<i>, K. lactis</i> CBS6003, <i>Kluyveromyces marxianus</i> NRRL Y-8281,<sup> </sup><i>Lactococcus lactis</i> subsp. <i>cremoris</i> NCK436, <i>Lactococcus lactis</i><sup> </sup>subsp. <i>hordniae</i> ATCC 29071, <i>Leuconostoc mesenteroides</i> LA81,<sup> </sup><i>Saccharomyces bayanus</i> CBS424, <i>Saccharomyces castellii</i> Y-12630,<sup> </sup><i>S. cerevisiae</i> S288C and BY4741, <i>Saccharomyces kluyverii</i> CBS3082,<sup> </sup><i>Saccharomyces kudriavzevii</i> IFO1802, <i>Saccharomyces mikatae</i> IFO1815,<sup> </sup>and <i>Saccharomyces paradoxus</i> CBS2980.<sup> </sup><p> <strong>Phylogenetic methods.</strong> Accession numbers for all sequences used in this analysis can<sup> </sup>be found in Table S1 in the supplemental material. Ribosomal<sup> </sup>small-subunit ribosomal (SSU) DNA sequences used in this analysis<sup> </sup>were acquired from the European database on small-subunit rRNA<sup> </sup>(<a href="#R57">57</a>).<sup> </sup><p> Ribosomal SSU sequences were aligned by primary structure using<sup> </sup>ClustalX (<a href="#R51">51</a>). Amino acid sequences for dihydroorotate dehydrogenase<sup> </sup>(DHOD) and sulfatase proteins were aligned by primary structure<sup> </sup>using ClustalX. Alignments were manually refined. All alignments<sup> </sup>used in this analysis have been submitted to TreeBASE (<a href="#R32">32</a>).<sup> </sup>Coding DNA sequences of DHOD and sulfatase genes were aligned<sup> </sup>from protein alignments. Estimates of phylogenetic relatedness<sup> </sup>among species were determined using neighbor-joining (NJ) (<a href="#R47">47</a>)<sup> </sup>analysis of SSU sequences. NJ trees were constructed in ClustalX<sup> </sup>using the IUB matrix. NJ trees were bootstrapped in ClustalX<sup> </sup>using 1,000 replicates.<sup> </sup><p> Estimates of phylogenetic relatedness among DHOD and sulfatase<sup> </sup>genes were determined using NJ and Bayesian analyses of protein<sup> </sup>sequences and maximum likelihood (ML) analysis of coding DNA<sup> </sup>sequences for DHOD genes. NJ trees were constructed in ClustalX<sup> </sup>using the method of Saitu and Nei (<a href="#R47">47</a>) and the Gonnet matrix<sup> </sup>(<a href="#R18">18</a>). NJ trees were bootstrapped in ClustalX using 1,000 replicates.<sup> </sup><p> Bayesian analyses were performed with MRBAYES 3.0 (<a href="#R21">21</a>). The<sup> </sup>Whelan-Goldman protein matrix was used as a substitution model<sup> </sup>(<a href="#R54">54</a>). Markov-chain Monte Carlo chain length was 1,000,000 generations<sup> </sup>run with four chains, with every 100th tree saved. The first<sup> </sup>1,000 trees were discarded as "burn-in." The remaining trees<sup> </sup>were used to construct a majority-rule consensus tree.<sup> </sup><p> ML trees were constructed in PAUP* 4.0b (<a href="#R50">50</a>). Likelihood settings<sup> </sup>were estimated using Modeltest (<a href="#R42">42</a>). A general time reversible<sup> </sup>model of sequence evolution was used with the gamma distribution<sup> </sup>with invariants in all cases. Tree searching was performed using<sup> </sup>100 random-addition-sequence replicates. ML tree searches for<sup> </sup>DHOD-coding genes were carried out both unconstrained and with<sup> </sup>a constraint forcing all fungal sequences to be monophyletic<sup> </sup>in the resulting trees. To assess the significance of the difference<sup> </sup>in likelihood between the constrained and unconstrained ML trees,<sup> </sup>the Shimodaira-Hasegawa test (<a href="#R48">48</a>) was implemented in PAUP* 4.0b,<sup> </sup>using 1,000 bootstrap replicates.<sup> </sup><p> <strong>Sequencing of DHOD-encoding genes.</strong> Total DNA was isolated, and the DHOD-encoding gene was amplified<sup> </sup>by standard or degenerate PCR using standard methods (<a href="#R34">34</a>). The<sup> </sup>amplified DNA was sequenced using ABI dye terminator chemistry<sup> </sup>on an ABI 310 genetic analyzer using standard methods.<sup> </sup><p> <strong>Genetic transformation.</strong> A PCR-generated (<a href="#R2">2</a>, <a href="#R55">55</a>) deletion strategy was used to replace<sup> </sup><i>URA1</i> from its start to stop codon with a KanMX module whose<sup> </sup>expression confers resistance to G418 to <i>S. cerevisiae</i> (<a href="#R53">53</a>).<sup> </sup>The deletion "cassette" was constructed using PCR. Replacement<sup> </sup>was conducted by homologous recombination using lithium acetate-mediated<sup> </sup>transformation by standard methods (<a href="#R2">2</a>). Successful homologous<sup> </sup>recombination was confirmed by PCR. We transformed <i>ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> strains<sup> </sup>with an <i>S. cerevisiae</i> shuttle vector, pRS416 (<a href="#R49">49</a>), containing<sup> </sup>DNA from an <i>A. gossypii</i> genomic library covering the DHOD gene.<sup> </sup>Transformed cells were plated on medium lacking uracil to confirm<sup> </sup>the presence of <i>A. gossypii</i> DHOD.<sup> </sup><p> A PCR-generated disruption strategy was used to insert a KanMX<sup> </sup>module into the coding region of <i>BDS1</i> in <i>S. cerevisiae</i> by homologous<sup> </sup>recombination using lithium acetate-mediated transformation.<sup> </sup>Successful disruption was confirmed by PCR.<sup> </sup><p> <strong>Determination that <i>URA1</i> is required for anaerobic biosynthesis of uracil.</strong> Plates of synthetic minimal medium (<a href="#R8">8</a>), yeast nitrogen base<sup> </sup>lacking uracil, were plated with <i>S. cerevisiae ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"><i>, S. cerevisiae<sup> </sup>ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> plus <i>A. gossypii</i> pAG, and the wild type (S288C). Plates<sup> </sup>were incubated either in atmospheric air or in a Mitsubishi<sup> </sup>Gas Chemical Company AnaeroPack rectangular jar using ascorbic<sup> </sup>acid gas generators to catalytically remove oxygen.<sup> </sup><p> <strong>Assay for alkyl-sulfatase activity.</strong> Cells of <i>K. lactis</i>, <i>S. kluyveri</i>, <i>C. glabrata</i>, <i>S. bayanus</i>, <i>S.<sup> </sup>kudriavzevii</i>, <i>S. mikatae</i>, <i>S. paradoxus</i>, and <i>S. cerevisiae</i> were<sup> </sup>grown overnight at 30°C in yeast-peptone-dextrose medium.<sup> </sup>The total cell number for each culture was determined by counting<sup> </sup>in a hemocytometer, and each culture diluted to 200,000 cells/µl.<sup> </sup>Cells were washed twice and suspended in high-purity water.<sup> </sup>Five microliters of culture was spotted onto B medium (a sulfur-free<sup> </sup>minimal medium) (<a href="#R9">9</a>) plates (20% agarose) supplemented with 0.3<sup> </sup>mM SDS. Plates were incubated at 25°C.<sup> </sup><p> To test whether the <i>bds1</i>::<i>KanMX</i> strain shows a growth defect<sup> </sup>on SDS media, wild-type and mutant cells were inoculated in<sup> </sup>a total volume of 300 µl in five 96-well plates (four<sup> </sup>experiments per plate) in B medium supplemented with SDS with<sup> </sup>a concentration range of 0.3 M to 30 nM. Cells were grown with<sup> </sup>agitation at 30°C for 48 h. Cell growth was determined by<sup> </sup>measuring the optical density at 600 nm.<sup> </sup><p> To test whether the <i>bds1</i>::<i>KanMX</i> strain shows a growth defect<sup> </sup>in octyl sulfate media, wild-type and mutant cells were inoculated<sup> </sup>in a total volume of 2 ml in B medium supplemented with sodium<sup> </sup>octyl sulfate with a concentration range of 0.3 M to 30 nM.<sup> </sup>Cells were grown with agitation at 30°C for 60 h. Cell growth<sup> </sup>was determined by measuring the optical density at 600 nm.<sup> </sup><p> To verify that the alkyl-sulfate metabolism defect demonstrated<sup> </sup>by the <i>bds1</i>::<i>KanMX</i> strain is linked to the mutation, <i>bds1</i>::<i>KanMX</i><sup> </sup>MAT<img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0"> cells were mated to strain BY4741 (MAT<b>a</b> <i>his3 leu2 met15<sup> </sup>ura3</i>). Diploids were sporulated, and 11 tetrads dissected. Spores<sup> </sup>were replica plated onto yeast-peptone-dextrose plus G418, synthetic<sup> </sup>defined (SD)-histidine, SD-leucine, SD-methionine, SD-uracil,<sup> </sup>and B medium plus 0.3 mM SDS.<sup> </sup><p> <strong>Assay for aryl-sulfatase activity.</strong> To test whether <i>S. cerevisiae</i> also possesses an <i>BDS1</i>-dependent<sup> </sup>aryl-sulfatase activity, cells were grown using 4-nitrocatechol<sup> </sup>sulfate as a sole source of sulfur. Wild-type and mutant cells<sup> </sup>were inoculated in a total volume of 2 ml in B medium supplemented<sup> </sup>with 4-nitrocatechol sulfate with a concentration range of 0.3<sup> </sup>M to 30 nM. Cells were grown with agitation at 30°C for<sup> </sup>60 h. Cell growth was determined by measuring the optical density<sup> </sup>at 600 nm. As we were unable to acquire high purity 4-nitrocatechol<sup> </sup>sulfate, initial growth experiments produced very high background<sup> </sup>growth of wild-type and mutant cells (data not shown). In order<sup> </sup>to limit the background, contaminating sulfur was exhausted<sup> </sup>biologically. Mutant cells were grown in 2<font face="arial,helvetica">x</font> B medium supplemented<sup> </sup>with 4-nitrocatechol sulfate for 60 h. The medium was then filtered,<sup> </sup>reinoculated with wild-type or mutant cells, and incubated as<sup> </sup>described above.<sup> </sup><p> Aryl-sulfatase activity was assayed photometrically as release<sup> </sup>of 4-nitrocatechol from 4-nitrocatechol sulfate (<a href="#R44">44</a>). After<sup> </sup>60 h of growth, the medium was diluted 1/10 in water and the<sup> </sup>relative level of 4-nitrocatechol was determined by measuring<sup> </sup>the optical density at 516 nm.<sup> </sup><p> <a name="SEC2"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> RESULTS </font></th></tr></table> <table align="right" cellpadding="5" border><tr><th align="left"><font size="-1"> <a href="#top"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Top<br></a> <a href="#ABS"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Abstract<br></a> <a href="#BDY"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Introduction<br></a> <a href="#SEC1"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Materials and Methods<br></a> <img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/dot.gif"><font color="464c53">Results</font><br> <a href="#SEC3"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">Discussion<br></a> <a href="#BIBL"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">References<br></a> </font></th></tr></table> <br> <strong>Identification of horizontal gene transfer candidates.