CINXE.COM
Search results for: municipal council
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: municipal council</title> <meta name="description" content="Search results for: municipal council"> <meta name="keywords" content="municipal council"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="municipal council" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="municipal council"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 928</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: municipal council</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Correlation of Spirometry with Six Minute Walk Test and Grading of Dyspnoea in COPD Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20K.%20Patel">Anand K. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Patients with COPD have decreased pulmonary functions, which in turn reflect on their day-to-day activities. Objectives: To assess the correlation between functional vital capacity (FVC) and forced expiratory volume in one second (FEV1) with 6 minutes walk test (6MWT). To correlate the Borg rating for perceived exertion scale (Borg scale) and Modified medical research council (MMRC) dyspnea scale with the 6MWT, FVC and FEV1. Method: In this prospective study total 72 patients with COPD diagnosed by the GOLD guidelines were enrolled after taking written consent. They were first asked to rate physical exertion on the Borg scale as well as the modified medical research council dyspnea scale and then were subjected to perform pre and post bronchodilator spirometry followed by 6 minute walk test. The findings were correlated by calculating the Pearson coefficient for each set and obtaining the p-values, with a p < 0.05 being clinically significant. Result: There was a significant correlation between spirometry and 6MWT suggesting that patients with lower measurements were unable to walk for longer distances. However, FVC had the stronger correlation than FEV1. MMRC scale had a stronger correlation with 6MWT as compared to the Borg scale. Conclusion: The study suggests that 6MWT is a better test for monitoring the patients of COPD. In spirometry, FVC should be used in monitoring patients with COPD, instead of FEV1. MMRC scale shows a stronger correlation than the Borg scale, and we should use it more often. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spirometry" title="spirometry">spirometry</a>, <a href="https://publications.waset.org/abstracts/search?q=6%20minute%20walk%20test" title=" 6 minute walk test"> 6 minute walk test</a>, <a href="https://publications.waset.org/abstracts/search?q=MMRC" title=" MMRC"> MMRC</a>, <a href="https://publications.waset.org/abstracts/search?q=Borg%20scale" title=" Borg scale"> Borg scale</a> </p> <a href="https://publications.waset.org/abstracts/83688/correlation-of-spirometry-with-six-minute-walk-test-and-grading-of-dyspnoea-in-copd-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Conceptual Model of a Residential Waste Collection System Using ARENA Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruce%20G.%20Wilson">Bruce G. Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=queues" title=" queues"> queues</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20waste%20collection" title=" residential waste collection"> residential waste collection</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/15259/conceptual-model-of-a-residential-waste-collection-system-using-arena-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegay%20Kahsay%20Gebrekidan">Tsegay Kahsay Gebrekidan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebremariam%20Gebrezgabher%20Gebremedhin"> Gebremariam Gebrezgabher Gebremedhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraha%20Kahsay%20Weldemariam"> Abraha Kahsay Weldemariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Meaza%20Kidane%20Teferi"> Meaza Kidane Teferi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20environment" title=" healthy environment"> healthy environment</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solid%20waste%20management" title=" integrated solid waste management"> integrated solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal" title=" municipal"> municipal</a> </p> <a href="https://publications.waset.org/abstracts/193834/municipal-solid-waste-management-in-ethiopia-systematic-review-of-physical-and-chemical-compositions-and-generation-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Groundwater Contamination Assessment and Mitigation Strategies for Water Resource Sustainability: A Concise Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khawar%20Naeem">Khawar Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomri"> Adel Elomri</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Zghibi"> Adel Zghibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination leakage from municipal solid waste (MSW) landfills is a serious environmental challenge that poses a threat to interconnected ecosystems. It not only contaminates the soil of the saturated zone, but it also percolates down the earth and contaminates the groundwater (GW). In this concise literature review, an effort is made to understand the environmental hazards posed by this contamination to the soil and groundwater, the type of contamination, and possible solutions proposed in the literature. In the study’s second phase, the MSW management practices are explored as the landfill site dump rate and type of MSW into the landfill site directly depend on the MSW management strategies. Case studies from multiple developed and underdeveloped countries are presented, and the complex MSW management system is investigated from an operational perspective to minimize the contamination of GW. One of the significant tools used in the literature was found to be Systems Dynamic Modeling (SDM), which is a simulation-based approach to study the stakeholder’s approach. By employing the SDM approach, the risk of GW contamination can be reduced by devising effective MSW management policies, ultimately resulting in water resource sustainability and regional sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20contamination" title="groundwater contamination">groundwater contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20risk" title=" environmental risk"> environmental risk</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20management" title=" municipal solid waste management"> municipal solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamic%20modeling" title=" system dynamic modeling"> system dynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20sustainability" title=" water resource sustainability"> water resource sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/172776/groundwater-contamination-assessment-and-mitigation-strategies-for-water-resource-sustainability-a-concise-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> The Multipurpose Usage of Livestock