CINXE.COM
EAI Endorsed Transactions on Industrial Networks and Intelligent Systems - EUDL
<html><head><title>EAI Endorsed Transactions on Industrial Networks and Intelligent Systems - EUDL</title><link rel="icon" href="/images/favicon.ico"><link rel="stylesheet" type="text/css" href="/css/screen.css"><link rel="stylesheet" href="/css/zenburn.css"><meta http-equiv="Content-Type" content="charset=utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="Description" content="Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/inis/index"><script type="text/javascript" src="https://services.eai.eu//load-signup-form/EAI"></script><script type="text/javascript" src="https://services.eai.eu//ujs/forms/signup/sso-client.js"></script><script type="text/javascript">if (!window.EUDL){ window.EUDL={} };EUDL.cas_url="https://account.eai.eu/cas";EUDL.profile_url="https://account.eai.eu";if(window.SSO){SSO.set_mode('eai')};</script><script type="text/javascript" src="/js/jquery.js"></script><script type="text/javascript" src="/js/jquery.cookie.js"></script><script type="text/javascript" src="/js/sso.js"></script><script type="text/javascript" src="/js/jscal2.js"></script><script type="text/javascript" src="/js/lang/en.js"></script><script type="text/javascript" src="/js/jquery.colorbox-min.js"></script><script type="text/javascript" src="/js/eudl.js"></script><script type="text/javascript" src="/js/journal.js"></script><script type="text/javascript" src="/js/tabs.js"></script><link rel="stylesheet" type="text/css" href="/css/jscal/jscal2.css"><link rel="stylesheet" type="text/css" href="/css/jscal/eudl/eudl.css"><link rel="stylesheet" type="text/css" href="/css/colorbox.css"></head><body><div id="eudl-page-head"><div id="eudl-page-header"><section id="user-area"><div><nav id="right-nav"><a href="/about">About</a> | <a href="/contact">Contact Us</a> | <a class="register" href="https://account.eai.eu/register?service=http%3A%2F%2Feudl.eu%2Fissue%2Finis%2F5%2F14">Register</a> | <a class="login" href="https://account.eai.eu/cas/login?service=http%3A%2F%2Feudl.eu%2Fissue%2Finis%2F5%2F14">Login</a></nav></div></section></div></div><div id="eudl-page"><header><section id="topbar-ads"><div><a href="https://eudl.eu/"><img class="eudl-logo-top" src="https://eudl.eu/images/eudl-logo.png"></a><img class="eudl-ads-top" src="https://eudl.eu/images/eai-eudl.jpg"></div></section><section id="menu"><nav><a href="/proceedings" class=""><span>Proceedings</span><span class="icon"></span></a><a href="/series" class=""><span>Series</span><span class="icon"></span></a><a href="/journals" class="current"><span>Journals</span><span class="icon"></span></a><a href="/content" class=""><span>Search</span><span class="icon"></span></a><a href="http://eai.eu/">EAI</a></nav></section></header><div id="eaientran"></div><section id="content"><section id="journal"><form class="search-form" id="article_search" method="get"><section class="cover-and-filters"><section class="cover"><a href="/journal/inis" title="EAI Endorsed Transactions on Industrial Networks and Intelligent Systems"><img src="/attachment/27293"></a></section><section class="issn"><strong>ISSN: </strong>2410-0218</section><section class="escripts link"><a href="https://escripts.eai.eu/paper/submit/direct/44">Submit Article</a></section><section class="instructions link"><a href="/instructions">Submission Instructions</a></section><section class="ethics link"><a href="/ethics">Ethics and Malpractice Statement</a></section><section class="back-to-journal link"><a href="/journal/inis">Back to Journal Page</a></section><section class="browse-filters"><div class="browse-by"><a class="browse-link">2024<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/12/1" class="filter ">Issue 1</a></div><a class="browse-link">2024<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/11/4" class="filter ">Issue 4</a><a href="/issue/inis/11/3" class="filter ">Issue 3</a><a href="/issue/inis/11/2" class="filter ">Issue 2</a><a href="/issue/inis/11/1" class="filter ">Issue 1</a></div><a class="browse-link">2023<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/10/4" class="filter ">Issue 4</a><a href="/issue/inis/10/3" class="filter ">Issue 3</a><a href="/issue/inis/10/1" class="filter ">Issue 1</a></div><a class="browse-link">2022<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/9/4" class="filter ">Issue 4</a><a href="/issue/inis/9/32" class="filter ">Issue 32</a><a href="/issue/inis/9/31" class="filter ">Issue 31</a><a