CINXE.COM
Search results for: window openings
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: window openings</title> <meta name="description" content="Search results for: window openings"> <meta name="keywords" content="window openings"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="window openings" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="window openings"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 539</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: window openings</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> The Impact of the Windows Opening on the Design of Buildings in Islamic Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20I.%20Dwidar">Salma I. Dwidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20Abdel-Sattar"> Amal A. Abdel-Sattar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The window openings are the key to the relationship between the inside and the outside of any building. It is the eye that sees from, the lunges of the construction, and the ear to hear. The success of the building, as well as the comfort of the uses, depends mainly on this relationship. Usually, windows are affected by human factors like religious, social, political and economic factors as well as environmental factors like climatic, aesthetic and functional factors. In Islamic architecture, the windows were one of the most important elements of physiological and psychological comfort to the users of the buildings. Windows considered one of the main parameters in designing internal and external facade, where the window openings occupied a big part of the formation of the external facade of the buildings. This paper discusses the importance of the window openings and its relationship to residential buildings in the Islamic architecture. It addresses the rules that have been followed in the design of windows in Islamic architecture to achieve privacy and thermal comfort while there are no technological elements within the dwellings. Also, it demonstrates the effects of windows on the building form and identity and how it gives a distinctive fingerprint of the architecture buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=window%20openings" title="window openings">window openings</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Islamic%20architecture" title=" the Islamic architecture"> the Islamic architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20considerations" title=" human considerations"> human considerations</a> </p> <a href="https://publications.waset.org/abstracts/100212/the-impact-of-the-windows-opening-on-the-design-of-buildings-in-islamic-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Understanding Seismic Behavior of Masonry Buildings in Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mirzaee">Alireza Mirzaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soosan%20Abdollahi"> Soosan Abdollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdollahi"> Mohammad Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20constructions" title="masonry constructions">masonry constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20at%20earthquake" title=" performance at earthquake"> performance at earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=MSJC-08%20%28ASD%29" title=" MSJC-08 (ASD)"> MSJC-08 (ASD)</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20wall" title=" bearing wall"> bearing wall</a>, <a href="https://publications.waset.org/abstracts/search?q=tie-column" title=" tie-column"> tie-column</a> </p> <a href="https://publications.waset.org/abstracts/53817/understanding-seismic-behavior-of-masonry-buildings-in-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baoshan%20Wei">Baoshan Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuai%20Han"> Shuai Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing%20Zhang"> Xing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20window%20approach" title=" dynamic window approach"> dynamic window approach</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20aware" title=" environment aware"> environment aware</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20obstacle%20avoidance" title=" local obstacle avoidance"> local obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title=" mobile robots"> mobile robots</a> </p> <a href="https://publications.waset.org/abstracts/102425/an-improved-dynamic-window-approach-with-environment-awareness-for-local-obstacle-avoidance-of-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20fragility" title="wind fragility">wind fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20window" title=" glass window"> glass window</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20rise%20building" title=" high rise building"> high rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20disaster" title=" wind disaster"> wind disaster</a> </p> <a href="https://publications.waset.org/abstracts/61409/wind-fragility-of-window-glass-in-10-story-apartment-with-two-different-window-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Studying the Structural Behaviour of RC Beams with Circular Openings of Different Sizes and Locations Using FE Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shubbar">Ali Shubbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasanain%20Alwan"> Hasanain Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Yu%20Phur"> Ee Yu Phur</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20McLoughlin"> John McLoughlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameer%20Al-khaykan"> Ameer Al-khaykan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to investigate the structural behaviour of RC beams with circular openings of different sizes and locations modelled using ABAQUS FEM software. Seven RC beams with the dimensions of 1200 mm×150 mm×150 mm were tested under three-point loading. Group A consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the shear zone. However, Group B consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the flexural zone. The final RC beam did not have any openings, to provide a control beam for comparison. The results show that increasing the diameter of the openings increases the maximum deflection and the ultimate failure load decreases relative to the control beam. In the shear zone, the presence of the openings caused an increase in the maximum deflection ranging between 4% and 22% and a decrease in the ultimate failure load of between 26% and 36% compared to the control beam. However, the presence of the openings in the flexural zone caused an increase in the maximum deflection of between 1.5% and 19.7% and a decrease in the ultimate failure load of between 6% and 13% relative to the control beam. In this study, the optimum location for placing circular openings was found to be in the flexural zone of the beam with a diameter of less than 30% of the depth of the beam.