Animal Dungs for Food Production in Gwagwalada Area Council of the Federal Capital Territory, Abuja Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Adedotun%20Oke">Michael Adedotun Oke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper, therefore, under study the various multiplier usages of the different Animal Dungs, from the animals such as Rabbits, Cows, Fishes, Sheep, and Poultry manure in the areas council of the Federal Capital Territory Abuja, Nigeria. Thus the various observations, with the pictorial representation, that was taken with the field survey from the different farms in Gwagawalada. Shows that the rabbits dungs are being used in some of the vegetables and crop farms, which serves as the nutrients, reduces the cost of production, ensure profitability, which also increases the different vegetative growth, early maturity, and the development of the crop and this is also applicable to some crops like maize, sweet potatoes. While the manure of the poultry products are being incorporated to fish ponds and the cows dungs are being used to serve as some manure to some certain crops, e.g. Okro, Maize, Pepper. Which provides the necessary nutritious values, but the various number of quantity of different bags of the various application are lacking, and the time of usage, it is also a life germane questions, which there are needs for further adaptive research, that will be involved and the reintroduction of new technology, that will be used in terms of the different methodology such as broadcasting and ring applications, of the dungs at large, while the seasons of the various applications. Thus the paper, therefore, suggested a training programs and production of manuals that will guide the various applications and usage and the effective dissemination of the various used of the simple technology, that will advances and teaching of a new mode of and the time of applications and the various quantity to used, during the applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animals" title="animals">animals</a>, <a href="https://publications.waset.org/abstracts/search?q=usage" title=" usage"> usage</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=dungs" title=" dungs"> dungs</a>, <a href="https://publications.waset.org/abstracts/search?q=feaces" title=" feaces"> feaces</a>, <a href="https://publications.waset.org/abstracts/search?q=gwagawalada" title=" gwagawalada"> gwagawalada</a> </p> <a href="https://publications.waset.org/abstracts/145857/the-multipurpose-usage-of-livestock-animal-dungs-for-food-production-in-gwagwalada-area-council-of-the-federal-capital-territory-abuja-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> How to Improve the Environmental Performance in a HEI in Mexico, an EEA Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Aguirre%20Moreno">Stephanie Aguirre Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Everardo%20Olgu%C3%ADn%20Tiznado"> Jesús Everardo Olguín Tiznado</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Camargo%20Wilson"> Claudia Camargo Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Andr%C3%A9s%20L%C3%B3pez%20Barreras"> Juan Andrés López Barreras </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work presents a proposal to evaluate the environmental performance of a Higher Education Institution (HEI) in Mexico in order to minimize their environmental impact. Given that public education has limited financial resources, it is necessary to conduct studies that support priorities in decision-making situations and thus obtain the best cost-benefit ratio of continuous improvement programs as part of the environmental management system implemented. The methodology employed, adapted from the Environmental Effect Analysis (EEA), weighs the environmental aspects identified in the environmental diagnosis by two characteristics. Number one, environmental priority through the perception of the stakeholders, compliance of legal requirements, and environmental impact of operations. Number two, the possibility of improvement, which depends of factors such as the exchange rate that will be made, the level of investment and the return time of it. The highest environmental priorities, or hot spots, identified in this evaluation were: electricity consumption, water consumption and recycling, and disposal of municipal solid waste. However, the possibility of improvement for the disposal of municipal solid waste is higher, followed by water consumption and recycling, in spite of having an equal possibility of improvement to the energy consumption, time of return and cost-benefit is much greater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20performance" title="environmental performance">environmental performance</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20priority" title=" environmental priority"> environmental priority</a>, <a href="https://publications.waset.org/abstracts/search?q=possibility%20of%20improvement" title=" possibility of improvement"> possibility of improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20improvement%20programs" title=" continuous improvement programs"> continuous improvement programs</a> </p> <a href="https://publications.waset.org/abstracts/18812/how-to-improve-the-environmental-performance-in-a-hei-in-mexico-an-eea-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Effect of Naameh Landfill (Lebanon) on Groundwater Quality of the Surrounding Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Sawaya">Rana Sawaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Halwani"> Jalal Halwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Isam%20Bashour"> Isam Bashour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Nehme"> Nada Nehme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mismanagement of municipal solid wastes in Lebanon might lead to serious environmental problems, especially that a big portion of mixed wastes including putrescible is transferred to Naameh landfill. One of the consequences of municipal solid waste deposition is the production of landfill leachate, which if unproperly treated will threaten the main crucial matrices such as soil, water, and air. The main aim of this one of a kind study is to assess the risk posed to groundwater as a result of leachate infiltration on off-site wells especially after stoppage of Naameh landfill's operation end of the year 2016 and initiation of the capping process which is still ongoing and will be finalized in December 2019. For this purpose, nine representative points around the landfill were selected to undergo physicochemical and microbial analysis on a seasonal basis (every three months). The study extended from the year 2014 until the end of the year 2016 (closure of Naameh landfill). The preliminary data obtained are statistically analyzed using the Statistical Package for Social Sciences (SPSS) and was found in conformity with international and Lebanese norms. Thus, the study will be extended an additional year, especially after the finalization of capping and the results obtained, will enable us to propose new techniques and tools (treatment systems) in water resources management depending on the direction of its usage (domestic, irrigation, drinking). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate"> leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebanon" title=" Lebanon"> Lebanon</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a> </p> <a href="https://publications.waset.org/abstracts/110612/effect-of-naameh-landfill-lebanon-on-groundwater-quality-of-the-surrounding-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Aouf">Gehan Aouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Diala%20Tabbal"> Diala Tabbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El%20Rahim%20Sabsabi"> Abd El Rahim Sabsabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Aouf"> Rashad Aouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title="clayey soil">clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=MSWIFA" title=" MSWIFA"> MSWIFA</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/148067/experimental-investigation-of-the-influence-of-cement-on-soil-municipal-solid-waste-incineration-fly-ash-mix-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyriaki%20Kalaitzidou">Kyriaki Kalaitzidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasia%20Tolkou"> Athanasia Tolkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Raptopoulou"> Christina Raptopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Manassis%20Mitrakas"> Manassis Mitrakas</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Zouboulis"> Anastasios Zouboulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferric%20phosphate" title="ferric phosphate">ferric phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20recovery" title=" phosphorus recovery"> phosphorus recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20removal" title=" phosphorus removal"> phosphorus removal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/23640/removal-andor-recovery-of-phosphates-by-precipitation-as-ferric-phosphate-from-the-effluent-of-a-municipal-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Khiari">Lotfi Khiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Karam"> Antoine Karam</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude-Alla%20Joseph"> Claude-Alla Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20H%C3%A9bert"> Marc Hébert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosolids" title="biosolids">biosolids</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/37772/concentrations-of-some-metallic-trace-elements-in-twelve-sludge-incineration-ashes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Comparison of Constitutional Systems in Religious and Secular States (Iran and Turkey as Role Models)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Muhammad%20Rashwan">Eman Muhammad Rashwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identity of the state in many Middle East countries today, between secularity and religiousness, is an important and controversial question. Specially after the sweeping repels in number of countries that put Islamic parties in power. In this paper two role model states in this respect, are under examination to answer the question of how their identity that was expressed in their constitutions influenced the allocation of power between different state authorities. In the beginning both the criteria used to define the two concepts of secularity and religiousness, and the reason why these two states are particularly chosen for comparison, are explained. The situation in Turkey is firstly indicated. The constitutional system shows that power is divided between parliament, cabinet and the president. The first two authorities have the most significant powers, and generally, the system in Turkey is similar to many other secular states in the world. But when the research moves to the system in Iran, the importance of comparison starts to appear. In this section, the nature of Islamic Shi’a of Iran Republic is discussed, and also its influence on the main and unique authorities of this religious state, which don`t only include the president and council of ministers, but also The Supreme Leader and The Council of Guardians. This paper doesn`t aim to favor a one system over another, and doesn`t discuss the influences of the two systems on the social or economic situation in the two model states. The aim of this paper is to study the influence of excluding, and applying religion in respect to allocation of power in constitutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20law" title="comparative law">comparative law</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutional%20systems" title=" constitutional systems"> constitutional systems</a>, <a href="https://publications.waset.org/abstracts/search?q=secular%20states" title=" secular states"> secular states</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20states" title=" religious states "> religious states </a> </p> <a href="https://publications.waset.org/abstracts/20225/comparison-of-constitutional-systems-in-religious-and-secular-states-iran-and-turkey-as-role-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> The Effectiveness of Spatial Planning And Land Use Management Act, 2013 in Fetakgomo Tubatse Local Municipality: Case Study of Apel Nodal Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hlabishi%20Peter%20Ntloana">Hlabishi Peter Ntloana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present the effectiveness of the Spatial Planning and Land Use Management Act, 2013, in addressing key spatial challenges in Fetakgomo Tubatse Local Municipality, mainly focusing on Apel nodal point. Spatial Planning and Land Use Management Act, 2013, popularly known as SPLUMA, aimed at addressing emerging and existing spatial planning and land use management challenges in South Africa. There are critical key spatial challenges that are continuously encountered in Apel Nodal Point, which include dispersed rural settlement mainly in a communal settlement. The spatial patterns and rural settlements development patterns are a challenge, and such results in uncoordinated human settlements. The objective of this research paper is to analyze the spatial planning of Apel nodal points and determine the effectiveness of the SPLUMA policy. Key Informant interviews were conducted with 20 participants, and also the municipal Spatial Development Framework was considered to explore more challenges and proposed recommendations. The results divulged that there is a huge gap in addressing spatial planning, mainly in rural areas, and correlation with the findings of the Municipal Spatial Development framework. In conclusion, spatial planning remains a critical dilemma in most rural settlements, and there must be programmes and strategies to balance the effectiveness of spatial planning in urban and rural settlements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20management" title="land use management">land use management</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20settlement" title=" rural settlement"> rural settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20development%20framework" title=" spatial development framework"> spatial development framework</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a> </p> <a href="https://publications.waset.org/abstracts/130007/the-effectiveness-of-spatial-planning-and-land-use-management-act-2013-in-fetakgomo-tubatse-local-municipality-case-study-of-apel-nodal-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Achieving Sustainable Agriculture with Treated Municipal Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshu%20Yadav">Reshu Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Joshi"> Himanshu Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Tripathi"> S. K. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title="greenhouse gases">greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20footprint" title=" water footprint"> water footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20irrigation" title=" wastewater irrigation "> wastewater irrigation </a> </p> <a href="https://publications.waset.org/abstracts/29421/achieving-sustainable-agriculture-with-treated-municipal-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Influences of Slope Inclination on the Storage Capacity and Stability of Municipal Solid Waste Landfills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feten%20Chihi">Feten Chihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20Varga"> Gabriella Varga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world's most prevalent waste management strategy is landfills. However, it grew more difficult due to a lack of acceptable waste sites. In order to develop larger landfills and extend their lifespan, the purpose of this article is to expand the capacity of the construction by varying the slope's inclination and to examine its effect on the safety factor. The capacity change with tilt is mathematically determined. Using a new probabilistic calculation method that takes into account the heterogeneity of waste layers, the safety factor for various slope angles is examined. To assess the effect of slope variation on the overall safety of landfills, over a hundred computations were performed for each angle. It has been shown that capacity increases significantly with increasing inclination. Passing from 1:3 to 2:3 slope angles and from 1:3 to 1:2 slope angles, the volume of garbage that can be deposited increases by 40 percent and 25 percent, respectively, of the initial volume. The results of the safety factor indicate that slopes of 1:3 and 1:2 are safe when the standard method (homogenous waste) is used for computation. Using the new approaches, a slope with an inclination of 2:3 can be deemed safe, despite the fact that the calculation does not account for the safety-enhancing effect of daily cover layers. Based on the study reported in this paper, the malty layered nonhomogeneous calculating technique better characterizes the safety factor. As it more closely resembles the actual state of landfills, the employed technique allows for more flexibility in design parameters. This work represents a substantial advance in limiting both safe and economical landfills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill" title="landfill">landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20inclination" title=" slope inclination"> slope inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a> </p> <a href="https://publications.waset.org/abstracts/151175/influences-of-slope-inclination-on-the-storage-capacity-and-stability-of-municipal-solid-waste-landfills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin"> Yi-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/95849/reuse-of-municipal-solid-waste-incinerator-fly-ash-for-the-synthesis-of-zeolite-effects-of-different-operation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Durham Region: How to Achieve Zero Waste in a Municipal Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirka%20Januszkiewicz">Mirka Januszkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20waste" title="municipal waste">municipal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=residential" title=" residential"> residential</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20diversion" title=" waste diversion"> waste diversion</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20waste" title=" zero waste"> zero waste</a> </p> <a href="https://publications.waset.org/abstracts/43268/durham-region-how-to-achieve-zero-waste-in-a-municipal-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> A Study on the Importance and Contributions of Transforming from OEM to ODM in Malaysian Furniture Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Ain%20Haron">Nurul Ain Haron</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Hazmi%20Bachek"> Saiful Hazmi Bachek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafez%20Zainudin"> Hafez Zainudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to establish the importance and contribution of Original Design Manufacturing (ODM) in Malaysian Furniture Industry and to close the gap between the players in the industry. The study confirms that today’s furniture industry favor Original Equipment Manufacturing (OEM) basis. Thus, resulting in the local industry lacking the expertise of designing furniture to a state of no contest. This study method used consists of literature reviews, observation, questionnaire and sessions of interviews. The result shows that the public has from minimum to almost no knowledge of the term Original Design Manufacturing (ODM) concept and the impact towards our current future industry. The manufacturers however, prefers Original Equipment Manufacturing (OEM) concept due to its easy and fast investment returns with the need of product designing process, while the interviews carried out with the authorized council had some convincing urges of doing their part promoting the awareness through trainings and seminars. Findings show that, in the rush of archiving ODM status needs extensive cooperation from many parties that are authorized council, furniture manufacturers, designers and also the public perceptions of labeling local made goods as the black goat. The current mind set of OEM manufacturers need to be change for industry’s future. As Malaysia’s living status constantly increases, so will the demands of a better salary. If these current issues are not resolved, OEM international buyers will definitely have to shift to some other lower cost manufacturer like China or Taiwan. When vendors stopped to order, today’s OEM manufacturers will no longer exist in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20manufacturing" title="design manufacturing">design manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture%20design" title=" furniture design"> furniture design</a>, <a href="https://publications.waset.org/abstracts/search?q=original%20design%20manufacturing" title=" original design manufacturing"> original design manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=original%20equipment%20manufacturing" title=" original equipment manufacturing"> original equipment manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/5033/a-study-on-the-importance-and-contributions-of-transforming-from-oem-to-odm-in-malaysian-furniture-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> A Study on the Treatment of Municipal Waste Water Using Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhaven%20N.