</strong> The tFASTA program (<a href="#R40">40</a>) was used to compare the <i>S. cerevisiae</i><sup> </sup>and <i>A. gossypii</i> protein sets both to the genomic DNA of each<sup> </sup>other and also to the complete set of bacterial sequences found<sup> </sup>in GenBank (<a href="#R3">3</a>) as of October 2001. <i>S. cerevisiae</i> genes with<sup> </sup>homologs in bacteria but not <i>A. gossypii</i> and <i>A. gossypii</i> genes<sup> </sup>with homologs in bacteria but not <i>S. cerevisiae</i> were identified<sup> </sup>as putative horizontally transferred genes. The approximately<sup> </sup>100 genes that satisfied these criteria were then compared to<sup> </sup>other available fungal sequences, and genes with homologs in<sup> </sup>other fungal species were eliminated, as these genes most likely<sup> </sup>represent cases of gene loss and not horizontal gene transfer.<sup> </sup>The 10 <i>S. cerevisiae</i> genes and the 1 <i>A. gossypii</i> gene identified<sup> </sup>as potential horizontal gene transfer candidates are shown in<sup> </sup>Table <a href="#T1">1</a>. The <i>URA1</i> and <i>BDS1</i> genes were selected for further study<sup> </sup>in the work reported here. These genes were chosen because of<sup> </sup>their high sequence identity to bacterial genes (Table <a href="#T1">1</a>) and<sup> </sup>their phylogenetic relationships to prokaryotic and eukaryotic<sup> </sup>homologs, both of which support horizontal gene transfer. Both<sup> </sup>genes present an identifiable phenotype when mutated, and <i>URA1</i><sup> </sup>was chosen because of previous reports that it might be horizontally<sup> </sup>transferred.<sup> </sup><p> <a name="T1"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <strong>View this table:</strong><br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/T1">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/T1" onclick="startTarget('T1', 500, 400); this.href='/cgi/content-nw/full/4/6/1102/T1'" onmouseover="window.status='View table in a separate window'; return true" target="T1">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> TABLE 1. Gene candidates for horizontal transfer in <i>S. cerevisiae</i> and <i>A. gossypii</i><p> </td></tr></table> </td></tr></table></center> <br> <strong><i>URA1</i> gene phylogeny is consistent with horizontal transfer from lactic acid bacteria.</strong> The <i>S. cerevisiae URA1</i> gene appears to be much more similar<sup> </sup>to bacterial homologs than to any gene present in the <i>A. gossypii</i><sup> </sup>genome. Further examination of available sequence data confirmed<sup> </sup>that the <i>URA1</i> gene has an unexpected phylogeny. The topology<sup> </sup>of the DHOD phylogeny appears to be quite similar to the ribosomal<sup> </sup>DNA phylogeny with the exception of <i>S. cerevisiae</i> and related<sup> </sup>species. Horizontal gene transfer into the <i>S. cerevisiae</i> lineage<sup> </sup>could explain these results, though other explanations are also<sup> </sup>feasible, such as sequence contamination or species misassignment,<sup> </sup>selective evolutionary rates, gene loss, or horizontal transfer<sup> </sup>from fungi to bacteria. To rule these out, the DHOD gene was<sup> </sup>sequenced from <i>E. faecalis</i> (GenPept AAP04498<!-- HIGHWIRE EXLINK_ID="4:6:1102:2" VALUE="AAP04498" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAP04498&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE --><i>, L. mesenteroides</i><sup> </sup>(GenPept AAQ01774<!-- HIGHWIRE EXLINK_ID="4:6:1102:3" VALUE="AAQ01774" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01774&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE --><i>, L. lactis</i> subsp. <i>cremoris</i> (GenPept AAQ01776<!-- HIGHWIRE EXLINK_ID="4:6:1102:4" VALUE="AAQ01776" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01776&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE -->,<sup> </sup>and <i>L. lactis</i> subsp. <i>hordniae</i> (GenPept AAQ01775<!-- HIGHWIRE EXLINK_ID="4:6:1102:5" VALUE="AAQ01775" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01775&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE -->. In order to<sup> </sup>rule out possible species misassignment or sequence contamination,<sup> </sup>we resequenced the DHOD gene based on several publicly available<sup> </sup>sequences, including those from <i>C. albicans</i> (GenPept AAP39962<!-- HIGHWIRE EXLINK_ID="4:6:1102:6" VALUE="AAP39962" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAP39962&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE --><i>,<sup> </sup>S. bayanus</i> (GenPept AAQ01777<!-- HIGHWIRE EXLINK_ID="4:6:1102:7" VALUE="AAQ01777" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01777&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE --><i>, S. castellii</i> (GenPept AAQ57200<!-- HIGHWIRE EXLINK_ID="4:6:1102:8" VALUE="AAQ57200" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ57200&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE --><i>,<sup> </sup>S. kluyveri</i> (GenPept AAQ01779<!-- HIGHWIRE EXLINK_ID="4:6:1102:9" VALUE="AAQ01779" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01779&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE -->[<i>URA1</i>], GenPept AAQ57201<!-- HIGHWIRE EXLINK_ID="4:6:1102:10" VALUE="AAQ57201" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ57201&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE -->[<i>URA9</i>])<i>,<sup> </sup>S. mikatae</i> (GenPept AAQ01778<!-- HIGHWIRE EXLINK_ID="4:6:1102:11" VALUE="AAQ01778" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01778&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE -->, and <i>S. paradoxus</i> (GenPept AAQ01780<!-- HIGHWIRE EXLINK_ID="4:6:1102:12" VALUE="AAQ01780" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAQ01780&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE -->,<sup> </sup>confirming their sequence and including them in this analysis.<sup> </sup>Partial sequences from <i>C. glabrata</i> (GenPept AAR17523<!-- HIGHWIRE EXLINK_ID="4:6:1102:13" VALUE="AAR17523" TYPEGUESS="GENPEPT" --> <a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=AAR17523&link_type=GENPEPT">[GenBank]</a> <!-- /HIGHWIRE --><i>, K. lactis</i><sup> </sup>(GenPept AAR1773), and <i>K. marxianus</i> (GenPept AAQ017522) were<sup> </sup>sequenced for the full length of the gene and included in the<sup> </sup>analysis. A phylogeny was then constructed on this expanded<sup> </sup>set of DHOD genes by NJ (<a href="#R47">47</a>), Bayesian (<a href="#R21">21</a>), and ML methods<sup> </sup>(<a href="#R14">14</a>) (Fig. <a href="#F1">1</a>). Trees constructed by all three methods showed<sup> </sup>a similar topology. By all three methods the <i>S. cerevisiae</i> type<sup> </sup>1a DHOD sequence and those of closely related fungal species<sup> </sup>are a branch within a larger type 1a DHOD tree consisting of<sup> </sup>bacterial sequences. Closely related <i>Saccharomyces</i> species including<sup> </sup><i>S. bayanus</i>, <i>S. paradoxus</i>, and <i>S. castellii</i> have the type 1a<sup> </sup>gene, whereas <i>K. marxianus</i> and <i>C. glabrata</i> have the type 2 enzyme<sup> </sup>and <i>K. lactis</i>, <i>K. waltii</i>, and <i>S. kluyveri</i> have both family 1-<sup> </sup>and family 2-type enzymes. This more complete data support the<sup> </sup>horizontal transfer hypothesis. Using a constraint of eukaryotic<sup> </sup>monophyly, the constrained ML search results in a tree that<sup> </sup>is less likely than that resulting from an unconstrained ML<sup> </sup>search (Fig. <a href="#F1">1C</a>). To assess the significance of the difference<sup> </sup>in likelihood between the constrained and unconstrained ML trees,<sup> </sup>the Shimodaira-Hasegawa likelihood ratio test (SH) was performed<sup> </sup>as implemented in PAUP* 4.0b. The SH test rejected the constrained<sup> </sup>topology with a <i>P</i> value < 0.0001.<sup> </sup><p> <a name="F1"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F1"><img hspace="10" vspace="5" border="2" width="170" height="200" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek006052474001a.gif" alt=" "></a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F1"><img hspace="10" vspace="5" border="2" width="154" height="200" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek006052474001b.gif" alt=" "></a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F1"><img hspace="10" vspace="5" border="2" width="200" height="147" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek006052474001c.gif" alt=" "></a><br> <strong>View larger version</strong> (138K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F1">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F1" onclick="startTarget('F1', 590, 1403); this.href='/cgi/content-nw/full/4/6/1102/F1'" onmouseover="window.status='View figure in a separate window'; return true" target="F1">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 1. The phylogeny of dihydroorotate dehydrogenase supports horizontal gene transfer from bacteria to fungi. (A) Phylogenetic tree constructed from the DHOD amino acid sequence (on left) shows a topology generally similar to a tree constructed from small-subunit (SSU) rRNA (on right). The main exception is that the DHOD (<i>URA1</i>) gene of members of the <i>Saccharomycetaceae</i> clusters with the DHOD sequences from <i>Lactobacillales</i>. Fungal species are shown in bold. Lines connect taxa between trees. On the DHOD phylogeny, 2 indicates type 2 DHOD, A indicates type 1a DHOD, and B indicates type 1b DHOD. <i>K. lactis</i>, <i>K. waltii</i>, and <i>S. kluyveri</i> have both a bacterially derived family 1a and a eukaryotic family 2 DHOD. A complete genome sequence of <i>K. marxianus</i> is not yet available, and thus it is possible this species may have a type 1a DHOD as well. Type 1a DHOD genes are shown from <i>L. lactis</i> subsp. <i>hordniae</i>, <i>L. lactis</i> subsp. <i>cremoris</i>, and <i>L. mesenteroides</i>; no attempt wasmade to identify type 1b DHOD genes in these species. Based on complete genome sequences, <i>B. anthracis</i>, <i>L. plantarum</i>, and <i>L. johnsonii</i> genomes carry type 1b but not type 1a DHOD genes and <i>S. agalactiae</i> and <i>S. pyogenes</i> carry type 1a but not type 1b DHOD genes. Both trees constructed with neighbor joining (<a href="#R47">47</a>) in ClustalX (<a href="#R51">51</a>). Numbers indicate bootstrap support for nodes from 1,000 NJ bootstrap replicates. Scale bar, changes per amino acid or nucleotide. (B) Bayesian tree phylogeny of dihydroorotate dehydrogenase (DHOD) proteins. Majority-rule consensus tree of 9,000 Bayesian trees. Numbers above branches represent the posterior probability of each clade. Tree searching done with MrBayes3 (<a href="#R45">45</a>). Consensus trees and posterior probabilities were determined in PAUP* 4.0b (<a href="#R50">50</a>). Fungal species are shown in bold. (C) Maximum likelihood phylogenetic analyses of dihydroorotate dehydrogenase (DHOD) coding regions. Trees were constructed in PAUP* 4.0b (<a href="#R50">50</a>). Likelihood settings were estimated from a previously generated NJ tree. A general time-reversible model of sequence evolution was used with the gamma distribution with invariants. ML tree searches were carried out both unconstrained and with a constraint forcing all fungal sequences to be monophyletic in the resulting trees. To assess the significance of the difference in likelihood between the constrained and unconstrained ML trees, the Shimodaira-Hasegawa (SH) test (<a href="#R48">48</a>) was implemented in PAUP* 4.0b. Tree scores (–ln <i>L</i>) are 29,424.7 for the unconstrained tree, and 29,646.8 for the constrained tree, giving a <img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"><i>L</i> of 194 and a <i>P</i> value of <0.0001 for the SH test. Fungal species are shown in bold.