href="/issue/inis/9/30" class="filter ">Issue 30</a></div><a class="browse-link">2021<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/8/29" class="filter ">Issue 29</a><a href="/issue/inis/8/28" class="filter ">Issue 28</a><a href="/issue/inis/8/27" class="filter ">Issue 27</a><a href="/issue/inis/8/26" class="filter ">Issue 26</a></div><a class="browse-link">2020<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/7/25" class="filter ">Issue 25</a><a href="/issue/inis/7/24" class="filter ">Issue 24</a><a href="/issue/inis/7/23" class="filter ">Issue 23</a><a href="/issue/inis/7/22" class="filter ">Issue 22</a></div><a class="browse-link">2019<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/6/21" class="filter ">Issue 21</a><a href="/issue/inis/6/20" class="filter ">Issue 20</a><a href="/issue/inis/6/19" class="filter ">Issue 19</a><a href="/issue/inis/6/18" class="filter ">Issue 18</a></div><a class="browse-link">2018<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/5/17" class="filter ">Issue 17</a><a href="/issue/inis/5/16" class="filter ">Issue 16</a><a href="/issue/inis/5/15" class="filter ">Issue 15</a><a href="/issue/inis/5/14" class="filter current">Issue 14</a></div><a class="browse-link">2017<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/4/13" class="filter ">Issue 13</a><a href="/issue/inis/4/12" class="filter ">Issue 12</a><a href="/issue/inis/4/11" class="filter ">Issue 11</a><a href="/issue/inis/4/10" class="filter ">Issue 10</a></div><a class="browse-link">2016<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/3/9" class="filter ">Issue 9</a><a href="/issue/inis/3/8" class="filter ">Issue 8</a><a href="/issue/inis/3/7" class="filter ">Issue 7</a><a href="/issue/inis/3/6" class="filter ">Issue 6</a></div><a class="browse-link">2015<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/2/5" class="filter ">Issue 5</a><a href="/issue/inis/2/4" class="filter ">Issue 4</a><a href="/issue/inis/2/3" class="filter ">Issue 3</a><a href="/issue/inis/2/2" class="filter ">Issue 2</a></div><a class="browse-link">2014<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/1/1" class="filter ">Issue 1</a></div></div></section></section><section class="info-and-search"><div class="manage-menu"></div><a href="/journal/inis"><h1>EAI Endorsed Transactions on Industrial Networks and Intelligent Systems</h1></a><section class="issue-number">Issue 14, 2018</section><section class="editors"><strong>Editor(s)-in-Chief: </strong><span class="editor">Trung Q. Duong</span> and <span class="editor">Le Nguyen Bao</span></section><section class="issue-tabs"><div class="tabs"><ul><li><a name="articles">Articles</a></li><li><a name="meta">Information</a></li></ul></div><div class="content"><div name="articles"><section id="publications-results" class="search-results"><ul class="results-list"><li class="result-item article-light first"><h3><a href="/doi/10.4108/eai.27-6-2018.154832">Resource Allocation for Energy Efficiency in 5G Wireless Networks</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>18</strong><span class="info-separator">(</span>14<span class="info-separator">)</span><span class="info-separator">: </span>e1</dd><br><dt class="title">Author: </dt><dd class="value">Long D. Nguyen</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Resource allocation is one important mission in wireless communication systems. In 5G wireless networks, it is essential that the new systems be more dynamic and wiser to simultaneously satisfy various network demands, by using new wireless technologies and approaches. To this end, resource allocat…</span><span class="full">Resource allocation is one important mission in wireless communication systems. In 5G wireless networks, it is essential that the new systems be more dynamic and wiser to simultaneously satisfy various network demands, by using new wireless technologies and approaches. To this end, resource allocation is faced with many significant challenges such as interference alignment, security attacks, or green communication. On the other hand, as one serious problem in 5G networks, the issue of energy is aected directly by the allocated resources in the system, i.e., bandwidth allocation, power control, association allocation, and deployment strategies. Consequently, together with the enhancement of spectral eÿciency performance, an emerging trend of 5G wireless networks is to approach green communication via energy eÿciency (EE) (bits/Hz/Joule), whose most significant challenge is due to its belonging to the fractional programming in the optimization field, i.e., nonconvex programming. This leaves many diÿcult tasks for improving network EE performance. In this paper, we will tackle the critical EE in 5G wireless networks.