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20failure%20load" title="ultimate failure load">ultimate failure load</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20deflection" title=" maximum deflection"> maximum deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20zone%20and%20flexural%20zone" title=" shear zone and flexural zone"> shear zone and flexural zone</a> </p> <a href="https://publications.waset.org/abstracts/76164/studying-the-structural-behaviour-of-rc-beams-with-circular-openings-of-different-sizes-and-locations-using-fe-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Comparison of Wind Fragility for Window System in the Simplified 10 and 15-Story Building Considering Exposure Category </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Window system in high rise building is occasionally subjected to an excessive wind intensity, particularly during typhoon. The failure of window system did not affect overall safety of structural performance; however, it could endanger the safety of the residents. In this paper, comparison of fragility curves for window system of two residential buildings was studied. The probability of failure for individual window was determined with Monte Carlo Simulation method. Then, lognormal cumulative distribution function was used to represent the fragility. The results showed that windows located on the edge of leeward wall were more susceptible to wind load and the probability of failure for each window panel increased at higher floors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20fragility" title="wind fragility">wind fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20system" title=" window system"> window system</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20rise%20building" title=" high rise building"> high rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20disaster" title=" wind disaster"> wind disaster</a> </p> <a href="https://publications.waset.org/abstracts/61408/comparison-of-wind-fragility-for-window-system-in-the-simplified-10-and-15-story-building-considering-exposure-category" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sudan">Madhu Sudan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clear%20sky" title="clear sky">clear sky</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight%20factor" title=" daylight factor"> daylight factor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20window" title=" wall window"> wall window</a> </p> <a href="https://publications.waset.org/abstracts/36764/effect-of-orientation-of-the-wall-window-on-energy-saving-under-clear-sky-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mannal%20Tariq">Mannal Tariq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20beams" title=" deep beams"> deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=openings%20in%20deep%20beams" title=" openings in deep beams"> openings in deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=strut%20and%20tie%20modal" title=" strut and tie modal"> strut and tie modal</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behaviour" title=" shear behaviour"> shear behaviour</a> </p> <a href="https://publications.waset.org/abstracts/70797/shear-behaviour-of-rc-deep-beams-with-openings-strengthened-with-carbon-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Exploratory Tests on Structures Resistance during Forest Fires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20M.%20Ribeiro">Luis M. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Raposo"> Jorge Raposo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Oliveira"> Ricardo Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Caballero"> David Caballero</a>, <a href="https://publications.waset.org/abstracts/search?q=Domingos%20X.%20Viegas"> Domingos X. Viegas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the scope of European project WUIWATCH a set of experimental tests on house vulnerability was performed in order to assess the resistance of selected house components during the passage of a forest fire. Among the individual elements most affected by the passage of a wildfire the windows are the ones with greater exposure. In this sense, a set of exploratory experimental tests was designed to assess some particular aspects related to the vulnerability of windows and blinds. At the same time, the importance of leaving them closed (as well as the doors inside a house) during a wild fire was explored in order to give some scientific background to guidelines for homeowners. Three sets of tests were performed: 1. Windows and blinds resistance to heat. Three types of protective blinds were tested (aluminium, PVC and wood) on 2 types of windows (single and double pane). The objective was to assess the structures resistance. 2. The influence of air flow on the transport of burning embers inside a house. A room was built to scale, and placed inside a wind tunnel, with one window and one door on opposite sides. The objective was to assess the importance of leaving an inside door opened on the probability of burning embers entering the room. 3. The influence of the dimension of openings on a window or door related to the probability of ignition inside a house. The objective was to assess the influence of different window openings in relation to the amount of burning particles that can enter a house. The main results were: 1. The purely radiative heat source provides 1.5 KW/m2 of heat impact in the structure, while the real fire generates 10 Kw/m2. When protected by the blind, the single pane window reaches 30ºC on both sides, and the double pane window has a differential of 10º from the side facing the heat (30ºC) and the opposite side (40ºC). Unprotected window constantly increases temperature until the end of the test. Window blinds reach considerably higher temperatures. PVC loses its consistency above 150ºC and melts. 