CINXE.COM

Search results for: Lidam Fm. Sirt Basin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Lidam Fm. Sirt Basin</title> <meta name="description" content="Search results for: Lidam Fm. Sirt Basin"> <meta name="keywords" content="Lidam Fm. Sirt Basin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Lidam Fm. Sirt Basin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Lidam Fm. Sirt Basin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 698</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Lidam Fm. Sirt Basin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> Facies Analysis and Depositional Environment of Late Cretaceous (Cenomanian) Lidam Formation, South East Sirt Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miloud%20M.%20Abugares">Miloud M. Abugares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study concentrates on the facies analysis, cyclicity and depositional environment of the Upper Cretaceous (Cenomanian) carbonate ramp deposits of the Lidam Formation. Core description, petrographic analysis data from five wells in Hamid and 3V areas in the SE Sirt Basin, Libya were studied in detail. The Lidam Formation is one of the main oil producing carbonate reservoirs in Southeast Sirt Basin and this study represents one of the key detailed studies of this Formation. In this study, ten main facies have been identified. These facies are; Chicken-Wire Anhydrite Facies, Fine Replacive Dolomite Facies, Bioclastic Sandstone Facies, Laminated Shale Facies, Stromatolitic Laminated Mudstone Facies, Ostracod Bioturbated Wackestone Facies, Bioturbated Mollusc Packstone Facies, Foraminifera Bioclastic Packstone/Grainstone Facies Peloidal Ooidal Packstone/Grainstone Facies and Squamariacean/Coralline Algae Bindstone Facies. These deposits are inferred to have formed in supratidal sabkha, intertidal, semi-open restricted shallow lagoon and higher energy shallow shoal environments. The overall depositional setting is interpreted as have been deposited in inner carbonate ramp deposits. The best reservoir quality is encountered in Peloidal- Ooidal Packstone/Grainstone facies, these facies represents storm - dominated shoal to back shoal deposits and constitute the inner part of carbonate ramp deposits. The succession shows a conspicuous hierarchical cyclicity. Porous shoal and backshoal deposits form during maximum transgression system and early regression hemi-cycle of the Lidam Fm. However; oil producing from shoal and backshoal deposits which only occur in the upper intervals 15 - 20 feet, which forms the large scale transgressive cycle of the Upper Lidam Formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin" title="Lidam Fm. Sirt Basin">Lidam Fm. Sirt Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wackestone%20Facies" title=" Wackestone Facies"> Wackestone Facies</a>, <a href="https://publications.waset.org/abstracts/search?q=petrographic" title=" petrographic"> petrographic</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal" title=" intertidal"> intertidal</a> </p> <a href="https://publications.waset.org/abstracts/18247/facies-analysis-and-depositional-environment-of-late-cretaceous-cenomanian-lidam-formation-south-east-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Organic Facies Classification, Distribution, and Their Geochemical Characteristics in Sirt Basin, Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Albriki">Khaled Albriki</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiyu%20Wang"> Feiyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failed rifted epicratonic Sirt basin is located in the northern margin of the African Plate with an area of approximately 600,000 km2. The organofacies' classification, characterization, and its distribution vertically and horizontally are carried out in 7 main troughs with 32 typical selected wells. 7 geological and geochemical cross sections including Rock-Eval data and % TOC data are considered in order to analyze and to characterize the main organofacies with respect to their geochemical and geological controls and also to remove the ambiguity behind the complexity of the orgnofacies types and distributions in the basin troughs from where the oil and gas are generated and migrated. This study confirmes that there are four different classical types of organofacies distributed in Sirt basin F, D/E, C, and B. these four clasical types of organofacies controls the type and amount of the hydrocarbon discovered in Sirt basin. Oil bulk property data from more than 20 oil and gas fields indicate that D/E organoface are significant oil and gas contributors similar to B organoface. In the western Sirt basin in Zallah-Dur Al Abd, Hagfa, Kotla, and Dur Atallha troughs, F organoface is identified for Etel formation, Kalash formation and Hagfa formation having % TOC < 0.6, whereas the good quality D/E and B organofacies present in Rachmat formation and Sirte shale formation both have % TOC > 1.1. Results from the deepest trough (Ajdabiya), Etel (Gas pron in Whadyat trough), Kalash, and Hagfa constitute F organofacies, mainly. The Rachmat and Sirt shale both have D/E to B organofacies with % TOC > 1.2, thus indicating the best organofacies quality in Ajdabiya trough. In Maragh trough, results show that Etel F organofacies and D/E, C to B organofacies related to Middle Nubian, Rachmat, and Sirte shale have %TOC > 0.66. Towards the eastern Sirt basin, in troughs (Hameimat, Faregh, and Sarir), results show that the Middle Nubian, Etel, Rachmat, and Sirte shales are strongly dominated by D/E, C to B (% TOC > 0.75) organofacies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etel" title="Etel">Etel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mid-Nubian" title=" Mid-Nubian"> Mid-Nubian</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20facies" title=" organic facies"> organic