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.27-6-2018.154833">Outage Performance of a Two-branch Cooperative Energy-constrained Relaying Network with Selection Combining at Destination</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>18</strong><span class="info-separator">(</span>14<span class="info-separator">)</span><span class="info-separator">: </span>e2</dd><br><dt class="title">Authors: </dt><dd class="value">Sang Quang Nguyen, Hyung Yun Kong</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">In this paper, we investigate two-branch cooperative DF relaying networks with selection combining at the destination. Two intermediate relay-clusters (a conventional relay cluster and an energy-constrained relay cluster) are utilized to aid the communication between the source and the destination.…</span><span class="full">In this paper, we investigate two-branch cooperative DF relaying networks with selection combining at the destination. Two intermediate relay-clusters (a conventional relay cluster and an energy-constrained relay cluster) are utilized to aid the communication between the source and the destination. We study two cases: direct link (DR) and no direct link (NDR) between the source and the destination. In each case, we consider two relay selection schemes: best sourceâ´Çrelay channel gain (BSR) and random relay selection (RAN). Thus, we have 4 protocols: DR-BSR, DR-RAN, NDR-BSR, and NDR-RAN. For the performance evaluation, we derive a closed-form expression for the outage probability of each of the four protocols. Our analysis is substantiated via a Monte Carlo simulation. As expected, the results show that the DR case outperforms the NDR case, and the BSR scheme outperforms the RAN scheme. The outage performances of the protocols are evaluated based on the system parameters, including the transmit power, the number of relays in each cluster, the energy harvesting eÿciency, the position of the two clusters, and the target rate. The outage performance of the system is improved when the transmit power increases, the energy harvesting eÿciency increases, the distance between the two clusters and the source and destination decreases, or the target rate decreases. We found good matches between the theoretical and Monte Carlo simulation results, verifying our mathematical analysis.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.27-6-2018.154834">Eigenvalue-based Detection Techniques Using Finite Dimensional Complex Random Matrix Theory: A Review</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>18</strong><span class="info-separator">(</span>14<span class="info-separator">)</span><span class="info-separator">: </span>e3</dd><br><dt class="title">Author: </dt><dd class="value">Ayse Kortun</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Detection of primary users without requiring information of signal is of great importance in spectrum sensing (SS) in Cognitive Radio. Therefore, in recent years, eigenvalue based spectrum sensing algorithms are under the spotlight. Many primary user detection techniques have been proposed for use …</span><span class="full">Detection of primary users without requiring information of signal is of great importance in spectrum sensing (SS) in Cognitive Radio. Therefore, in recent years, eigenvalue based spectrum sensing algorithms are under the spotlight. Many primary user detection techniques have been proposed for use in Cognitive Radio (CR) and their drawbacks and benefits have been examined. However, among the various methods proposed, only some of them can survive in an antagonistic environment. Therefore, another appealing side of eigenvalue based primary user detection algorithms is the fact that they are totally immune to uncertain noise levels so they are called robust detectors. Random matrix theory (RMT) is a useful tool which is applicable across a large number of fields and in the last decade, a considerable applications in signal detection has emerged. In this paper, the detection performances of the eigenvalue based techniques are analyzed based on the exact threshold formulations using RMT. As opposed to the threshold estimations with large number of samples and antennas presented in the literature, the exact thresholds