%20Tandel">Bhaven N. Tandel</a>, <a href="https://publications.waset.org/abstracts/search?q=Athira%20Rajeev"> Athira Rajeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequencing batch reactor process is a suspended growth process operating under non-steady state conditions which utilizes a fill and draw reactor with complete mixing during the batch reaction step (after filling) and where the subsequent steps of aeration and clarification occur in the same tank. All sequencing batch reactor systems have five steps in common, which are carried out in sequence as follows, (1) fill (2) react (3) settle (sedimentation/clarification) (4) draw (decant) and (5) idle. The study was carried out in a sequencing batch reactor of dimensions 44cmx30cmx70cm with a working volume of 40 L. Mechanical stirrer of 100 rpm was used to provide continuous mixing in the react period and oxygen was supplied by fish tank aerators. The duration of a complete cycle of sequencing batch reactor was 8 hours. The cycle period was divided into different phases in sequence as follows-0.25 hours fill phase, 6 hours react period, 1 hour settling phase, 0.5 hours decant period and 0.25 hours idle phase. The study consisted of two runs, run 1 and run 2. Run 1 consisted of 6 hours aerobic react period and run 2 consisted of 3 hours aerobic react period followed by 3 hours anoxic react period. The influent wastewater used for the study had COD, BOD, NH3-N and TKN concentrations of 308.03±48.94 mg/L, 100.36±22.05 mg/L, 14.12±1.18 mg/L, and 24.72±2.21 mg/L respectively. Run 1 had an average COD removal efficiency of 41.28%, BOD removal efficiency of 56.25%, NH3-N removal efficiency of 86.19% and TKN removal efficiency of 54.4%. Run 2 had an average COD removal efficiency of 63.19%, BOD removal efficiency of 73.85%, NH3-N removal efficiency of 90.74% and TKN removal efficiency of 65.25%. It was observed that run 2 gave better performance than run 1 in the removal of COD, BOD and TKN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20waste%20water" title="municipal waste water">municipal waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobic" title=" aerobic"> aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=anoxic" title=" anoxic"> anoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor" title=" sequencing batch reactor"> sequencing batch reactor</a> </p> <a href="https://publications.waset.org/abstracts/34727/a-study-on-the-treatment-of-municipal-waste-water-using-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Towards a Better Understanding of Planning for Urban Intensification: Case Study of Auckland, New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liu">Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Errol%20Haarhoff"> Errol Haarhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Beattie"> Lee Beattie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2010, New Zealand’s central government re-organise the local governments arrangements in Auckland, New Zealand by amalgamating its previous regional council and seven supporting local government units into a single unitary council, the Auckland Council. The Auckland Council is charged with providing local government services to approximately 1.5 million people (a third of New Zealand’s total population). This includes addressing Auckland’s strategic urban growth management and setting its urban planning policy directions for the next 40 years. This is expressed in the first ever spatial plan in the region – the Auckland Plan (2012). The Auckland plan supports implementing a compact city model by concentrating the larger part of future urban growth and development in, and around, existing and proposed transit centres, with the intention of Auckland to become globally competitive city and achieving ‘the most liveable city in the world’. Turning that vision into reality is operatized through the statutory land use plan, the Auckland Unitary Plan. The Unitary plan replaced the previous regional and local statutory plans when it became operative in 2016, becoming the ‘rule book’ on how to manage and develop the natural and built environment, using land use zones and zone standards. Common to the broad range of literature on urban growth management, one significant issue stands out about intensification. The ‘gap’ between strategic planning and what has been achieved is evident in the argument for the ‘compact’ urban form. Although the compact city model may have a wide range of merits, the extent to which these are actualized largely rely on how intensification actually is delivered. The transformation of the rhetoric of the residential intensification model into reality is of profound influence, yet has enjoyed limited empirical analysis. In Auckland, the establishment of the Auckland Plan set up the strategies to deliver intensification into diversified arenas. Nonetheless, planning policy itself does not necessarily achieve the envisaged objectives, delivering the planning system and high capacity to enhance and sustain plan implementation is another demanding agenda. Though the Auckland Plan provides a wide ranging strategic context, its actual delivery is beholden on the Unitary Plan. However, questions have been asked if the Unitary Plan has the necessary statutory tools to deliver the Auckland Plan’s policy outcomes. In Auckland, there is likely to be continuing tension between the strategies for intensification and their envisaged objectives, and made it doubtful whether the main principles of the intensification strategies could be realized. This raises questions over whether the Auckland Plan’s policy goals can be achieved in practice, including delivering ‘quality compact city’ and residential intensification. Taking Auckland as an example of traditionally sprawl cities, this article intends to investigate the efficacy plan making and implementation directed towards higher density development. This article explores the process of plan development, plan making and implementation frameworks of the first ever spatial plan in Auckland, so as to explicate the objectives and processes involved, and consider whether this will facilitate decision making processes to realize the anticipated intensive urban development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20intensification" title="urban intensification">urban intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=plan%20making" title=" plan making"> plan making</a>, <a href="https://publications.waset.org/abstracts/search?q=governance%20and%20implementation" title=" governance and implementation"> governance and implementation</a> </p> <a href="https://publications.waset.org/abstracts/86789/towards-a-better-understanding-of-planning-for-urban-intensification-case-study-of-auckland-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Characterization of Brewery Wastewater Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20M.