2. Leaving the inside door closed results in a positive pressure differential of +1Pa from the outside to the inside, inhibiting the air flow. Opening the door in half or full reverts the pressure differential to -6 and -8 times respectively, favouring the air flow from the outside to the inside. The number of particles entering the house follows the same tendency. 3. As the bottom opening in a window increases from 0,5 cm to 4 cm the number of particles that enter the house per second also increases greatly. From 5 cm until 80cm there is no substantial increase in the number of entering particles. This set of exploratory tests proved to be an added value in supporting guidelines for home owners, regarding self-protection in WUI areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20fire" title="forest fire">forest fire</a>, <a href="https://publications.waset.org/abstracts/search?q=wildland%20urban%20interface" title=" wildland urban interface"> wildland urban interface</a>, <a href="https://publications.waset.org/abstracts/search?q=house%20vulnerability" title=" house vulnerability"> house vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=house%20protective%20elements" title=" house protective elements"> house protective elements</a> </p> <a href="https://publications.waset.org/abstracts/51928/exploratory-tests-on-structures-resistance-during-forest-fires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Flexural Behavior of Voided Slabs Reinforced With Basalt Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jazlah%20Majeed%20Sulaiman">Jazlah Majeed Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20P."> Lakshmi P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20slabs" title="concrete slabs">concrete slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=openings" title=" openings"> openings</a>, <a href="https://publications.waset.org/abstracts/search?q=BFRP" title=" BFRP"> BFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistant" title=" corrosion resistant"> corrosion resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20static%20analysis" title=" non-linear static analysis"> non-linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/151079/flexural-behavior-of-voided-slabs-reinforced-with-basalt-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> The Effect of Window Position and Ceiling Height on Cooling Load in Architectural Studio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedehzahra%20Mirrahimi">Seyedehzahra Mirrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of variations in window and ceiling heights on cooling inside an architectural training studio with a full-width window. For architectural training, students use the studio more often than they use ordinary classrooms. Therefore, studio dimensions and size, and the window position, directly influence the cooling load. Energy for cooling is one of the most expensive costs in the studio because of the high activity levels of students during the warm season. The methodology of analysis involves measuring energy changes in the Energy Plus <EP> software in Kish Island. It was proved that the cooling energy in an architecture studio can be increased by changing window levels and ceiling heights to add a range of cooling energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20energy" title="cooling energy">cooling energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Plus" title=" Energy Plus"> Energy Plus</a>, <a href="https://publications.waset.org/abstracts/search?q=studio%20classroom" title=" studio classroom"> studio classroom</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20position" title=" window position"> window position</a> </p> <a href="https://publications.waset.org/abstracts/116834/the-effect-of-window-position-and-ceiling-height-on-cooling-load-in-architectural-studio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Parametric Estimation of U-Turn Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonas%20Masresha%20Aymeku">Yonas Masresha Aymeku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric" title="geometric">geometric</a>, <a href="https://publications.waset.org/abstracts/search?q=guiddelines" title=" guiddelines"> guiddelines</a>, <a href="https://publications.waset.org/abstracts/search?q=median" title=" median"> median</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicles" title=" vehicles"> vehicles</a> </p> <a href="https://publications.waset.org/abstracts/184454/parametric-estimation-of-u-turn-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Automatic Post Stroke Detection from Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Gopi%20Jinimole">C. Gopi Jinimole</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harsha"> A. Harsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography%20%28CT%29" title="computed tomography (CT)">computed tomography (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20infarction%20or%20post%20stroke%20region" title=" hyper infarction or post stroke region"> hyper infarction or post stroke region</a>, <a href="https://publications.waset.org/abstracts/search?q=Hounsefield%20Unit%20%28HU%29" title=" Hounsefield Unit (HU)"> Hounsefield Unit (HU)</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20centre%20%28WC%29" title=" window centre (WC)"> window centre (WC)</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20width%20%28WW%29" title=" window width (WW)"> window width (WW)</a> </p> <a href="https://publications.waset.org/abstracts/75360/automatic-post-stroke-detection-from-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Modeling of Silicon Window Layers for Solar Cells Based SIGE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Boukais">Meriem Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ould-%20Abbas"> A. Ould- Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe" title=" SiGe"> SiGe</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion" title=" conversion"> conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/27800/modeling-of-silicon-window-layers-for-solar-cells-based-sige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Simulation Of Silicon Window Layers For Solar Cells Based Sige </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukais%20Meriem">Boukais Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ould-Abbas"> A. Ould-Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiGe" title="SiGe">SiGe</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion" title=" conversion"> conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a> </p> <a