are used for finite number of samples and antennas. The importance of accurate decision threshold selection in spectrum sensing is emphasized. It is shown that the accurate threshold computations enable the achievement of higher detection performances than asymptotic analyses reported in the literature. <br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.27-6-2018.154835">Towards Data-Driven On-Demand Transport</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>18</strong><span class="info-separator">(</span>14<span class="info-separator">)</span><span class="info-separator">: </span>e4</dd><br><dt class="title">Authors: </dt><dd class="value">Malcolm Egan, Jan Drchal, Jan Mrkos, Michal Jakob</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">On-demand transport has been disrupted by Uber and other providers, which are challenging the traditional approach adopted by taxi services. Instead of using fixed passenger pricing and driver payments, there is now the possibility of adaptation to changes in demand and supply. Properly designed, t…</span><span class="full">On-demand transport has been disrupted by Uber and other providers, which are challenging the traditional approach adopted by taxi services. Instead of using fixed passenger pricing and driver payments, there is now the possibility of adaptation to changes in demand and supply. Properly designed, this new approach can lead to desirable tradeos between passenger prices, individual driver profits and provider revenue. However, pricing and allocations—known as mechanisms—are challenging problems falling in the intersection of economics and computer science. In this paper, we develop a general framework to classify mechanisms in on-demand transport. Moreover, we show that data is key to optimizing each mechanism and analyze a dataset provided by a real-world on-demand transport provider. This analysis provides valuable new insights into eÿcient pricing and allocation in on-demand transport.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.27-6-2018.154836">Cooperative Spectrum-Sharing with Two-Way AF Relaying in the Presence of Direct Communications</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>18</strong><span class="info-separator">(</span>14<span class="info-separator">)</span><span class="info-separator">: </span>e5</dd><br><dt class="title">Authors: </dt><dd class="value">Tu Lam Thanh, Tiep M. Hoang</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">In this paper, we investigate a three-phase two-way (TW) amplify-and-forward (AF) relaying for cognitive radio networks. By utilizing the direct communications, the end user can employ diversity combining techniques, i.e., maximal ratio combining (MRC) and selection combining (SC), to achieve the f…</span><span class="full">In this paper, we investigate a three-phase two-way (TW) amplify-and-forward (AF) relaying for cognitive radio networks. By utilizing the direct communications, the end user can employ diversity combining techniques, i.e., maximal ratio combining (MRC) and selection combining (SC), to achieve the full diversity. We derive the closed-form and asymptotic expressions for user and system outage probabilities which allows us to highlight the advantage of cooperative cognitive communications. The numerical results, obtained through compact forms of these outage probabilities, yield that the cognitive TW AF relaying scheme can significantly enhance the reliability of unlicensed networks in which the transmit power at secondary users is strictly governed.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li></ul></section></div><div name="meta"><h2>Scope</h2><div class="abstract"><div class="shortened"><p>Along with the fast development of computer technologies, e.g., ubiquitous computing, cloud computing and cyber-physical system, all kinds of networks (e.g., control network, communication network, sensor network, body area network, social network, opportunistic network, cloud-based network, etc.) …</p></div><div class="full"><p>Along with the fast development of computer technologies, e.g., ubiquitous computing, cloud computing and cyber-physical system, all kinds of networks (e.g., control network, communication network, sensor network, body area network, social network, opportunistic network, cloud-based network, etc.) appeared and were applied in large-scale factories, including a lot of traditional and new industries, e.g., textile industry, coal industry, mining industry, steel