%20Enitan">Abimbola M. Enitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Josiah%20Adeyemo"> Josiah Adeyemo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Kumari"> Sheena Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Feroz%20M.%20Swalaha"> Feroz M. Swalaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Bux"> Faizal Bux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brewery%20wastewater" title="Brewery wastewater">Brewery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20effluents" title=" industrial effluents"> industrial effluents</a>, <a href="https://publications.waset.org/abstracts/search?q=physic-chemical%20composition" title=" physic-chemical composition"> physic-chemical composition</a> </p> <a href="https://publications.waset.org/abstracts/33988/characterization-of-brewery-wastewater-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Recyclable Household Solid Waste Generation and Collection in Beijing, China </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tingting%20Liu">Tingting Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yufeng%20Wu"> Yufeng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Tian"> Xi Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Gong"> Yu Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tieyong%20Zuo"> Tieyong Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The household solid waste generated by household in Beijing is increasing quickly due to rapid population growth and lifestyle changes. However, there are no rigorous data on the generation and collection of the recyclable household solid wastes. The Beijing city government needs this information to make appropriate policies and plans for waste management. To address this information need, we undertook the first comprehensive study of recyclable household solid waste for Beijing. We carried out a survey of 500 families across sixteen districts in Beijing. We also analyzed the quantities, spatial distribution and categories of collected waste handled by curbside recyclers and permanent recycling centers for 340 of the 9797 city-defined residential areas of Beijing. From our results, we estimate that the total quantity of recyclable household solid waste was 1.8 million tonnes generated by Beijing household in 2013 and 71.6% of that was collected. The main generation categories were waste paper (24.4%), waste glass bottle (23.7%) and waste furniture (14.3%). The recycling rate was varied among different kinds of municipal solid waste. Also based on our study, we estimate there were 22.8 thousand curbside recyclers and 5.7 thousand permanent recycling centers in Beijing. The problems of household solid waste collecting system were inadequacies of authorized collection centers, skewed ratios of curbside recyclers and authorized permanent recycling centers, weak recycling awareness of residents and lack of recycling resources statistics and appraisal system. According to the existing problems, we put forward the suggestions to improve household solid waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Municipal%20waste%3B%20Recyclable%20waste%3B%20Waste%20categories%3B%20Waste%20collection" title="Municipal waste; Recyclable waste; Waste categories; Waste collection">Municipal waste; Recyclable waste; Waste categories; Waste collection</a> </p> <a href="https://publications.waset.org/abstracts/24733/recyclable-household-solid-waste-generation-and-collection-in-beijing-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Singh">Anupama Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Papia%20Raj"> Papia Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title="municipal solid waste">municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=Patna" title=" Patna"> Patna</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20recycling" title=" sustainable recycling"> sustainable recycling</a> </p> <a href="https://publications.waset.org/abstracts/57013/sustainable-recycling-practices-to-reduce-health-hazards-of-municipal-solid-waste-in-patna-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Feeding Practices and Malnutrition among under Five Children in Communities of Kuje Area Council, Federal Capital Territory Abuja, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clementina%20Ebere%20Okoro">Clementina Ebere Okoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumuyiwa%20Adeyemi%20%20Owolabi"> Olumuyiwa Adeyemi Owolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Doris%20Bola%20%20James"> Doris Bola James</a>, <a href="https://publications.waset.org/abstracts/search?q=Aloysius%20Nwabugo%20Maduforo"> Aloysius Nwabugo Maduforo</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Lingililani%20%20Mbewe"> Andrew Lingililani Mbewe</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Osaruwanmwen%20Isokpunwu"> Christopher Osaruwanmwen Isokpunwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor dietary practices and malnutrition, including severe acute malnutrition among under-five children in Nigeria has remained a great public health concern. This study assessed infant and young child feeding practices and nutritional status of under-five children to determine the prevalence of malnutrition of under-five children in Kuje area council, Abuja. The study was a cross-sectional study. Multi-stage sampling techniques was used in selecting the population that was studied. Probability proportion by size was applied in choosing 30 clusters for the survey using ENA for SMART software 2011 version. Questionnaires were used to obtain information from the population, while appropriate equipment was used for measurements of anthropometric parameters. The data was also subjected to statistical analysis. Results were presented in tables and figures. The result showed that 96.7% of the children were breastfed, 30.6% had early initiation to breastfeeding within first hour of birth and 22.4% were breastfed exclusively up to 6 months, 69.8% fed infants’ colostrum, while 30.2% discarded colostrum. About half of the respondents (49.1%) introduced