<p> </td></tr></table> </td></tr></table></center> <br> <strong>Analysis of gene order.</strong> The presence of two DHOD genes in <i>K. lactis</i>, <i>K. waltii</i>, and<sup> </sup><i>S. kluyveri</i> supports the argument that <i>URA1</i> is horizontally<sup> </sup>transferred and suggests that an ancestor of <i>S. cerevisiae</i> had<sup> </sup>both DHOD genes. It is likely that the family 2 DHOD was lost<sup> </sup>at some time after the divergence of <i>C. glabrata</i> and <i>S. cerevisiae</i>.<sup> </sup>An alignment of the family 2 DHOD regions of <i>A. gossypii, S.<sup> </sup>kluyveri</i>, and <i>S. cerevisiae</i> and the family 1a regions in <i>S.<sup> </sup>kluyveri</i> and <i>S. cerevisiae</i> is shown in Fig. <a href="#F2">2</a>. In <i>A. gossypii</i><sup> </sup>and <i>S. kluyveri</i> the family 2 DHOD and its flanking genes show<sup> </sup>a conserved gene order. Local synteny is also preserved in <i>S.<sup> </sup>cerevisiae</i>, except this region is lacking the family 2 DHOD.<sup> </sup>No evidence or residual trace of the ancestral type 2 DHOD gene<sup> </sup>could be identified at this location, nor could it be found<sup> </sup>elsewhere in the genome. The <i>URA1</i> gene is at a different position<sup> </sup>in the genome. This is consistent with loss of the family 2<sup> </sup>DHOD from the lineage of <i>S. cerevisiae</i>.<sup> </sup><p> <a name="F2"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F2"><img hspace="10" vspace="5" border="2" width="200" height="76" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740002.gif" alt=" "></a><br> <strong>View larger version</strong> (12K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F2">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F2" onclick="startTarget('F2', 590, 367); this.href='/cgi/content-nw/full/4/6/1102/F2'" onmouseover="window.status='View figure in a separate window'; return true" target="F2">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 2. Synteny identifies the location from which the family 2 DHOD gene was lost in the <i>Saccharomyces cerevisiae</i> lineage. (A) Synteny is conserved in the region of the family 2 DHOD in <i>A. gossypii</i> and <i>S. kluyveri</i>. DHOD genes are shown as solid arrows; adjacent genes are shown with dashed arrows. Vertical bars indicate homologues. In <i>S. cerevisiae</i> the region containing the family 2 DHOD is conserved, though the DHOD gene is not present, as indicated by the dashed line. This is consistent with a deletion of the family 2 DHOD in the lineage leading to <i>S. cerevisiae</i>. (B) Synteny in the region of the family 1a DHOD genes, indicated by hollow arrows, is not conserved between <i>S. kluyveri</i> and <i>S. cerevisiae</i>, possibly due to genomic rearrangements since the divergence of these two species.<p> </td></tr></table> </td></tr></table></center> <br> It is interesting that the <i>URA1</i> gene in <i>S. cerevisiae</i> is located<sup> </sup>near the chromosome XI telomere. Recent work (<a href="#R10">10</a>, <a href="#R26">26</a>) has shown<sup> </sup>that among the <i>Saccharomyces</i> sensu stricto species most of the<sup> </sup>genes that differ between species are located near telomeres.<sup> </sup>This location of the <i>S. cerevisiae URA1</i> gene may thus be a reflection<sup> </sup>of its recent acquisition. Of the 10 <i>S. cerevisiae</i> genes proposed<sup> </sup>to have been acquired by horizontal gene transfer, all except<sup> </sup>YMR090W are located near telomeres.<sup> </sup><p> <strong>Growth in anaerobic conditions.</strong> As the horizontally transferred <i>URA1</i> gene replicated a function<sup> </sup>already present in the host organism, the family 1a enzyme probably<sup> </sup>provided some selective advantage to become fixed in the population.<sup> </sup>Based upon the biochemical characteristics of family 1a and<sup> </sup>family 2 enzymes (family 1a enzymes do not require oxygen as<sup> </sup>an electron acceptor as is the case with family 2 [<a href="#R22">22</a>]), we<sup> </sup>hypothesized that possession of a family 1a-type enzyme may<sup> </sup>facilitate growth in anaerobic environments. In order to test<sup> </sup>this hypothesis, a <i>ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> <i>S. cerevisiae</i> strain was constructed<sup> </sup>by disrupting <i>URA1</i> by homologous recombination (<a href="#R2">2</a>). This strain<sup> </sup>was transformed with a plasmid containing a genomic fragment<sup> </sup>from <i>A. gossypii</i> including the DHOD gene. This strain was grown<sup> </sup>in parallel anaerobic and aerobic conditions; the results are<sup> </sup>shown in Fig. <a href="#F3">3</a>. The <i>A. gossypii</i> DHOD gene fully complements<sup> </sup>the uracil auxotrophy of the <i>S. cerevisiae ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> strain. The<sup> </sup><i>A. gossypii</i> DHOD gene was however unable to complement the uracil<sup> </sup>auxotrophy under anaerobic conditions. This is consistent with<sup> </sup>horizontal transfer of a bacterial family 1a-type DHOD gene<sup> </sup>into the <i>S. cerevisiae</i> lineage. It is possible that such a transfer<sup> </sup>facilitated the exploitation of anaerobic environments. Similar<sup> </sup>experiments carried out by Gojkovic et al. and Zameitat et al.<sup> </sup>using the family 1a and 2 DHOD enzymes from <i>S. kluyveri</i> (<a href="#R17">17</a>,<sup> </sup><a href="#R58">58</a>) showed similar results indicating that the failure of the<sup> </sup><i>A. gossypii</i> family 2 DHOD to complement under anaerobic conditions<sup> </sup>is not species specific. <i>A. gossypii</i> is unable to grow under<sup> </sup>anaerobic conditions even when supplemented with uracil (data<sup> </sup>not shown), indicating that while the type 1a DHOD gene is necessary<sup> </sup>for anaerobic growth in the absence of uracil it is only one<sup> </sup>of a number of modifications necessary for anaerobic growth.<sup> </sup>The majority of fungal species are restricted to aerobic growth<sup> </sup>(<a href="#R52">52</a>), and the acquisition of the bacterially derived <i>URA1</i> gene<sup> </sup>could have been one of the adaptations necessary for anaerobic<sup> </sup>growth.<sup> </sup><p> <a name="F3"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F3"><img hspace="10" vspace="5" border="2" width="200" height="175" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740003.gif" alt=" "></a><br> <strong>View larger version</strong> (93K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F3">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F3" onclick="startTarget('F3', 590, 584); this.href='/cgi/content-nw/full/4/6/1102/F3'" onmouseover="window.status='View figure in a separate window'; return true" target="F3">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 3. The <i>Ashbya gossypii</i> type 2 DHOD gene is unable to fully complement a <i>Saccharomyces cerevisiae ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> strain under anaerobic conditions. Plasmid pAG containing the <i>A. gossypii</i> DHOD gene fails to complement <i>S. cerevisiae ura1</i><img src="/web/20081006113455im_/http://ec.asm.org/math/Dgr.gif" alt="{Delta}" border="0"> under anaerobic conditions (A) but complements under aerobic conditions (B). (C) Arrangement of strains on plates; all plates contained synthetic complete medium without uracil (<a href="#R8">8</a>).<p> </td></tr></table> </td></tr></table></center> <br> <strong>The <i>BDS1</i> gene phylogeny is consistent with horizontal transfer from <img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0">-proteobacteria.</strong> The <i>S. cerevisiae</i> BDS1 protein has higher sequence identity<sup> </sup>to a family of bacterial sulfatases than to any genes found<sup> </sup>in eukaryotes. Further examination of available sequence data<sup> </sup>confirmed that BDS1 is a member of a family of bacterial alkyl-sulfatase<sup> </sup>(Fig. <a href="#F4">4</a>). A sulfatase phylogeny was constructed including bacterial<sup> </sup>and eukaryotic alkyl- and aryl-sulfatase genes by NJ and Bayesian<sup> </sup>methods (Fig. <a href="#F5">5</a>). Trees constructed by all methods showed a<sup> </sup>similar topology. By both methods the <i>S. cerevisiae BDS1</i> sequence<sup> </sup>and that of <i>S. bayanus</i> are a branch within a larger tree consisting<sup> </sup>of bacterial alkyl-sulfatase gene sequences. The <i>S. cerevisiae<sup> </sup>BDS1</i> gene does not appear to share homology with the <i>ars-1</i> gene<sup> </sup>of <i>N. crassa</i> nor to any other known eukaryotic aryl-sulfatase<sup> </sup>gene.<sup> </sup><p> <a name="F4"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F4"><img hspace="10" vspace="5" border="2" width="105" height="200" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740004.gif" alt=" "></a><br> <strong>View larger version</strong> (69K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F4">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F4" onclick="startTarget('F4', 382, 640); this.href='/cgi/content-nw/full/4/6/1102/F4'" onmouseover="window.status='View figure in a separate window'; return true" target="F4">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 4. Alignment of BDS1 of <i>S. cerevisiae</i> and <i>S. bayanus</i> with sulfatases from <i>Rhodopseudomonas palustris</i>, <i>Pseudomonas putida</i>, and the <i>ars-1</i> gene product <i>of N. crassa</i>. For all species, the full length of the protein is shown.