industry, machinery industry, petrochemical industry, and biomedical industry, etc. Assisted by various industrial networks, automation in industry can reduce cost greatly because it takes advantage of control systems and information technologies to optimize productivity in the production of goods and delivery of services. However, the industrial environment is dynamic and harsh usually, including extreme temperature, humidity, electromagnetic interference and vibration, which proposed specific requirements to intelligent industrial systems under certain circumstances. All these highlight the criticality of the design, analysis and implementation of intelligent industrial systems.</p></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Topics</h2><div class="abstract"><div class="shortened"><ul> <li>Applications of wireless sensor networks, body area networks in large-scale industrial applications, such as fault theories of wireless networks, including routing, network control and management, reliable transmission and architectures, etc.</li> <li>Applications of social networking, big data, ubiqui…</li> </ul></div><div class="full"><ul> <li>Applications of wireless sensor networks, body area networks in large-scale industrial applications, such as fault theories of wireless networks, including routing, network control and management, reliable transmission and architectures, etc.</li> <li>Applications of social networking, big data, ubiquitous computing, mobile computing, and cloud computing in various industries and services (e.g., intelligent systems enhanced by social networking, cloud-based industrial networks, cloud-assisted intelligent systems, etc.)</li> <li>Analysis of industrial control and communication networks, including network lifetime, security, network scalability, reliability, stability, etc.</li> <li>Design and choice of industrial, intelligent, application-specific network protocols and algorithms (e.g., EtherNet/IP, Ethernet Powerlink, EtherCAT, Modbus-TCP, Profinet, SERCOS III, etc.) at any communication layer</li> <li>Opportunistic networks in the industry, such as underwater sensor networks in sewage treatment systems, including establishing a temporary data transmission structure using available devices (e.g., underwater robot, surface data station, surface sink and under water sink), optimizing horizontal multi-hop data links (e.g., 3D data transmission), etc.</li> <li>Applications of intelligent systems in various industries, including collaborative systems, quality control, optimization, decision support, planning, high-level control concepts (e.g., multi-agent and holonic systems, service-oriented architectures), low-level control concepts (e.g., IEC 61131-3 and IEC 61499-based control), advanced system engineering concepts (e.g., model-driven development, component-based design), supply chains, value chains, virtual organizations, and virtual societies, emergency preparedness, crisis management, business channels, electronic marketplaces, enterprise resources planning, etc.</li> <li>Design and analysis of real-time embedded industrial systems, including real-time computing, real-time operating systems, real-time communications, networked embedded systems technology, etc.</li> <li>Novel control techniques, with respect to process control, equipment control, supervisory control, adaptive control, motion control, etc.</li> <li>Automated manufacturing systems, regarding formal modeling and analysis of manufacturing systems, scheduling of manufacturing systems, queuing systems and petri nets in manufacturing systems, etc.</li> <li>Computational intelligence in automation, including neural, fuzzy, evolutionary approaches in automation, ant colonies optimization and swarm intelligence in automation, machine learning, expert systems, etc.</li> <li>Hardware and software design and development for intelligent systems, such as intelligent and humanized production monitoring and control, etc.</li> <li>Big data analysis and processing in various industries and services, including constructing data analysis models, providing data analysis and processing tools and designing various optimization algorithms based on data analysis.</li> <li>Crowd-sourced behavior analysis in various industry and services, such as measuring and calculating the diffusion direction and speed of gas in the petrochemical industry based on crowd-sourced data from a large number of and various types of sensors, as well as product and service evaluation.