complementary feeding before six months and 23.2% introduced it after six months while 27.7% had age appropriate timely introduction of complementary feeding. The anthropometric result showed that the prevalence of global acute malnutrition (GAM) was 12.8%, severe wasting prevalence was 5.4%, moderate wasting was 7.4%, underweight was 24.4%, stunting was 40.3% and overweight was 7.0%. The result showed that there is a high prevalence of malnutrition among under-five children in Kuje <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title="malnutrition">malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20five%20children" title=" under five children"> under five children</a>, <a href="https://publications.waset.org/abstracts/search?q=breastfeeding" title=" breastfeeding"> breastfeeding</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20feeding" title=" complementary feeding"> complementary feeding</a> </p> <a href="https://publications.waset.org/abstracts/82677/feeding-practices-and-malnutrition-among-under-five-children-in-communities-of-kuje-area-council-federal-capital-territory-abuja-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluyemi%20O.%20Awolusi">Oluyemi O. Awolusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20M.%20Enitan"> Abimbola M. Enitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Kumari"> Sheena Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Bux"> Faizal Bux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20monooxygenase%20%CE%B1-subunit%20gene" title="Ammonia monooxygenase α-subunit gene">Ammonia monooxygenase α-subunit gene</a>, <a href="https://publications.waset.org/abstracts/search?q=amoA" title=" amoA"> amoA</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia-oxidizing%20bacteria" title=" ammonia-oxidizing bacteria"> ammonia-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=AOB" title=" AOB"> AOB</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite-oxidizing%20bacteria" title=" nitrite-oxidizing bacteria"> nitrite-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=NOB" title=" NOB"> NOB</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20nitrification%20rate" title=" specific nitrification rate"> specific nitrification rate</a> </p> <a href="https://publications.waset.org/abstracts/34054/nitrification-efficiency-and-community-structure-of-municipal-activated-sewage-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">754</span> An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Aerne">Nicholas Aerne</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20P.%20Parmigiani"> John P. Parmigiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20reducing%20valve" title="pressure reducing valve">pressure reducing valve</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply "> water supply </a> </p> <a href="https://publications.waset.org/abstracts/101520/an-evaluation-of-a-prototype-system-for-harvesting-energy-from-pressurized-pipeline-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">753</span> Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkutere%20Chikezie%20Kanu">Nkutere Chikezie Kanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nnamdi%20M.%20Anigbogu"> Nnamdi M. Anigbogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20C.%20Ezike"> Johnson C. Ezike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reciprocal" title="reciprocal">reciprocal</a>, <a href="https://publications.waset.org/abstracts/search?q=torula%20yeast" title=" torula yeast"> torula yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymomonas%20mobilis" title=" Zymomonas mobilis"> Zymomonas mobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste" title=" organic waste"> organic waste</a> </p> <a href="https://publications.waset.org/abstracts/56758/utilization-of-torula-yeast-zymomonas-mobilis-as-mainreciprocal-for-degradation-of-municipal-organic-waste-as-feed-for-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">752</span> Gap between Knowledge and Behaviour in Recycling Domestic Solid Waste: Evidence from Manipal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidya%20Pratap">Vidya Pratap</a>, <a href="https://publications.waset.org/abstracts/search?q=Seena%20Biju"> Seena Biju</a>, <a href="https://publications.waset.org/abstracts/search?q=Keshavdev%20A."> Keshavdev A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the educational town of Manipal (located in southern India) households dispose their wastes without segregation. Mixed wastes (organic, inorganic and hazardous items) are collected either by private collectors or by the local municipal body in trucks and taken to dump yards. These collectors select certain recyclables from the collected trash and sell them to scrap merchants to earn some extra money. Rag pickers play a major role in picking up card board boxes, glass bottles and milk sachets from dump yards and public areas and scrap iron from construction sites for recycling. In keeping with the Indian Prime Minister’s mission of Swachh Bharat (A Clean India), the local municipal administration is taking efforts to ensure segregation of domestic waste at source. With this in mind, each household in a residential area in Manipal was given two buckets – for wet and dry wastes (wet waste referred to organic waste while dry waste included recyclable and hazardous items). A study was conducted in this locality covering a cluster of 145 households to assess the residents’ knowledge of recyclable, organic and hazardous items commonly disposed by households. Another objective of this research was to evaluate the extent to which the residents actually dispose their wastes appropriately. Questionnaires were self-administered to a member of each household with the assistance of individuals speaking the local language whenever needed. Respondents’ knowledge of whether an item was organic, inorganic or hazardous was captured through a questionnaire containing a list of 50 common items. Their behaviour was captured by asking how they disposed these items. Results show that more than 70% of respondents are aware that banana and orange peels, potato skin, egg shells and dried leaves are organic; similarly, more than 70% of them consider newspapers, notebook and printed paper are recyclable. Less than 65% of respondents are aware that plastic bags and covers and plastic bottles are recyclable. However, the results of the respondents’ recycling behaviour is less impressive. Fewer than 35% of respondents recycle card board boxes, milk sachets and glass bottles. Unfortunately, since plastic items like plastic bags and covers and plastic bottles are not accepted by scrap merchants, they are not recycled. This study shows that the local municipal authorities must find ways to recycle plastic into products, alternate fuel etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour" title="behaviour">behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste%20management" title=" plastic