<p> </td></tr></table> </td></tr></table></center> <br> <a name="F5"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F5"><img hspace="10" vspace="5" border="2" width="166" height="200" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740005.gif" alt=" "></a><br> <strong>View larger version</strong> (49K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F5">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F5" onclick="startTarget('F5', 515, 640); this.href='/cgi/content-nw/full/4/6/1102/F5'" onmouseover="window.status='View figure in a separate window'; return true" target="F5">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 5. A phylogeny of bacterial and eukaryotic sulfatases supports horizontal gene transfer from bacteria to fungi. (A) Phylogenetic tree constructed from alkyl- and aryl-sulfatase amino acid sequences (on left) shows a topology generally similar to a tree constructed from small-subunit (SSU) rRNA (on right). The <i>BDS1</i> genes of <i>S. cerevisiae</i> and <i>S. bayanus</i> are members of a family of bacterial sulfatase genes and not closely related to the aryl-sulfatase genes of eukaryotes. Fungal species are shown in bold. Lines connect taxa between trees. Both trees constructed with neighbor joining (<a href="#R47">47</a>) in ClustalX (<a href="#R51">51</a>). Numbers indicate bootstrap support for nodes from 1,000 NJ bootstrap replicates. Scale bar, changes per amino acid or nucleotide. (B) Bayesian tree phylogeny of sulfatase proteins. Majority-rule consensus tree of 9,000 Bayesian trees. Numbers above branches represent the posterior probability of each clade. Tree searching done with MrBayes3 (<a href="#R45">45</a>). Consensus trees and posterior probabilities were determined in PAUP* 4.0b (<a href="#R50">50</a>). Fungal species are shown in bold.<p> </td></tr></table> </td></tr></table></center> <br> <strong>BDS1 is an alkyl-sulfatase.</strong> Alkyl-sulfatases similar to BDS1, particularly from <i>Pseudomonas</i><sup> </sup>spp., are capable of cleaving SDS. The products of this reaction<sup> </sup>are dodecanol and sulfate. The genomes of the <i>A. gossypii</i>,<i> D.<sup> </sup>hansenii</i>, <i>K. lactis</i>, <i>K. waltii</i>, <i>S. kluyveri</i>, <i>C. albicans</i>, <i>C.<sup> </sup>glabrata</i>, <i>S. bayanus</i>, <i>S. mikatae</i>, <i>S. paradoxus</i>, and <i>Y. lipolytica</i><sup> </sup>have been sequenced and were examined for the presence of a<sup> </sup><i>BDS1</i> homolog. Of these, only <i>S. bayanus</i> has a <i>BDS1</i> gene homologous<sup> </sup>to that of <i>S. cerevisiae</i>. <i>K. lactis, S. kluyveri, C. glabrata,<sup> </sup>S. bayanus, S. kudriavzevii, S. mikatae, S. paradoxus</i>, and <i>S.<sup> </sup>cerevisiae</i> were plated on sulfur-free minimal medium supplemented<sup> </sup>with 0.3 mM SDS. Only <i>S. cerevisiae</i> and <i>S. bayanus</i> grew vigorously,<sup> </sup>strongly indicating alkyl-sulfatase activity (Fig. <a href="#F6">6</a>). All species<sup> </sup>grew well on sulfur-free minimal medium supplemented with 0.3<sup> </sup>mM ammonium sulfate (data not shown). As <i>BDS1</i> is the only gene<sup> </sup>in the <i>S. cerevisiae</i> genome with significant homology to alkyl-sulfatase<sup> </sup>genes, we hypothesized that <i>BDS1</i> is the gene responsible for<sup> </sup>the observed alkyl-sulfatase activity. In order to test this<sup> </sup>hypothesis, a <i>bds1 S. cerevisiae</i> strain was constructed by inserting<sup> </sup>a G418 resistance marker into the <i>BDS1</i> open reading frame by<sup> </sup>homologous recombination (<a href="#R2">2</a>).<sup> </sup><p> <a name="F6"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F6"><img hspace="10" vspace="5" border="2" width="200" height="155" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740006.gif" alt=" "></a><br> <strong>View larger version</strong> (27K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F6">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F6" onclick="startTarget('F6', 590, 540); this.href='/cgi/content-nw/full/4/6/1102/F6'" onmouseover="window.status='View figure in a separate window'; return true" target="F6">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 6. <i>S. cerevisiae</i> and <i>S. bayanus</i> possess alkyl-sulfatase activity Cells of <i>K. lactis</i>, <i>S. kluyveri</i>, <i>C. glabrata</i>, <i>S. bayanus</i>, <i>S. kudriavzevii</i>, <i>S. mikatae</i>, and <i>S. paradoxus</i> plated on sulfur-free medium supplemented with 0.3 mM SDS. Only <i>S. cerevisiae</i> and <i>S. bayanus</i> grew vigorously, strongly indicating alkyl-sulfatase activity. Trees show evolutionary relationships between species (<a href="#R29">29</a>).<p> </td></tr></table> </td></tr></table></center> <br> Mutant <i>bds1</i>::<i>KanMX</i> cells and the wild type were grown in liquid<sup> </sup>B medium supplemented with SDS (Fig. <a href="#F7">7</a>). Wild-type <i>S. cerevisiae</i><sup> </sup>grows significantly better than the <i>bds1</i>::<i>KanMX</i> strain. The<sup> </sup>same result was achieved with growth on octyl sulfate (Fig.<sup> </sup><a href="#F8">8</a>), indicating a substrate range of compounds with 8 to 12 carbon<sup> </sup>atoms, with higher activity for 8-carbon compounds.<sup> </sup><p> <a name="F7"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F7"><img hspace="10" vspace="5" border="2" width="200" height="145" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740007.gif" alt=" "></a><br> <strong>View larger version</strong> (14K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F7">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F7" onclick="startTarget('F7', 590, 520); this.href='/cgi/content-nw/full/4/6/1102/F7'" onmouseover="window.status='View figure in a separate window'; return true" target="F7">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 7. Growth on SDS. Mutant <i>bds1</i>::<i>KanMX</i> cells (red bars) and the wild type (blue bars) were grown in liquid B medium supplemented with SDS. Columns represent averages of 21 measurements. Experimental condition is plotted versus optical density at 600 nm (OD<sup>600</sup>). B medium, unsupplemented B medium (<a href="#R9">9</a>). Error bars represent one standard deviation. B medium unsupplemented is sulfur-free medium with no added sulfur (negative control). The positive control is 0.3 mM ammonium sulfate.<p> </td></tr></table> </td></tr></table></center> <br> <a name="F8"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F8"><img hspace="10" vspace="5" border="2" width="200" height="148" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740008.gif" alt=" "></a><br> <strong>View larger version</strong> (13K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F8">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F8" onclick="startTarget('F8', 590, 526); this.href='/cgi/content-nw/full/4/6/1102/F8'" onmouseover="window.status='View figure in a separate window'; return true" target="F8">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 8. Growth on octyl sulfate. Mutant <i>bds1</i>::<i>KanMX</i> cells (red bars) and the wild type (blue bars) were grown in liquid B medium supplemented with octyl sulfate. Experimental condition is plotted versus optical density at 600 nm (OD<sup>600</sup>). B medium unsupplemented is sulfur-free medium with no added sulfur (negative control). The positive control is 0.3 mM ammonium sulfate.<p> </td></tr></table> </td></tr></table></center> <br> To verify that the alkyl-sulfate metabolism defect demonstrated<sup> </sup>by the <i>bds1</i>::<i>KanMX</i> strain is linked to the mutation, <i>bds1</i>::<i>KanMX</i><sup> </sup>MAT<img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0"> cells were mated to strain BY4741. In the progeny resulting<sup> </sup>from this cross, loss of the ability to metabolize SDS cosegregated<sup> </sup>with the marked deletion (Fig. <a href="#F9">9</a>).<sup> </sup><p> <a name="F9"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F9"><img hspace="10" vspace="5" border="2" width="69" height="200" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740009.gif" alt=" "></a><br> <strong>View larger version</strong> (47K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F9">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F9" onclick="startTarget('F9', 302, 640); this.href='/cgi/content-nw/full/4/6/1102/F9'" onmouseover="window.status='View figure in a separate window'; return true" target="F9">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 9. Tetrad analysis. To verify that the alkyl-sulfate metabolism defect demonstrated by the <i>bds1</i>::<i>KanMX</i> strain is linked to the mutation, <i>bds1</i>::<i>KanMX</i> MAT<img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0"> cells were mated to strain BY4741. The progeny resulting from this cross were plated on B medium (<a href="#R9">9</a>) supplemented with 0.3 mM SDS. Two progeny from each tetrad wereunable to grow in medium lacking methionine and represent <i>met15</i> cells. These cells were also unable to grow on medium supplemented with SDS. G418-sensitive <i>BDS1</i> cells grow more vigorously on SDS as a sulfur source. Tetrads are shown horizontally. (A) B medium supplemented with 0.3 mM SDS. All tetrads show two growth:two nongrowth, identical to results with synthetic complete medium without methionine (panel B). Seven tetrads (tetrads 3, 4, 5, 6, 8, 10, and 11) show one vigorous:one weak growth, dependent on <i>BDS1</i>. (B) Synthetic complete medium without methionine. All tetrads (except tetrad 9—possible recombination event) show 2:2 segregation of vigorous growth, independent of <i>BDS1</i>. (C) Yeast-peptone-dextrose medium with G418. All tetrads show 2:2 segregation of knockout.<p> </td></tr></table> </td></tr></table></center> <br> <strong>BDS1 is an aryl-sulfatase.</strong> In 1974 J. Reiss observed aryl-sulfatase activity in <i>S. cerevisiae</i><sup> </sup>cells by cytochemical methods (<a href="#R43">43</a>). <i>S. cerevisiae</i> has no gene<sup> </sup>in its genome with significant homology to known eukaryotic<sup> </sup>aryl-sulfatase genes. We hypothesized that BDS1 may be a dual-function<sup> </sup>enzyme with alkyl- and aryl-sulfatase activity encoded by the<sup> </sup>gene responsible for the aryl-sulfatase activity reported by<sup> </sup>Reiss. Cells were grown using 4-nitrocatechol sulfate as a sole<sup> </sup>source of sulfur to test this possibility. Wild-type and mutant<sup> </sup>cells were inoculated in a total volume of 2 ml in B medium<sup> </sup>supplemented with 4-nitrocatechol sulfate. Cell growth was determined<sup> </sup>by measuring the optical density at 600 nm. As shown in Fig.<sup> </sup><a href="#F10">10</a>, wild-type <i>S. cerevisiae</i> cells grow more vigorously with<sup> </sup>the aryl-sulfate 4-nitorcatechol sulfate as a sulfur source<sup> </sup>than do mutant cells. Aryl-sulfatase activity was also assayed<sup> </sup>photometrically for release of 4-nitrocatechol from 4-nitrocatechol<sup> </sup>sulfate (Fig. <a href="#F11">11</a>). The supernatant of wild-type cells contains<sup> </sup>over 10 times the level of 4-nitrocatechol than that of mutant<sup> </sup>cells or controls, indicating that mutant cells lacking functional<sup> </sup><i>BDS1</i> are negative for aryl-sulfatase activity.