</li> <li>Simulation and testbed of current industrial networks and intelligent systems, including network performance analysis, automated manufacturing, intelligent monitoring, disaster prevention, etc.</li> <li>Vision of future smart factories, service, marketing, and their integration, incorporating current existing technologies.</li> <li>Multimedia applications, content management, process management and knowledge management for various industries, services, and engineering education: including multimedia processing, multimedia retrieval, multimedia indexing, image sensing, image processing, image coding, image recognition, etc.</li> <li>Pattern recognition methods for various industries and services: including statistical theory, clustering, similarity measures, unsupervised learning, supervised learning, etc.</li> <li>Survey, review and essay of current industrial networks researches and intelligent systems development.</li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Indexing</h2><div class="abstract"><div class="shortened"><ul> <li><a href="https://www.scopus.com/sourceid/21101049547">Scopus</a></li> <li><a href="https://doaj.org/toc/2410-0218">DOAJ</a></li> <li><a href="https://dblp.uni-trier.de/db/journals/inis/">DBLP</a></li> <li><a href="https://search.crossref.org/?q=2410-0218">CrossRef</a></li> <li>[OCLC Discovery Services](https://www.worldcat.org/search?q=eai+endorsed+tran…</li> </ul></div><div class="full"><ul> <li><a href="https://www.scopus.com/sourceid/21101049547">Scopus</a></li> <li><a href="https://doaj.org/toc/2410-0218">DOAJ</a></li> <li><a href="https://dblp.uni-trier.de/db/journals/inis/">DBLP</a></li> <li><a href="https://search.crossref.org/?q=2410-0218">CrossRef</a></li> <li><a href="https://www.worldcat.org/search?q=eai+endorsed+transactions+on+industrial+networks&qt=owc_search">OCLC Discovery Services</a></li> <li><a href="https://europub.co.uk/journals/8120">EuroPub</a></li> <li><a href="https://publons.com/journal/29023/eai-endorsed-transactions-on-industrial-networks-a">Publons</a></li> <li><a href="https://app.dimensions.ai/discover/publication?or_facet_source_title=jour.1152852">Dimensions</a></li> <li><a href="https://www.proquest.com/products-services/Publicly-Available-Content-Database.html#overviewlinkSection">Publicly Available Content Database (ProQuest)</a></li> <li><a href="https://www.proquest.com/products-services/adv_tech_aero.html">Advanced Technologies & Aerospace Database (ProQuest)</a></li> <li><a href="https://www.proquest.com/products-services/adv_tech_aero.html">SciTech Premium Collection (ProQuest)</a></li> <li><a href="https://scholar.google.sk/scholar?as_ylo=2018&q=source:EAI+source:Endorsed+source:Transactions+source:on+source:Industrial+source:Networks+source:and+source:Intelligent+source:Systems&hl=es&as_sdt=0,5">Google Scholar</a></li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Editorial Board</h2><div class="abstract"><div class="shortened"><ul> <li>Ala Al-Fuqaha (Western Michigan University, USA)</li> <li>Al-Sakib Khan Pathan (Southeast University, Bangladesh)</li> <li>Ammar Rayes (Cisco Systems, USA)</li> <li>Antonino Masaracchia (IIT-CNR, Italy)</li> <li>Athanasios Maglaras (Dr, Prof . ofT.E.I. of Larissa)</li> <li>Berk Canberk (Northeastern University, USA)</li> <li>Ca V. Phan (…</li> </ul></div><div class="full"><ul> <li>Ala Al-Fuqaha (Western Michigan University, USA)</li> <li>Al-Sakib Khan Pathan (Southeast University, Bangladesh)</li> <li>Ammar Rayes (Cisco Systems, USA)</li> <li>Antonino Masaracchia (IIT-CNR, Italy)</li> <li>Athanasios Maglaras (Dr, Prof . ofT.E.I. of Larissa)</li> <li>Berk Canberk (Northeastern University, USA)</li> <li>Ca V. Phan (Ho Chi Minh City University of Technology and Education, Vietnam)</li> <li>Chau Yuen (Singapore University of Technology and Design, Singapore)</li> <li>Chengfei Liu (Swinburne University of Technology, Australia)</li> <li>Chinmoy Kundu (University of Texas at Dallas, USA)</li> <li>Christer Carlsson (Åbo Akademi University, Finland)</li> <li>Chunsheng Zhu (University of British Columbia)</li> <li>Constandinos Mavromoustakis (University of Nicosia, Cyprus)</li> <li>Der-Jiunn Deng (National Changhua University of Education, Taiwan)</li> <li>Dickson Chiu (The University of Hong Kong)</li> <li>Eleanna Kafeza (Athens University of Economics and Business, Greece)</li> <li>Fu-ren Lin (National Tsing Hua University, Taiwan)</li> <li>Gerhard Hancke (University of London, UK)</li> <li>Guangjie Han (Hohai University, China)</li> <li>Guojun