href="https://publications.waset.org/abstracts/19153/simulation-of-silicon-window-layers-for-solar-cells-based-sige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">805</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Window Display Design of Thai Craft Product Affecting Perceptions of Thai and Foreign Tourists </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokwan%20Somoon">Kanokwan Somoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chumporn%20Moorapun"> Chumporn Moorapun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A product’s perceived value may increase purchase intention. Value perceptions may differ among cultures. Window displays can be used to increase products’ information and value. This study aims to investigate the relationship between window display design elements and value perceptions of local products between two different cultures. The research methodology is based on survey research. Several window displays in favorite of tourist spots were selected as a unit of study. Also, 100 tourists (56 Thai tourists and 44 foreign tourists) were asked to complete a questionnaire. T-Tests were used to analyze the comparison. Then, the results were compared to Thai and foreign tourists. Finally, the results find that Thai and foreign tourists have different perception towards three design elements that are size of the window, props and colour lighting. The differences of their perceptions signify the different cultural values they adhere to. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-culture" title="cross-culture">cross-culture</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20display" title=" window display"> window display</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20craft%20product" title=" Thai craft product"> Thai craft product</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20perception" title=" environmental perception"> environmental perception</a> </p> <a href="https://publications.waset.org/abstracts/45454/window-display-design-of-thai-craft-product-affecting-perceptions-of-thai-and-foreign-tourists" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> Implementing Two Rotatable Circular Polarized Glass Made Window to Reduce the Amount of Electricity Usage by Air Condition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imtiaz%20Sarwar">Imtiaz Sarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air conditioning in homes may account for one-third of the electricity during period in summer when most of the energy is required in large cities. It is not consuming only electricity but also has a serious impact on environment including greenhouse effect. Circular polarizer filter can be used to selectively absorb or pass clockwise or counter-clock wise circularly polarized light. My research is about putting two circular polarized glasses parallel to each other and make a circular window with it. When we will place two circular polarized glasses exactly same way (0 degree to each other) then nothing will be noticed rather it will work as a regular window through which all light and heat can pass on. While we will keep rotating one of the circular polarized glasses, the angle between the glasses will keep increasing and the window will keep blocking more and more lights. It will completely block all the lights and a portion of related heat when one of the windows will reach 90 degree to another. On the other hand, we can just open the window when fresh air is necessary. It will reduce the necessity of using Air condition too much or consumer will use electric fan rather than air conditioning system. Thus, we can save a significant amount of electricity and we can go green. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20polarizer" title="circular polarizer">circular polarizer</a>, <a href="https://publications.waset.org/abstracts/search?q=window" title=" window"> window</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20condition" title=" air condition"> air condition</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/22141/implementing-two-rotatable-circular-polarized-glass-made-window-to-reduce-the-amount-of-electricity-usage-by-air-condition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Elshafei">Ghada Elshafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20window" title="aluminum window">aluminum window</a>, <a href="https://publications.waset.org/abstracts/search?q=beech%20wood%20window" title=" beech wood window"> beech wood window</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SimaPro%20software" title=" SimaPro software"> SimaPro software</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20frame" title=" window frame"> window frame</a> </p> <a href="https://publications.waset.org/abstracts/34211/life-cycle-assessment-as-a-decision-making-for-window-performance-comparison-in-green-building-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Finite Element Analysis of Reinforced Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintesinot%20Teshome%20Mengsha">Mintesinot Teshome Mengsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20openings" title=" small openings"> small openings</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structural%20walls" title=" reinforced concrete structural walls"> reinforced concrete structural walls</a> </p> <a href="https://publications.waset.org/abstracts/186309/finite-element-analysis-of-reinforced-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Loi">Nguyen Van Loi</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Thanh%20Son"> Le Thanh Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Trung%20Kien"> Tran Trung Kien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=range%20profile" title="range profile">range profile</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20operator%20method" title=" difference operator method"> difference operator method</a>, <a href="https://publications.waset.org/abstracts/search?q=window-based%20method" title=" window-based method"> window-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20target%20recognition" title=" automatic target recognition"> automatic target recognition</a> </p> <a