<sup> </sup><p> <a name="F10"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F10"><img hspace="10" vspace="5" border="2" width="200" height="149" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740010.gif" alt=" "></a><br> <strong>View larger version</strong> (13K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F10">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F10" onclick="startTarget('F10', 590, 528); this.href='/cgi/content-nw/full/4/6/1102/F10'" onmouseover="window.status='View figure in a separate window'; return true" target="F10">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 10. Growth on the aryl-sulfate 4-nitrocatechol sulfate. Mutant <i>bds1</i>::<i>KanMX</i> cells (red bars) and the wild type (blue bars) were grown in liquid B medium supplemented with 4-nitrocatechol sulfate. Experimental condition is plotted versus optical density at 600 nm (OD<sup>600</sup>). B medium unsupplemented is sulfur free-medium with no added sulfur (negative control). The positive control is 0.3 mM ammonium sulfate.<p> </td></tr></table> </td></tr></table></center> <br> <a name="F11"><!-- null --></a> <br clear="all"><center><table width="95%" cellpadding="0" cellspacing="0"><tr bgcolor="e1e1e1"><td><table cellpadding="2" cellspacing="2"> <tr bgcolor="e1e1e1"><td align="center" valign="top" bgcolor="ffffff"> <a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F11"><img hspace="10" vspace="5" border="2" width="200" height="148" src="/web/20081006113455im_/http://ec.asm.org/content/vol4/issue6/images/small/zek0060524740011.gif" alt=" "></a><br> <strong>View larger version</strong> (10K):<br> <nobr><a href="/web/20081006113455/http://ec.asm.org/cgi/content/full/4/6/1102/F11">[in this window]</a><br> <a href="/web/20081006113455/http://ec.asm.org/cgi/content-nw/full/4/6/1102/F11" onclick="startTarget('F11', 590, 525); this.href='/cgi/content-nw/full/4/6/1102/F11'" onmouseover="window.status='View figure in a separate window'; return true" target="F11">[in a new window]</a><br> </nobr> </td><td align="left" valign="top"> FIG. 11. Photometric assay for aryl-sulfatase activity with mutant <i>bds1</i>::<i>KanMX</i> cells (white bars) and the wild type (red bars). Aryl-sulfatase activity was assayed photometrically as release of 4-nitrocatechol from 4-nitrocatechol sulfate. Optical density at 516 nm (OD<sup>516</sup>) is plotted on the <i>y</i> axis. Blue bars represent B medium supplemented with 4-nitrocatechol sulfate with no cells.<p> </td></tr></table> </td></tr></table></center> <br> <a name="SEC3"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> DISCUSSION </font></th></tr></table> <table align="right" cellpadding="5" border><tr><th align="left"><font size="-1"> <a href="#top"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Top<br></a> <a href="#ABS"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Abstract<br></a> <a href="#BDY"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Introduction<br></a> <a href="#SEC1"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Materials and Methods<br></a> <a href="#SEC2"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Results<br></a> <img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/dot.gif"><font color="464c53">Discussion</font><br> <a href="#BIBL"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/darrow.gif">References<br></a> </font></th></tr></table> <br> Recent horizontally transferred genes appear to be quite rare<sup> </sup>in <i>S. cerevisiae</i>, with 10 cases proposed here, less than 0.2%<sup> </sup>of the gene set of this species. Comparison of <i>A. gossypii</i> and<sup> </sup><i>S. cerevisiae</i> revealed nearly complete conservation of their<sup> </sup>gene sets, with most genes found in only one of these species<sup> </sup>appearing to result from gene loss.<sup> </sup><p> In this study, we found phylogeny, synteny, and high sequence<sup> </sup>identity across entire proteins useful in assessing whether<sup> </sup>a gene is potentially found in <i>S. cerevisiae</i> as a result of<sup> </sup>horizontal gene transfer. While in bacterial cases it has been<sup> </sup>reported that GC content is a useful indicator of horizontally<sup> </sup>transferred genes (<a href="#R38">38</a>), we have found this not to be the case<sup> </sup>in <i>S. cerevisiae</i>. For all 10 of the genes potentially of bacterial<sup> </sup>origin reported here, the GC content falls within 2 standard<sup> </sup>deviations of the mean (see Fig. S1 in the supplemental material).<sup> </sup>This is as expected, as the GC content of the hemiascomycetes<sup> </sup>differs significantly from species to species. For <i>S. cerevisiae</i><sup> </sup>the GC content is 38%, whereas for <i>A</i>. <i>gossypii</i> it is 52% (<a href="#R11">11</a>).<sup> </sup>Thus the GC content of genes in these fungi appears to be malleable,<sup> </sup>and genes acquired by horizontal gene transfer would be expected<sup> </sup>to rapidly come under the influence of the factors causing these<sup> </sup>overall shifts in GC content.<sup> </sup><p> <strong>Horizontal gene transfer provides a mechanism for genomic innovation and plasticity.</strong> In bacteria, horizontal gene transfer is well known as an adaptive<sup> </sup>mechanism. Horizontal transfer events can be classified into<sup> </sup>three distinct categories: acquisition of new genes, acquisition<sup> </sup>of paralogs of existing genes, and gene displacement whereby<sup> </sup>a gene is displaced by a horizontally transferred ortholog from<sup> </sup>another lineage (<a href="#R28">28</a>). All three categories appear to be present<sup> </sup>in the genome of <i>S. cerevisiae</i>. <i>BDS1</i> is a member of a class<sup> </sup>of bacterial sulfatase genes. Among currently sequenced species,<sup> </sup><i>S. cerevisiae</i> and <i>S. bayanus</i> are the only eukaryotic organisms<sup> </sup>with a gene of this class. Therefore, horizontal transfer is<sup> </sup>clearly a mechanism for the acquisition of new genes in eukaryotes.<sup> </sup>Three hemiascomycete yeasts, <i>K. lactis</i>, <i>K. waltii</i>, and <i>S. kluyveri</i>,<sup> </sup>possess a family 2 DHOD optimized for aerobic conditions and<sup> </sup>a horizontally transferred family 1a DHOD optimized for anaerobic<sup> </sup>conditions. In these organisms horizontal transfer has functioned<sup> </sup>as a mechanism for acquisition of paralogs with novel functions.<sup> </sup><i>S. bayanus</i>, <i>S. castellii</i>, <i>S. cerevisiae</i>, and <i>S. paradoxus</i> all<sup> </sup>possess only a horizontally transferred family 1a DHOD. These<sup> </sup>species present a clear case of gene displacement as they have<sup> </sup>lost the eukaryotic family 2 DHOD of their ancestors and kept<sup> </sup>the bacterially derived family 1a DHOD. <i>BDS1</i> also presents a<sup> </sup>variation of gene displacement. The <i>ars-1</i> gene of <i>N. crassa</i><sup> </sup>is a good example of the class of experimentally characterized<sup> </sup>aryl-sulfatase genes found in many fungi and animals, though<sup> </sup>not the <i>Saccharomycetacea</i> (<a href="#R12">12</a>) or the "<i>Saccharomyces</i> complex"<sup> </sup>(<a href="#R29">29</a>), which appears to have lost this eukaryotic aryl-sulfatase<sup> </sup>gene. Some species of hemiascomycetes, including <i>C. albicans,<sup> </sup>D. hansenii, K. lactis</i>, and <i>Y. lipolytica</i>, contain genes of<sup> </sup>a family related to <i>ars-1</i>. These sulfatase-like genes are of<sup> </sup>unknown function, however, and appear to be distantly related<sup> </sup>to the eukaryotic aryl-sulfatase genes (see Fig. S2 in the supplemental<sup> </sup>material). This sulfatase-like gene was also lost in the <i>S.<sup> </sup>cerevisiae</i> lineage after the divergence of the <i>K. lactis</i> and<sup> </sup><i>S. cerevisiae</i> lineages. Neither the eukaryotic aryl-sulfatase<sup> </sup>gene nor the sulfatase-like gene appears in the genome of <i>A.<sup> </sup>gossypii</i>, <i>C. glabrata, K. waltii, S. castellii, S. kluyveri</i>,<sup> </sup>or any of the <i>Saccharomyces</i> sensu stricto species. The <i>ars-1</i>-encoded<sup> </sup>aryl-sulfatase of <i>N. crassa</i> is up-regulated by sulfur starvation<sup> </sup>and appears to function as a mechanism for sulfur scavenging<sup> </sup>(<a href="#R39">39</a>). <i>BDS1</i> shows higher expression in sulfur-limited chemostat<sup> </sup>cultures (<a href="#R4">4</a>). It is possible that the acquisition of <i>BDS1</i> was<sup> </sup>beneficial in that it restored aryl-sulfatase activity or was<sup> </sup>beneficial in that it provided the novel (for a eukaryote) activity<sup> </sup>of an alkyl-sulfatase. As is well known, horizontal gene transfer<sup> </sup>appears to be a mechanism for the acquisition of novel traits.<sup> </sup>Interestingly, however, horizontal transfer also appears to<sup> </sup>be a mechanism of genomic plasticity, allowing lineages to reacquire<sup> </sup>traits and capabilities lost by their ancestors. Curiously,<sup> </sup>assuming that the established phylogeny of the <i>Saccharomyces</i><sup> </sup>sensu stricto is correct, as <i>BDS1</i> is found in <i>S. cerevisiae</i><sup> </sup>and <i>S. bayanus</i> but does not appear in <i>S. paradoxus</i> and <i>S. mikatae</i>,<sup> </sup>it seems likely that this gene was lost in these species.<sup> </sup><p> <strong>Horizontal gene transfer can facilitate the adaptation of an organism to a particular niche.</strong> While in <i>S. cerevisiae</i> the horizontally transferred genes identified<sup> </sup>in this study make up 0.2% of the genome, horizontally transferred<sup> </sup>genes can help us understand the life-style of a particular<sup> </sup>organism. To become fixed in the population of a species, a<sup> </sup>horizontally transferred gene most likely provided a selective<sup> </sup>benefit. This selective benefit requires a selective pressure.