Wang (Central South University, China)</li> <li>Hacene Fouchal (University of Reims Champagne-Ardenne, France)</li> <li>Haklae Kim (Chung-Ang University, South Korea)</li> <li>Halil Yetgin (Bitlis Eren University, Turkey)</li> <li>Hideyasu Sasaki (Ritsumeikan University, Kyoto, Japan)</li> <li>Ho-fung Leung (Chinese University of Hong Kong, Hong Kong)</li> <li>Honggang Wang (University of Massachusetts Dartmouth, USA)</li> <li>Hua Hu (Hangzhou Dianzi University, China)</li> <li>Ibrahim Kushchu (Mobile Government Consortium International, UK)</li> <li>Irene Kafeza (Irene Law Office, Greece)</li> <li>Isabelle Comyn-Wattiau (ESSEC Business School Paris, France)</li> <li>Jaime Lloret- Mauri (Universitat Politècnica de València, Spain)</li> <li>Javier M. Aguiar (Universidad de Valladolid, Valladolid, Spain)</li> <li>Jesus Alonso-Zarate (Telecommunications Technology Center of Catalonia, Spain)</li> <li>Jian Yang (Macquarie University, Australia)</li> <li>Jiankun Hu (University of New South Wales, Australia)</li> <li>Jianmin Jiang (Shenzhen University)</li> <li>Jianwei Niu (Beihang University, China)</li> <li>Jinlei Jiang (Tsinghua University, China)</li> <li>Jinsong Wu (Bell Laboratory, China)</li> <li>Joel Rodrigues (Inst. Telecomunicações, Univ. of Beira Interior, Portugal)</li> <li>Juan Trujillo (University of Alicante, Spain)</li> <li>Jucheng Yang (Tianjing University of Technology, China)</li> <li>Junqing Zhang (Queen's University Belfast)</li> <li>KUN WANG (Nanjing University of Posts and Telecommunications)</li> <li>Kuo-Ming Chao (Leader – Distributed Systems and Modelling Research Group, UK)</li> <li>Leandros A. Maglaras (De Montfort University, UK)</li> <li>Lei Wang (Dalian University of Technology, China)</li> <li>Liang Zhou (Nanjing University of Posts and Telecommunications, China)</li> <li>Long D. Nguyen (Dong Nai University, Vietnam)</li> <li>Maggie M. Wang (The University of Hong Kong, Hong Kong)</li> <li>Nghia Duong-Trung (German Research Center for Artificial Intelligence, Germany)</li> <li>Ngo Hoang Tu (Seoul National University of Science and Technology, South Korea)</li> <li>Nguyen Van Nam (Viettel, Vietnam)</li> <li>Nicholas C Romano (Oklahoma State University, USA)</li> <li>Noel Crespi (Institut Mines-Telecom, Telecom SudParis, France)</li> <li>Panlong Yang (PLA University of Science and Technology, China)</li> <li>Pasi Tyrväinen (University of Jyväskylä, Finland)</li> <li>Patrick C.K. Hung (University of Ontario Institute of Technology, Canada)</li> <li>Periklis Chatzimisios (Alexander TEI of Thessaloniki, Greece)</li> <li>Pierluigi Siano (Università degli Studi di Salerno, Italy)</li> <li>Pirkko Walden (Abo Akademi University, Finland)</li> <li>Phuong Bui (Duy Tan University, Vietnam)</li> <li>Raymond Y.K Lau (City University of Hong Kong, Hong Kong)</li> <li>Richard Yu (Carleton University, Canada)</li> <li>Rong Yu (Guangdong University of Technology, China)</li> <li>Rose Hu (Utah State University, USA)</li> <li>Sammy Chan (City University of HongKong, HK)</li> <li>Shing-Chi Cheung (Hong Kong University of Science and Technology, Hong Kong)</li> <li>Stephen J. H. Yang (National Central University, Taiwan)</li> <li>Syed Hassan Ahmed (University of Central Florida, USA)</li> <li>Thanh-Phuong Nguyen (University of Toulon, France)</li> <li>Tran Trung Duy (PTIT, VietNam)</li> <li>Trang Hoang (Ho Chi Minh City University of Technology - Vietnam National University Ho Chi Minh City, Vietnam)</li> <li>Tuan-Minh Pham (Phenikaa University, Vietnam)</li> <li>Umar Zakir Abdul Hamid (Sensible 4 Oy, Helsinki)</li> <li>Victor Leung (The University of British Columbia)</li> <li>Vo Nguyen Son Dr. (Duy Tan University, Vietnam)</li> <li>Wai-Wa Fung (Information Security and Forensics Society, Hong Kong)</li> <li>Walid Gaaloul (Institut National des Télécommunications, France)</li> <li>Weiwei Jiang, (Beijing University of Posts and Telecommunications (BUPT), China)</li> <li>Wendy W. Y. Hui (University of Nottingham at Ningbo, China)</li> <li>William Cheung (Hong Kong Baptist University, Hong Kong)</li> <li>Xianfu Chen (VTT Technical Research Centre of Finland, Finland)</li> <li>Xiang Gui (Massey University, New Zealand)</li> <li>Xiaoling Wu (Chinese Academy of Sciences, China)</li> <li>Xu Wang (Heriot Watt University, UK)</li> <li>Yan Bai (University of Washington Tacoma, USA)</li> <li>Yan Zhang (Simula Research Laboratory and University of Oslo, Norway)</li> <li>Yi Zhuang (Zhejian Gongshang University, China)</li> <li>Yong Li (Tsinghua University, China)</li> <li>Yong Tang (South China Normal University, China)</li> <li>Yuanfang Chen (Institute Mines-Telecom, University Pierre and Marie Curie )</li> <li>Yuexing Peng (Beijing University of Posts and Telecommunications, China)</li> <li>Yuqing Sun (Shangdong University, China)</li> <li>Zakaria Maamar (Zayed University, UAE)</li> <li>Zhangbing Zhou (China University of Geosciences, China)</li> <li>Zhichao Sheng (Shanghai University, China)</li> <li>ZhiMing Cai (Macau University of Science and Technology, Macau)</li> <li>Mithun Mukherjee (Nanjing University of Information Science and Technology, China)</li> <li> </li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Journal Blurb</h2><div class="abstract"><div class="shortened"><p>Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/inis/index</p></div><div class="full"><p>Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/inis/index</p></div> <span class="expander more"><a class="trigger">more »</a></span></div></div></div></section><section class="publication-info"><dl class="metadata"><dt class="title">Publisher</dt> <dd class="value">EAI</dd> <dt class="title">ISSN</dt> <dd class="value">2410-0218</dd> <dt class="title">Volume</dt> <dd class="value">5</dd></dl><dl class="metadata"><dt class="title">Published</dt> <dd class="value">2018-06-27</dd></dl></section></section></form></section></section><div class="clear"></div><footer><div class="links"><a href="https://www.ebsco.com/" target="_blank"><img class="logo ebsco-logo" src="/images/ebsco.png" alt="EBSCO"></a><a href="https://www.proquest.com/" target="_blank"><img class="logo proquest-logo" src="/images/proquest.png" alt="ProQuest"></a><a href="https://dblp.uni-trier.de/db/journals/publ/icst.html" target="_blank"><img class="logo dblp-logo" src="/images/dblp.png" alt="DBLP"></a><a href="https://doaj.org/search?source=%7B%22query%22%3A%7B%22filtered%22%3A%7B%22filter%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22term%22%3A%7B%22index.publisher.exact%22%3A%22European%20Alliance%20for%20Innovation%20(EAI)%22%7D%7D%5D%7D%7D%2C%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22european%20alliance%20for%20innovation%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22index.publisher%22%7D%7D%7D%7D%7Dj" target="_blank"><img class="logo doaj-logo" src="/images/doaj.jpg" alt="DOAJ"></a><a href="https://www.portico.org/publishers/eai/" target="_blank"><img class="logo portico-logo" src="/images/portico.png" alt="Portico"></a><a href="http://eai.eu/" target="_blank"><img class="logo eai-logo" src="/images/eai.png"></a></div></footer></div><div class="footer-container"><div class="footer-width"><div class="footer-column logo-column"><a href="https://eai.eu/"><img src="https://eudl.eu/images/logo_new-1-1.png" alt="EAI Logo"></a></div><div class="footer-column"><h4>About EAI</h4><ul><li><a href="https://eai.eu/who-we-are/">Who We Are</a></li><li><a href="https://eai.eu/leadership/">Leadership</a></li><li><a href="https://eai.eu/research-areas/">Research Areas</a></li><li><a href="https://eai.eu/partners/">Partners</a></li><li><a href="https://eai.eu/media-center/">Media Center</a></li></ul></div><div class="footer-column"><h4>Community</h4><ul><li><a href="https://eai.eu/eai-community/">Membership</a></li><li><a href="https://eai.eu/conferences/">Conference</a></li><li><a href="https://eai.eu/recognition/">Recognition</a></li><li><a href="https://eai.eu/corporate-sponsorship">Sponsor Us</a></li></ul></div><div class="footer-column"><h4>Publish with EAI</h4><ul><li><a href="https://eai.eu/publishing">Publishing</a></li><li><a href="https://eai.eu/journals/">Journals</a></li><li><a href="https://eai.eu/proceedings/">Proceedings</a></li><li><a href="https://eai.eu/books/">Books</a></li><li><a href="https://eudl.eu/">EUDL</a></li></ul></div></div></div><script type="text/javascript" src="https://eudl.eu/js/gacode.js"></script><script src="/js/highlight.pack.js"></script><script>hljs.initHighlightingOnLoad();</script><script type="application/ld+json">{"@context":"http://schema.org","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"http://eudl.eu","name":"Home","image":null}},{"@type":"ListItem","position":2,"item":{"@id":"http://eudl.eu/journals","name":"Journals","image":null}},{"@type":"ListItem","position":3,"item":{"@id":"http://eudl.eu/journal/inis","name":"inis","image":null}},{"@type":"ListItem","position":4,"item":{"@id":"/issue/inis/5/14","name":"Issue 14","image":null}}]}</script></body></html>