waste management"> plastic waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=recyclables" title=" recyclables"> recyclables</a> </p> <a href="https://publications.waset.org/abstracts/74169/gap-between-knowledge-and-behaviour-in-recycling-domestic-solid-waste-evidence-from-manipal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">751</span> M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20Rzina">Q. Rzina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahrouni"> M. Lahrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rida"> S. Rida</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saadaoui"> N. Saadaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Almossaid"> Y. Almossaid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Oufdou"> K. Oufdou</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Fares"> K. Fares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many organic solid wastes are produced in the world. Poultry manure (PM), municipal organic wastes (MOW) and sugar beet lime sludge (LS) are produced in large quantities in Morocco. The co-composting of these organic wastes was investigated. The recycling and the valorization of such wastes is environmentally and economically beneficial especially for PM which is known source of bacterial pathogens. The aerobic biodegradation process was carried out by using three windrows of variable compositions: C1 prepared without LS (only MOW were composted with PM), C2 prepared from MOW plus PM and10% LS; and the last one C3 from MOW plus PM and 20% LS. The main process physico-chemical parameters (temperature, pH, humidity and C/N) and microbiological populations (mesophilic and thermophilic flora, total coliform, fecal coliform, Streptococci, Staphylococcus aureus and mesophilic fungi) were monitored over three months to ascertain the compost maturity and to ensure the compost hygienic aspect. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 10.6-10.9. The organic matter degradation was reached approximately 59% for C2 and C3. In addition, the monitoring of the microbial population showed that the produced composts are mature and hygienic. The agronomic valorization of the final composts was tested on radish plant with tree level of composts and poultry manure without composting. The primary results of field trial showed a growth of radish plant biomass and root development without any phytotoxicity detected which reflects the quality of the composts produced. As for poultry manure it allowed to have a better results than other composts because of its readily available nitrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20organic%20wastes" title=" municipal organic wastes"> municipal organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=radish%20crop" title=" radish crop"> radish crop</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet%20lime%20sludge" title=" sugar beet lime sludge"> sugar beet lime sludge</a> </p> <a href="https://publications.waset.org/abstracts/42134/m-j-rodriguez-f-m-sanchez-b-velardo-p-calvo-m-j-serradilla-j-delgado-j-m-lopez" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">750</span> Ragging and Sludging Measurement in Membrane Bioreactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pompilia%20Buzatu">Pompilia Buzatu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazim%20Qiblawey"> Hazim Qiblawey</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Odai"> Albert Odai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Jamaleddin"> Jana Jamaleddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Nasser"> Mustafa Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20J.%20Judd"> Simon J. Judd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clogging" title="clogging">clogging</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactors" title=" membrane bioreactors"> membrane bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=ragging" title=" ragging"> ragging</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a> </p> <a href="https://publications.waset.org/abstracts/95264/ragging-and-sludging-measurement-in-membrane-bioreactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">749</span> Study of Parking Demand for Offices – Case Study: Kolkata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghamitra%20Roy">Sanghamitra Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, India has experienced the phenomenal rise in the number of registered vehicles and vehicular trips, particularly intra-city trips in most of its urban areas. The increase in vehicle ownership and use have increased parking demand immensely and accommodating the same is now a matter of big concern. Most cities do not have adequate off-street parking facilities thus forcing people to park on the streets. This has resulted in decreased carrying capacity, decreased traffic speed, increased congestion, and increased environmental problems. While integrated multi-modal transportation system is the answer to such problems, parking issues will continue to exist. In Kolkata, only 6.4% land is devoted for roads. The consequences of this huge crunch in road spaces coupled with increased parking demand are severe particularly in the CBD and major commercial areas, making the role of off-street parking facilities in Kolkata even more critical. To meaningfully address parking issues, it is important to identify the factors that influence parking demand so that it can be assessed and comprehensive parking policies and plans for the city can be formulated. This paper aims at identifying the factors that contribute towards parking demand for offices in Kolkata and their degree of correlation with parking demand. The study is limited to home-to-work trips located within Kolkata Municipal Corporation (KMC) where parking related issues are most pronounced. The data for the study is collected through personal interviews, questionnaires and direct observations from offices across the wards of KMC. SPSS is used for classification of the data and analyses of the same. The findings of this study will help in re-assessment of the parking requirements specified in The Kolkata Municipal Corporation Building Rules as a step towards alleviating parking related issues in the city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20rules" title="building rules">building rules</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20spaces" title=" office spaces"> office spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20demand" title=" parking demand"> parking demand</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization "> urbanization </a> </p> <a href="https://publications.waset.org/abstracts/37209/study-of-parking-demand-for-offices-case-study-kolkata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=5" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20council&page=7" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>