<sup> </sup>In the case of <i>URA1</i>, the transfer of a DHOD gene optimized for<sup> </sup>anaerobic conditions indicates that adaptation to anaerobic<sup> </sup>conditions and anaerobic environments has been an important<sup> </sup>part of the evolution of hemiascomycete yeasts. In the case<sup> </sup>of <i>BDS1</i>, the transfer of a multifunction sulfatase gene means<sup> </sup>that these species can inhabit a niche where organic sulfur<sup> </sup>is predominant. The prokaryotic donor can also provide information<sup> </sup>about the environment in which a particular organism lives (or<sup> </sup>lived). The family 1a DHOD was transferred from a <i>Lactococcus</i><sup> </sup>species. Lactococci are found on plant and animal surfaces and<sup> </sup>in the animal gastrointestinal tract. <i>L. lactis</i> is thought to<sup> </sup>be dormant on plant surfaces and to multiply in the gastrointestinal<sup> </sup>tract of ruminants (<a href="#R5">5</a>). Though <i>S. cerevisiae</i> shares plant environments<sup> </sup>with <i>L. lactis</i>, <i>URA1</i> is a gene optimized for anaerobic conditions<sup> </sup>and this strongly indicates that adaptation to survival in the<sup> </sup>gastrointestinal tracts of animals has been important in the<sup> </sup>evolution of some hemiascomycete yeasts. This conclusion is<sup> </sup>supported by the observation that of the 10 candidate genes<sup> </sup>listed in Table <a href="#T1">1</a>, 7 appear to have come from anaerobic prokaryotes<sup> </sup>that either permanently or transiently inhabit animal gastrointestinal<sup> </sup>tracts (<i>URA1</i>, <i>L. lactis</i>; YFR055W, <i>Yersinia pestis</i>; YJL218W,<sup> </sup><i>Methanosarcina mazei</i>; YDR540C, <i>E. faecalis</i>; <i>BIO3</i>, <i>Yersinia enterocolitica</i>;<sup> </sup>YPL245W, <i>Lactobacillus plantarum</i>; YMR090W, <i>Lactobacillus plantarum</i>).<sup> </sup><i>BDS1</i> appears to have been transferred from <img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0">-proteobacteria of<sup> </sup>the family <i>Bradyrhizobiaceae</i>. These bacteria are primarily found<sup> </sup>in soils. <i>Rhodopseudomonas palustris</i> is commonly found in soils<sup> </sup>and water. A sulfatase transferred from a soil-dwelling bacterium<sup> </sup>suggests that survival in the harsh soil environment has also<sup> </sup>been an important evolutionary pressure in the recent evolution<sup> </sup>of <i>Saccharomyces</i> spp. (the likely donor lineage of <i>BIO4</i>, <i>Magnetospirillum</i><sup> </sup>sp., is also a soil- and water-dwelling <img src="/web/20081006113455im_/http://ec.asm.org/math/agr.gif" alt="{alpha}" border="0">-proteobacterium).<sup> </sup><p> <strong>Mechanism of DNA transfer.</strong> Horizontal gene transfer requires that foreign DNA enter a cell.<sup> </sup>Bacterium-to-fungus conjugation and natural transformation are<sup> </sup>possible explanations for how DNA from a lactic acid bacterium<sup> </sup>could be taken up by a <i>Saccharomyces</i>-like yeast. Cell-to-cell<sup> </sup>conjugation requires that bacterial and yeast cells physically<sup> </sup>interact with each other such that cellular components such<sup> </sup>as DNA may be transferred from the donor to the new host. Heinemann<sup> </sup>and Sprague showed that conjugative plasmids of <i>Escherichia<sup> </sup>coli</i> could mobilize DNA transmission to <i>S. cerevisiae</i> (<a href="#R19A">19a</a>).<sup> </sup>Though neither <i>E. coli</i> nor other members of its lineage is the<sup> </sup>donor of the 1a-type DHOD gene found in <i>S. cerevisiae</i>, it is<sup> </sup>possible that DNA can be transferred from lactic acid bacteria<sup> </sup>to fungi by a similar mechanism. Two <i>S. cerevisiae</i> horizontal<sup> </sup>gene transfer candidates, YFR055W and YNR058W/<i>BIO3</i> (Table <a href="#T1">1</a>),<sup> </sup>appear to be transferred from enteric bacteria related to <i>E.<sup> </sup>coli</i>.<sup> </sup><p> Natural transformation, the uptake of free DNA from the surrounding<sup> </sup>environment, has been found among some prokaryotic lineages,<sup> </sup>where it often facilitates horizontal gene transfer (<a href="#R12A">12a</a>). While<sup> </sup>no dedicated DNA uptake mechanism has been discovered in <i>S.<sup> </sup>cerevisiae</i>, it has been shown by Nevoigt et al. that <i>S. cerevisiae</i><sup> </sup>cells incubated in 1 M sucrose with plasmid DNA at a minimum<sup> </sup>concentration of 25 µg/ml can become transformation competent<sup> </sup>(<a href="#R36A">36a</a>). Also the well-known methods for yeast transformation<sup> </sup>using polyethylene glycol and anions, as well as electrical<sup> </sup>damage or mechanical damage, are conditions conceivable in environments<sup> </sup>encountered by <i>S. cerevisiae</i> under nonlaboratory conditions.<sup> </sup>Thus, there are mechanisms by which the ancestor of <i>S. cerevisiae</i><sup> </sup>could have taken up foreign DNA. It is not known why such apparently<sup> </sup>foreign DNA is often seen near telomeres, though it is tempting<sup> </sup>to speculate that telomerase might have a role in this by adding<sup> </sup>telomeric sequence to the foreign DNA and thus providing a site<sup> </sup>for homologous recombination with a chromosomal telomere.<sup> </sup><p> Further work will be required to either confirm or disprove<sup> </sup>that the other nine genes listed in Table <a href="#T1">1</a> are present in these<sup> </sup>fungal lineages as the result of horizontal gene transfer.<sup> </sup><p> <sup> </sup><p> <a name="ACK"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> ACKNOWLEDGMENTS </font></th></tr></table> <br> We thank Peter Philippsen; his efforts in the development of<sup> </sup>the <i>A. gossypii</i> system made this work possible. We also thank<sup> </sup>Jason Stajich and Mark DeLong for assistance in the genome comparisons<sup> </sup>and for advice on the manuscript. We also thank John McCusker<sup> </sup>and Joe Heitman for helpful discussions and use of equipment.<sup> </sup><p> <a name="FN"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> FOOTNOTES </font></th></tr></table> <br> <a name="COR1"><!-- null --></a> * Corresponding author. Mailing address: 289 CARL Building, Box 3568, DUMC, Durham, NC 27710. Phone: (919) 684-2857. Fax: (919) 681-9193. E-mail: <span id="em0">dietr003{at}mc.duke.edu</span><script type="text/javascript"><!-- var u = "dietr003", d = "mc.duke.edu"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></script>. <a href="#RCOR1"><img border="0" width="12" height="12" alt="Back" src="/web/20081006113455im_/http://ec.asm.org/icons/back.gif"></a><p><p> <a name="FN1"><!-- null --></a> <sup><img src="/web/20081006113455im_/http://ec.asm.org/math/dagger.gif" alt="{dagger}" border="0"></sup> Supplemental material for this article may be found at <a href="https://web.archive.org/web/20081006113455/http://ec.asm.org/">http://ec.asm.org/</a>.<sup> </sup><a href="#RFN1"><img border="0" width="12" height="12" alt="Back" src="/web/20081006113455im_/http://ec.asm.org/icons/back.gif"></a><p> <a name="BIBL"><!-- null --></a> <br clear="right"><table width="100%" bgcolor="e1e1e1" cellpadding="0" cellspacing="0"> <tr><td align="left" valign="middle" width="5%" bgcolor="ffffff"><img width="10" height="21" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/rarrow.gif"></td> <th align="left" valign="middle" width="95%"><font size="+2"> REFERENCES </font></th></tr></table> <table align="right" cellpadding="5" border><tr><th align="left"><font size="-1"> <a href="#top"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Top<br></a> <a href="#ABS"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Abstract<br></a> <a href="#BDY"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Introduction<br></a> <a href="#SEC1"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Materials and Methods<br></a> <a href="#SEC2"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Results<br></a> <a href="#SEC3"><img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/uarrow.gif">Discussion<br></a> <img width="11" height="9" border="0" hspace="5" alt=" " src="/web/20081006113455im_/http://ec.asm.org/icons/toc/dot.gif"><font color="464c53">References</font><br> </font></th></tr></table> <br> <ol compact> <a name="R1"><!-- null --></a> <li value="1"> <b>Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.</b> 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. <b>25:</b>3389-3402.<!-- HIGHWIRE ID="4:6:1102:1" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=nar&resid=25/17/3389"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R2"><!-- null --></a> <li value="2"> <b>Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin.</b> 1993. A simple and efficient method for direct gene deletion in <i>Saccharomyces cerevisiae</i>. Nucleic Acids Res. <b>21:</b>3329-3330.<!-- HIGHWIRE ID="4:6:1102:2" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=PDF&journalCode=nar&resid=21/14/3329"><nobr>[<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R3"><!-- null --></a> <li value="3"> <b>Benson, D. A., M. S. Boguski, D. J. Lipman, and J. Ostell.</b> 1997. GenBank. Nucleic Acids Res. <b>25:</b>1-6.<!-- HIGHWIRE ID="4:6:1102:3" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=nar&resid=25/1/1"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R4"><!-- null --></a> <li value="4"> <b>Boer, V. M., J. H. de Winde, J. T. Pronk, and M. D. Piper.</b> 2003. The genome-wide transcriptional responses of <i>Saccharomyces cerevisiae</i> grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. <b>278:</b>3265-3274.<!-- HIGHWIRE ID="4:6:1102:4" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=278/5/3265"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R5"><!-- null --></a> <li value="5"> <b>Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin.</b> 2001. The complete genome sequence of the lactic acid bacterium <i>Lactococcus lactis ssp. lactis</i> IL1403. Genome Res. <b>11:</b>731-753.<!-- HIGHWIRE ID="4:6:1102:5" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=genome&resid=11/5/731"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R6"><!-- null --></a> <li value="6"> <b>Boucher, Y., and W. F. Doolittle.</b> 2000. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol. <b>37:</b>703-716.<!-- HIGHWIRE ID="4:6:1102:6" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1046/j.1365-2958.2000.02004.x&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10972794&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R7"><!-- null --></a> <li value="7"> <b>Braun, E. L., A. L. Halpern, M. A. Nelson, and D. O. Natvig.</b> 2000. Large-scale comparison of fungal sequence information: mechanisms of innovation in <i>Neurospora crassa</i> and gene loss in <i>Saccharomyces cerevisiae</i>. Genome Res. <b>10:</b>416-430.<!-- HIGHWIRE ID="4:6:1102:7" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=genome&resid=10/4/416"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R8"><!-- null --></a> <li value="8"> <b>Burke, D. T., D. Dawson, and T. Stearns.</b> 2000. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Laboratory Press, New York, N.Y.<!-- HIGHWIRE ID="4:6:1102:8" --><!-- /HIGHWIRE --><a name="R9"><!-- null --></a> <li value="9"> <b>Cherest, H., and Y. Surdin-Kerjan.</b> 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in <i>Saccharomyces cerevisiae</i>: updating of the sulfur metabolism pathway. Genetics <b>130:</b>51-58.<!-- HIGHWIRE ID="4:6:1102:9" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=genetics&resid=130/1/51">[Abstract]</a><!-- /HIGHWIRE --><a name="R10"><!-- null --></a> <li value="10"> <b>Cliften, P., P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton, J. Majors, R. Waterston, B. A. Cohen, and M. Johnston.