href="https://publications.waset.org/abstracts/134878/analysis-of-formation-methods-of-range-profiles-for-an-x-band-coastal-surveillance-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20Eyben">Felix Eyben</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Schaffrath"> Simon Schaffrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Feldmann"> Markus Feldmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanics" title="damage mechanics">damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structures" title=" steel structures"> steel structures</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20openings" title=" web openings"> web openings</a> </p> <a href="https://publications.waset.org/abstracts/139559/investigations-on-the-influence-of-web-openings-on-the-load-bearing-behavior-of-steel-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Optimizing the Window Geometry Using Fractals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Geetha%20Ramesh">K. Geetha Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramachandraiah"> A. Ramachandraiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylighting" title="daylighting">daylighting</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title=" fractal geometry"> fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20window" title=" fractal window"> fractal window</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/64228/optimizing-the-window-geometry-using-fractals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Sana">Hamdi Sana</a>, <a href="https://publications.waset.org/abstracts/search?q=Emna%20Bouazizi"> Emna Bouazizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Faiz"> Sami Faiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time%20spatial%20big%20data" title="real-time spatial big data">real-time spatial big data</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20itemset" title=" frequent itemset"> frequent itemset</a>, <a href="https://publications.waset.org/abstracts/search?q=transaction-based%20sliding%20window%20model" title=" transaction-based sliding window model"> transaction-based sliding window model</a>, <a href="https://publications.waset.org/abstracts/search?q=timestamp-based%20sliding%20window%20model" title=" timestamp-based sliding window model"> timestamp-based sliding window model</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20frequent%20patterns" title=" weighted frequent patterns"> weighted frequent patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20query" title=" stream query"> stream query</a> </p> <a href="https://publications.waset.org/abstracts/102447/efficient-frequent-itemset-mining-methods-over-real-time-spatial-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El-heweity">Mohamed M. El-heweity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shamel%20Fahmy"> Ahmed Shamel Fahmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Shawky"> Mostafa Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sherif"> Ahmed Sherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=nominal%20capacity" title=" nominal capacity"> nominal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=lipped%20channel%20beam" title=" lipped channel beam"> lipped channel beam</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20opening" title=" web opening"> web opening</a> </p> <a href="https://publications.waset.org/abstracts/155701/numerical-investigation-of-cold-formed-c-section-purlins-with-different-opening-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> On Influence of Web Openings Presence on Structural Performance of Steel and Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Bartus">Jakub Bartus</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Odrobinak"> Jaroslav Odrobinak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, composite steel and concrete structures present an effective structural solution utilizing the full potential of both materials. As they have numerous advantages on the construction side, they can greatly reduce the overall cost of construction, which has been the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behavior having web openings but emphasizes the influence of these openings on the total strain distribution at the level of the steel bottom flange as well. The major investigation was focused on a change in structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime objective. The study is divided into analytical and numerical parts. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered the discretization of the preset structural issue in the form of a finite element (FE) model using beam and shell elements accounting for material non–linearities. As an outcome, several conclusions were drawn describing and explaining the effect of web opening presence on the structural performance of composite beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20flange" title=" steel flange"> steel flange</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20strain" title=" total strain"> total strain</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20opening" title=" web opening"> web opening</a> </p> <a href="https://publications.waset.org/abstracts/167828/on-influence-of-web-openings-presence-on-structural-performance-of-steel-and-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Shear Strength of Reinforced Web Openings in Steel Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Sivakumaran">K. S. Sivakumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Chen"> Bo Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=opening" title=" opening"> opening</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20resistance" title=" shear resistance"> shear resistance</a> </p> <a href="https://publications.waset.org/abstracts/33448/shear-strength-of-reinforced-web-openings-in-steel-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> A Study of New Window Typology for Palestinian Residential Building for More Sustainable Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisreen%20Ardda">Nisreen Ardda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fenestrations are one of the main building envelope elements that play an important role in home social-ecological l factors. They play a vital role in providing natural lighting and ventilation, visual, thermal, and acoustical comfort, and also provide weather-tightness, privacy, a feeling of openness. In most home buildings, fenestrations are controlled manually by the occupants, which significantly impacts occupants' comfort and energy use. Culture plays a central role in the Palestinians window operation behavior. Improved windows design that provides the desired privacy while maintaining the appropriate function of fenestration (natural lighting, thermal comfort, and visual openness) is becoming a necessity. Therefore, this paper proposes a window typology to achieve the social and environmental factors in residential buildings in the West Bank. The window typology and reference building were designed in Rivet 2021, and natural ventilation was carried out in Design Builder 4.3.0.039. The results showed that the proposed typology provides the desired privacy and the feeling of openness without compromising natural ventilation as the existing window did. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=window%20design" title="window design">window design</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20design" title=" passive design"> passive design</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20built%20environment" title=" sustainable built environment"> sustainable built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20material" title=" building material"> building material</a> </p> <a href="https://publications.waset.org/abstracts/141764/a-study-of-new-window-typology-for-palestinian-residential-building-for-more-sustainable-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Qi"> Ruan Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Yan"> Qi Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20vessel" title="vacuum vessel">vacuum vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20opening" title=" large opening"> large opening</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title=" space environment simulator"> space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20design" title=" structure design"> structure design</a> </p> <a href="https://publications.waset.org/abstracts/10540/structure-design-of-vacuum-vessel-with-large-openings-for-spacecraft-thermal-vacuum-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Comprehensive Approach to Control Virus Infection and Energy Consumption in An Occupant Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=SeyedKeivan%20Nateghi">SeyedKeivan Nateghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Kaczmarczyk"> Jan Kaczmarczyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> People nowadays spend most of their time in buildings. Accordingly, maintaining a good quality of indoor air is very important. New universal matters related to the prevalence of Covid-19 also highlight the importance of indoor air conditioning in reducing the risk of virus infection. Cooling and Heating of a house will provide a suitable zone of air temperature for residents. One of the significant factors in energy demand is energy consumption in the building. In general, building divisions compose more than 30% of the world's fundamental energy requirement. As energy demand increased, greenhouse effects emerged that caused global warming. Regardless of the environmental damage to the ecosystem, it can spread infectious diseases such as malaria, cholera, or dengue to many other parts of the world. With the advent of the Covid-19 phenomenon, the previous instructions to reduce energy consumption are no longer responsive because they increase the risk of virus infection among people in the room. Two problems of high energy consumption and coronavirus infection are opposite. A classroom with 30 students and one teacher in Katowice, Poland, considered controlling two objectives simultaneal. The probability of transmission of the disease is calculated from the carbon dioxide concentration of people. Also, in a certain period, the amount of energy consumption is estimated by EnergyPlus. The effect of three parameters of number, angle, and time or schedule of opening windows on the probability of infection transmission and energy consumption of the class were investigated. Parameters were examined widely to determine the best possible condition for simultaneous control of infection spread and energy consumption. The number of opening windows is discrete (0,3), and two other parameters are continuous (0,180) and (8 AM, 2 PM). Preliminary results show that changes in the number, angle, and timing of window openings significantly impact the likelihood of virus transmission and class energy consumption. The greater the number, tilt, and timing of window openings, the less likely the student will transmit the virus. But energy consumption is increasing. When all the windows were closed at all hours of the class, the energy consumption for the first day of January was only 0.2 megajoules. In comparison, the probability of transmitting the virus per person in the classroom is more than 45%. But when all windows were open at maximum angles during class, the chance of transmitting the infection was reduced to 0.35%. But the energy consumption will be 36 megajoules. Therefore, school classrooms need an optimal schedule to control both functions. In this article, we will present a suitable plan for the classroom with natural ventilation through windows to control energy consumption and the possibility of infection transmission at the same time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title="Covid-19">Covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=energyplus" title=" energyplus"> energyplus</a> </p> <a href="https://publications.waset.org/abstracts/149940/comprehensive-approach-to-control-virus-infection-and-energy-consumption-in-an-occupant-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> Nano Sol Based Solar Responsive Smart Window for Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20D.%20D.%20Kuruppu">K. A. D. D. Kuruppu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20De%20Silva"> R. M. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20N.%20De%20Silva"> K. M. N. De Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20windows" title=" smart windows"> smart windows</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a> </p> <a href="https://publications.waset.org/abstracts/82069/nano-sol-based-solar-responsive-smart-window-for-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=window%20openings&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>