</b> 2003. Finding functional features in <i>Saccharomyces</i> genomes by phylogenetic footprinting. Science <b>301:</b>71-76.<!-- HIGHWIRE ID="4:6:1102:10" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=301/5629/71"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R11"><!-- null --></a> <li value="11"> <b>Dietrich, F. S., S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pohlmann, P. Luedi, S. Choi, R. A. Wing, A. Flavier, T. D. Gaffney, and P. Philippsen.</b> 2004. The <i>Ashbya gossypii</i> genome as a tool for mapping the ancient <i>Saccharomyces cerevisiae</i> genome. Science <b>304:</b>304-307.<!-- HIGHWIRE ID="4:6:1102:11" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=304/5668/304"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R12"><!-- null --></a> <li value="12"> <b>Diezmann, S., C. J. Cox, G. Schonian, R. J. Vilgalys, and T. G. Mitchell.</b> 2004. Phylogeny and evolution of medical species of <i>Candida</i> and related taxa: a multigenic analysis. J. Clin. Microbiol. <b>42:</b>5624-5635.<!-- HIGHWIRE ID="4:6:1102:12" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=jcm&resid=42/12/5624"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R12A"><!-- null --></a> <li value="12"> <b>Dreiseikelmann, B.</b> 1994. Translocation of DNA across bacterial membranes. Microbiol. Rev. <b>58:</b>293-316.<!-- HIGHWIRE ID="4:6:1102:13" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=mmbr&resid=58/3/293"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R13"><!-- null --></a> <li value="13"> <b>Dujon, B., D. Sherman, G. Fischer, P. Durrens, S. Casaregola, I. Lafontaine, J. De Montigny, C. Marck, C. Neuveglise, E. Talla, N. Goffard, L. Frangeul, M. Aigle, V. Anthouard, A. Babour, V. Barbe, S. Barnay, S. Blanchin, J. M. Beckerich, E. Beyne, C. Bleykasten, A. Boisrame, J. Boyer, L. Cattolico, F. Confanioleri, A. De Daruvar, L. Despons, E. Fabre, C. Fairhead, H. Ferry-Dumazet, A. Groppi, F. Hantraye, C. Hennequin, N. Jauniaux, P. Joyet, R. Kachouri, A. Kerrest, R. Koszul, M. Lemaire, I. Lesur, L. Ma, H. Muller, J. M. Nicaud, M. Nikolski, S. Oztas, O. Ozier-Kalogeropoulos, S. Pellenz, S. Potier, G. F. Richard, M. L. Straub, A. Suleau, D. Swennen, F. Tekaia, M. Wesolowski-Louvel, E. Westhof, B. Wirth, M. Zeniou-Meyer, I. Zivanovic, M. Bolotin-Fukuhara, A. Thierry, C. Bouchier, B. Caudron, C. Scarpelli, C. Gaillardin, J. Weissenbach, P. Wincker, and J. L. Souciet.</b> 2004. Genome evolution in yeasts. Nature <b>430:</b>35-44.<!-- HIGHWIRE ID="4:6:1102:14" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1038/nature02579&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=15229592&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R14"><!-- null --></a> <li value="14"> <b>Fukami, K., and Y. Tateno.</b> 1989. On the maximum likelihood method for estimating molecular trees: uniqueness of the likelihood point. J. Mol. Evol. <b>28:</b>460-464.<!-- HIGHWIRE ID="4:6:1102:15" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=2501507&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R15"><!-- null --></a> <li value="15"> <b>Galagan, J. E., S. E. Calvo, K. A. Borkovich, E. U. Selker, N. D. Read, D. Jaffe, W. FitzHugh, L. J. Ma, S. Smirnov, S. Purcell, B. Rehman, T. Elkins, R. Engels, S. Wang, C. B. Nielsen, J. Butler, M. Endrizzi, D. Qui, P. Ianakiev, D. Bell-Pedersen, M. A. Nelson, M. Werner-Washburne, C. P. Selitrennikoff, J. A. Kinsey, E. L. Braun, A. Zelter, U. Schulte, G. O. Kothe, G. Jedd, W. Mewes, C. Staben, E. Marcotte, D. Greenberg, A. Roy, K. Foley, J. Naylor, N. Stange-Thomann, R. Barrett, S. Gnerre, M. Kamal, M. Kamvysselis, E. Mauceli, C. Bielke, S. Rudd, D. Frishman, S. Krystofova, C. Rasmussen, R. L. Metzenberg, D. D. Perkins, S. Kroken, C. Cogoni, G. Macino, D. Catcheside, W. Li, R. J. Pratt, S. A. Osmani, C. P. DeSouza, L. Glass, M. J. Orbach, J. A. Berglund, R. Voelker, O. Yarden, M. Plamann, S. Seiler, J. Dunlap, A. Radford, R. Aramayo, D. O. Natvig, L. A. Alex, G. Mannhaupt, D. J. Ebbole, M. Freitag, I. Paulsen, M. S. Sachs, E. S. Lander, C. Nusbaum, and B. Birren.</b> 2003. The genome sequence of the filamentous fungus <i>Neurospora crassa</i>. Nature <b>422:</b>859-868.<!-- HIGHWIRE ID="4:6:1102:16" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1038/nature01554&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=12712197&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R16"><!-- null --></a> <li value="16"> <b>Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver.</b> 1996. Life with 6000 genes. Science <b>274:</b>563-567.<!-- HIGHWIRE ID="4:6:1102:17" --><!-- /HIGHWIRE --><a name="R17"><!-- null --></a> <li value="17"> <b>Gojkovic, Z., W. Knecht, E. Zameitat, J. Warneboldt, J. B. Coutelis, Y. Pynyaha, C. Neuveglise, K. Moller, M. Loffler, and J. Piskur.</b> 2004. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol. Genet. Genomics <b>271:</b>387-393. .<!-- HIGHWIRE ID="4:6:1102:18" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1007/s00438-004-0995-7&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=15014982&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R18"><!-- null --></a> <li value="18"> <b>Gonnet, G. H., M. A. Cohen, and S. A. Benner.</b> 1992. Exhaustive matching of the entire protein sequence database. Science <b>256:</b>1443-1445.<!-- HIGHWIRE ID="4:6:1102:19" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=256/5062/1443"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R19"><!-- null --></a> <li value="19"> <b>Gray, M. W.</b> 1993. Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. <b>3:</b>884-890.<!-- HIGHWIRE ID="4:6:1102:20" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/0959-437X(93)90009-E&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=8118213&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R19A"><!-- null --></a> <li value="19"> <b>Heinemann, J. A., and G. F. Sprague, Jr.</b> 1989. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature <b>340:</b>205-209.<!-- HIGHWIRE ID="4:6:1102:21" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1038/340205a0&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=2666856&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R20"><!-- null --></a> <li value="20"> <b>Horner, D. S., P. G. Foster, and T. M. Embley.</b> 2000. Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol. <b>17:</b>1695-1709.<!-- HIGHWIRE ID="4:6:1102:22" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=molbiolevol&resid=17/11/1695"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R21"><!-- null --></a> <li value="21"> <b>Huelsenbeck, J. P., and F. Ronquist.</b> 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics <b>17:</b>754-755.<!-- HIGHWIRE ID="4:6:1102:23" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=bioinfo&resid=17/8/754"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R22"><!-- null --></a> <li value="22"> <b>Jensen, K. F., and O. Bjornberg.</b> 1998. Evolutionary and functional families of dihydroorotate dehydrogenase. Paths Pyrimidines <b>6:</b>20-28.<!-- HIGHWIRE ID="4:6:1102:24" --><!-- /HIGHWIRE --><a name="R23"><!-- null --></a> <li value="23"> <b>Kahnert, A., and M. A. Kertesz.</b> 2000. Characterization of a sulfur-regulated oxygenative alkylsulfatase from <i>Pseudomonas putida</i> S-313. J. Biol. Chem. <b>275:</b>31661-31667.<!-- HIGHWIRE ID="4:6:1102:25" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=275/41/31661"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R24"><!-- null --></a> <li value="24"> <b>Katz, L. A.</b> 2002. Lateral gene transfers and the evolution of eukaryotes: theories and data. Int. J. Syst. Evol. Microbiol. <b>52:</b>1893-1900.<!-- HIGHWIRE ID="4:6:1102:26" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=ijs&resid=52/5/1893">[Abstract]</a><!-- /HIGHWIRE --><a name="R25"><!-- null --></a> <li value="25"> <b>Kellis, M., B. W. Birren, and E. S. Lander.</b> 2004. Proof and evolutionary analysis of ancient genome duplication in the yeast <i>Saccharomyces cerevisiae</i>. Nature <b>428:</b>617-624.<!-- HIGHWIRE ID="4:6:1102:27" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1038/nature02424&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=15004568&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R26"><!-- null --></a> <li value="26"> <b>Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander.</b> 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature <b>423:</b>241-254.<!-- HIGHWIRE ID="4:6:1102:28" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1038/nature01644&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=12748633&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R27"><!-- null --></a> <li value="27"> <b>Klotz, M. G., G. R. Klassen, and P. C. Loewen.</b> 1997. Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol. Biol. Evol. <b>14:</b>951-958.<!-- HIGHWIRE ID="4:6:1102:29" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=molbiolevol&resid=14/9/951">[Abstract]</a><!-- /HIGHWIRE --><a name="R28"><!-- null --></a> <li value="28"> <b>Koonin, E. V., K. S. Makarova, and L. Aravind.</b> 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. <b>55:</b>709-742.<!-- HIGHWIRE ID="4:6:1102:30" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1146/annurev.micro.55.1.709&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=11544372&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R29"><!-- null --></a> <li value="29"> <b>Kurtzman, C. P., and C. J. Robnett.</b> 2003. Phylogenetic relationships among yeasts of the ‘<i>Saccharomyces</i> complex’ determined from multigene sequence analysis. FEMS Yeast Res. <b>3:</b>417-432.<!-- HIGHWIRE ID="4:6:1102:31" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/S1567-1356(03)00012-6&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=12748053&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R30"><!-- null --></a> <li value="30"> <b>Lawrence, J. G.</b> 2001. Catalyzing bacterial speciation: correlating lateral transfer with genetic headroom. Syst. Biol. <b>50:</b>479-496.<!-- HIGHWIRE ID="4:6:1102:32" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1080/10635150120286&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=12116648&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R31"><!-- null --></a> <li value="31"> <b>Moore, J. D., and S. A. Endow.</b> 1996. Kinesin proteins: a phylum of motors for microtubule-based motility. Bioessays <b>18:</b>207-219.<!-- HIGHWIRE ID="4:6:1102:33" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1002/bies.950180308&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=8867735&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R32"><!-- null --></a> <li value="32"> <b>Morell, V.</b> 1996. TreeBASE: the roots of phylogeny. Science <b>273:</b>569.<!-- HIGHWIRE ID="4:6:1102:34" --><!-- /HIGHWIRE --><a name="R33"><!-- null --></a> <li value="33"> <b>Mower, J. P., S. Stefanovic, G. J. Young, and J. D. Palmer.</b> 2004. Gene transfer form parasitic to host plants. Nature <b>432:</b>165-166.<!-- HIGHWIRE ID="4:6:1102:35" --><!-- /HIGHWIRE --><a name="R34"><!-- null --></a> <li value="34"> <b>Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich.</b> 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. <b>51</b>(Part 1)<b>:</b>263-273.<!-- HIGHWIRE ID="4:6:1102:36" --><!-- /HIGHWIRE --><a name="R35"><!-- null --></a> <li value="35"> <b>Nagy, M., F. Lacroute, and D. Thomas.</b> 1992. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc. Natl. Acad. Sci. USA <b>89:</b>8966-8970.<!-- HIGHWIRE ID="4:6:1102:37" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=89/19/8966"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R36"><!-- null --></a> <li value="36"> <b>Nara, T., T. Hshimoto, and T. Aoki.</b> 2000. Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes. Gene <b>257:</b>209-222.<!-- HIGHWIRE ID="4:6:1102:38" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/S0378-1119(00)00411-X&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=11080587&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R36A"><!-- null --></a> <li value="36"> <b>Nevoigt, E., A. Fassbender, and U. Stahl.</b> 2000. Cells of the yeast <i>Saccharomyces cerevisiae</i> are transformable by DNA under non-artificial conditions. Yeast <b>16:</b>1107-1110.<!-- HIGHWIRE ID="4:6:1102:39" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1002/1097-0061(20000915)16:12<1107::AID-YEA608>3.0.CO;2-3&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10953082&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R37"><!-- null --></a> <li value="37"> <b>Ochman, H.</b> 2001. Lateral and oblique gene transfer. Curr. Opin. Genet. Dev. <b>11:</b>616-619.<!-- HIGHWIRE ID="4:6:1102:40" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/S0959-437X(00)00243-4&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=11682303&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R38"><!-- null --></a> <li value="38"> <b>Ochman, H., J. G. Lawrence, and E. A. Groisman.</b> 2000. Lateral gene transfer and the nature of bacterial innovation. Nature <b>405:</b>299-304.<!-- HIGHWIRE ID="4:6:1102:41" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1038/35012500&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10830951&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R39"><!-- null --></a> <li value="39"> <b>Paietta, J. V.</b> 1989. Molecular cloning and regulatory analysis of the arylsulfatase structural gene of <i>Neurospora crassa</i>. Mol. Cell. Biol. <b>9:</b>3630-3637.<!-- HIGHWIRE ID="4:6:1102:42" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=mcb&resid=9/9/3630"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R40"><!-- null --></a> <li value="40"> <b>Pearson, W. R., and D. J. Lipman.</b> 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA <b>85:</b>2444-2448.<!-- HIGHWIRE ID="4:6:1102:43" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=85/8/2444"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R41"><!-- null --></a> <li value="41"> <b>Pogorevc, M., and K. Faber.</b> 2003. Purification and characterization of an inverting stereo- and enantioselective sec-alkylsulfatase from the gram-positive bacterium <i>Rhodococcus ruber</i> DSM 44541. Appl. Environ. Microbiol. <b>69:</b>2810-2815.<!-- HIGHWIRE ID="4:6:1102:44" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=aem&resid=69/5/2810"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R42"><!-- null --></a> <li value="42"> <b>Posada, D., and K. A. Crandall.</b> 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics <b>14:</b>817-818.<!-- HIGHWIRE ID="4:6:1102:45" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=bioinfo&resid=14/9/817"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R43"><!-- null --></a> <li value="43"> <b>Reiss, J.</b> 1974. Cytochemical detection of hydrolases in fungus cells. 3. Aryl sulfatase. J. Histochem. Cytochem. <b>22:</b>183-188.<!-- HIGHWIRE ID="4:6:1102:46" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=jhc&resid=22/3/183">[Abstract]</a><!-- /HIGHWIRE --><a name="R44"><!-- null --></a> <li value="44"> <b>Rip, J. W., and B. A. Gordon.</b> 1998. A simple spectrophotometric enzyme assay with absolute specificity for arylsulfatase A. Clin. Biochem. <b>31:</b>29-31.<!-- HIGHWIRE ID="4:6:1102:47" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/S0009-9120(97)00142-2&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=9559221&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R45"><!-- null --></a> <li value="45"> <b>Ronquist, F., and J. P. Huelsenbeck.</b> 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics <b>19:</b>1572-1574.<!-- HIGHWIRE ID="4:6:1102:48" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=bioinfo&resid=19/12/1572"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R46"><!-- null --></a> <li value="46"> <b>Roy, A.</b> 1992. Nucleotide sequence of the <i>URA1</i> gene of <i>Saccharomyces cerevisiae</i>. Gene <b>118:</b>149-150.<!-- HIGHWIRE ID="4:6:1102:49" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/0378-1119(92)90265-Q&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=1511880&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R47"><!-- null --></a> <li value="47"> <b>Saitou, N., and M. Nei.</b> 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. <b>4:</b>406-425.<!-- HIGHWIRE ID="4:6:1102:50" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=molbiolevol&resid=4/4/406">[Abstract]</a><!-- /HIGHWIRE --><a name="R48"><!-- null --></a> <li value="48"> <b>Shimodaira, H., and M. Hasegawa.</b> 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. <b>16:</b>1114-1116.<!-- HIGHWIRE ID="4:6:1102:51" --><!-- /HIGHWIRE --><a name="R49"><!-- null --></a> <li value="49"> <b>Sikorski, R. S., and P. Hieter.</b> 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in <i>Saccharomyces cerevisiae</i>. Genetics <b>122:</b>19-27.<!-- HIGHWIRE ID="4:6:1102:52" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=genetics&resid=122/1/19"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R50"><!-- null --></a> <li value="50"> <b>Swofford, D. L.</b> 1999. PAUP* Phylogenetics analysis using parsimony (*and other methods). Sinauer, Sunderland, MA.<!-- HIGHWIRE ID="4:6:1102:53" --><!-- /HIGHWIRE --><a name="R51"><!-- null --></a> <li value="51"> <b>Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins.</b> 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. <b>25:</b>4876-4882.<!-- HIGHWIRE ID="4:6:1102:54" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=nar&resid=25/24/4876"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R52"><!-- null --></a> <li value="52"> <b>Visser, W., W. A. Scheffers, W. H. Batenburg-van der Vegte, and J. P. van Dijken.</b> 1990. Oxygen requirements of yeasts. Appl. Environ. Microbiol. <b>56:</b>3785-3792.<!-- HIGHWIRE ID="4:6:1102:55" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=aem&resid=56/12/3785"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R53"><!-- null --></a> <li value="53"> <b>Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen.</b> 1994. New heterologous modules for classical or PCR-based gene disruptions in <i>Saccharomyces cerevisiae</i>. Yeast <b>10:</b>1793-1808.<!-- HIGHWIRE ID="4:6:1102:56" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1002/yea.320101310&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=7747518&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R54"><!-- null --></a> <li value="54"> <b>Whelan, S., and N. Goldman.</b> 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. <b>18:</b>691-699.<!-- HIGHWIRE ID="4:6:1102:57" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=molbiolevol&resid=18/5/691"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R55"><!-- null --></a> <li value="55"> <b>Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, R. Bangham, R. Benito, J. D. Boeke, H. Bussey, A. M. Chu, C. Connelly, K. Davis, F. Dietrich, S. W. Dow, M. El Bakkoury, F. Foury, S. H. Friend, E. Gentalen, G. Giaever, J. H. Hegemann, T. Jones, M. Laub, H. Liao, R. W. Davis, et al.</b> 1999. Functional characterization of the <i>S. cerevisiae</i> genome by gene deletion and parallel analysis. Science <b>285:</b>901-906.<!-- HIGHWIRE ID="4:6:1102:58" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=285/5429/901"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R56"><!-- null --></a> <li value="56"> <b>Wood, V., K. M. Rutherford, A. Ivens, M. A. Ragjandream, and B. Barrell.</b> 2001. A re-annotation of the <i>Saccharomyces cerevisiae</i> genome. Comp. Funct. Genomics <b>2:</b>143-154.<!-- HIGHWIRE ID="4:6:1102:59" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1002/cfg.86&link_type=DOI">[CrossRef]</a><!-- /HIGHWIRE --><a name="R57"><!-- null --></a> <li value="57"> <b>Wuyts, J., Y. Van de Peer, T. Winkelmans, and R. De Wachter.</b> 2002. The European database on small subunit ribosomal RNA. Nucleic Acids Res. <b>30:</b>183-185.<!-- HIGHWIRE ID="4:6:1102:60" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=ABST&journalCode=nar&resid=30/1/183"><nobr>[Abstract/<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --><a name="R58"><!-- null --></a> <li value="58"> <b>Zameitat, E., W. Knecht, J. Piskur, and M. Loffler.</b> 2004. Two different dihydroorotate dehydrogenases from yeast <i>Saccharomyces kluyveri</i>. FEBS Lett. <b>568:</b>129-134.<!-- HIGHWIRE ID="4:6:1102:61" --><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=10.1016/j.febslet.2004.05.017&link_type=DOI">[CrossRef]</a><a href="/web/20081006113455/http://ec.asm.org/cgi/external_ref?access_num=15196933&link_type=MED">[Medline]</a><!-- /HIGHWIRE --><a name="R59"><!-- null --></a> <li value="59"> <b>Zhu, J., P. M. Oger, B. Schrammeijer, P. J. Hooykaas, S. K. Farrand, and S. C. Winans.</b> 2000. The bases of crown gall tumorigenesis. J. Bacteriol. <b>182:</b>3885-3895.<!-- HIGHWIRE ID="4:6:1102:62" --><a href="/web/20081006113455/http://ec.asm.org/cgi/ijlink?linkType=FULL&journalCode=jb&resid=182/14/3885"><nobr>[<font color="CC0000">Free</font> Full Text]</nobr></a><!-- /HIGHWIRE --></ol> <p> <hr> <font size="-1"> Eukaryotic Cell, June 2005, p. 1102-1<!-- FILE ARCHIVED ON 11:34:55 Oct 06, 2008 AND RETRIEVED FROM THE INTERNET ARCHIVE ON 20:12:28 Nov 27, 2024. JAVASCRIPT APPENDED BY WAYBACK MACHINE, COPYRIGHT INTERNET ARCHIVE. ALL OTHER CONTENT MAY ALSO BE PROTECTED BY COPYRIGHT (17 U.S.C. SECTION 108(a)(3)). --> <!-- playback timings (ms): captures_list: 1.002 exclusion.robots: 0.062 exclusion.robots.policy: 0.043 esindex: 0.02 cdx.remote: 7.97 LoadShardBlock: 121.923 (3) PetaboxLoader3.datanode: 119.989 (4) load_resource: 161.505 PetaboxLoader3.resolve: 66.967 -->