facies</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat" title=" Rachmat"> Rachmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirt%20basin" title=" Sirt basin"> Sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirte%20shale" title=" Sirte shale "> Sirte shale </a> </p> <a href="https://publications.waset.org/abstracts/87240/organic-facies-classification-distribution-and-their-geochemical-characteristics-in-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Palynology of the Cretaceous Deposits of the Southeast Sirt Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mahmud%20Gaddah">Khaled Mahmud Gaddah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cretaceous deposits in the southeast of the Sirt Basin of Libya occur in several grabens that formed during a major phase of rifting related to the opening of the Tethys. They include continental deposits of Early Cretaceous age that belong to the Nubian Formation and marginal to fully marine deposits of Late Cretaceous age that belong to the Lidam Formation and transitional beds. The sequence was extensively sampled from twenty-two boreholes and palynologically analysed. Much of the sequence is barren. However, subordinate shales in all formations yield diverse assemblages of poorly to well preserved and thermally middle to post mature palynomorphs. Most of the assemblages contain non-marine palynomorphs (spores, pollen, and freshwater algae), although some contain rare marine elements (dinoflagellate cysts and acritarchs). The palynofloras enabled the recognition of six assemblage zones of the late Barremian-Turonian age based on the dominant and base/top occurrences of stratigraphically useful palynomorphs: AI (Afropollisspp.-Aequitriraditesspinulosus) of late Barremian age; AIIa (Scenedesmusbifidus-S. sp.) of late Barremian?-early Aptian age; AIIb (Afropollisoperculatus-A. zonatus) of Aptian age; AIII (Crybelosporitespannuceus-Afropollisjardinus) of early Albian age; AIV (Subtilisphaera sp.-Lophosphaeridiumspp.) of Cenomanian-?Turonian age; AIV (Pediastrumbifidites-Leiosphaeridiaspp.) of Cenomanian?-Turonian age. These assemblages are comparable to others from Northern Gondwana (particularly from Libya and Egypt) and correspond to established Cretaceous palynofloral provinces. Palynofacies analysis is used to interpret the depositional environments, and five palynofacies types are recognised that reflect increasing marine influence up section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palynology" title="palynology">palynology</a>, <a href="https://publications.waset.org/abstracts/search?q=palynomorphs" title=" palynomorphs"> palynomorphs</a>, <a href="https://publications.waset.org/abstracts/search?q=palynofacies" title=" palynofacies"> palynofacies</a>, <a href="https://publications.waset.org/abstracts/search?q=tethys" title=" tethys"> tethys</a>, <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title=" sirt basin"> sirt basin</a> </p> <a href="https://publications.waset.org/abstracts/149823/palynology-of-the-cretaceous-deposits-of-the-southeast-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Precambrian/Neoproterozoic Sediments of the Sirt Basin, Libya: New Palynological Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20D.%20El-mehdawi">Ali D. El-mehdawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20E.%20Elkanouni"> Ibrahim E. Elkanouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thick pre-Upper Cretaceous sandstones, sandstones intercalated with red/black shale or quarzitic sandstones, traditionally known to range in age from Cambrian to Early Cretaceous, mostly overlie the subsurface basement rocks of the Sirt Basin of Libya. These sediments known as Nubian, Sarir, Amal or Cambro-Ordovician sandstones. They are usually barren of any age datable palynomorphs and microfossils and represent the main hydrocarbon reservoirs in the basin. As a part of an ongoing regional project concerned with revision and updating of the stratigraphic nomenclature of the Sirt Basin and adjacent areas, sixteen core and ditch cutting samples from four wells penetrating the known Cambro-Ordovician sediments in the central and eastern parts of the basin were examined palynologicaly to investigate its age and the depositional paleoenvironment. The samples proved to be barren or yielded rare palynomorph assemblage, which dominated by dark grey to black small and large-sized sphaeromorph acritarchs assemblage of leiosphaerid types. The dominated species are Kildinosphaera chagrinata, K. cf. chagrinata, Kildinella ripheica, Kilinella timanica, Leiosphaeridia asperata and Leiosphaeridia spp. These leiosphaerides assemblage are comparable to those have been reported from the Late Precambrian, late Riphean age in Cyrenaica Platform, NE Libya, and would indicated shallow marine depositional environment. The age assignment suggests that this interval most probably equates to Mourizide, Bir Bayai and Wadi alHayt formations known in the Murzuq, Kufrah and Cyrenaica areas, respectively. This study proves the presence of Precambrian sediments in Jaghbub high and Amal Platform in the eastern part of Sirt Basin and probably in Maradah Trough and Aj Jahamah/Zoltun Platform northwestern part of the Sirt Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palynology" title="palynology">palynology</a>, <a href="https://publications.waset.org/abstracts/search?q=leiosphaerides" title=" leiosphaerides"> leiosphaerides</a>, <a href="https://publications.waset.org/abstracts/search?q=precambrian" title=" precambrian"> precambrian</a>, <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title=" sirt basin"> sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=libya" title=" libya"> libya</a> </p> <a href="https://publications.waset.org/abstracts/172547/precambrianneoproterozoic-sediments-of-the-sirt-basin-libya-new-palynological-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Delineation of Subsurface Tectonic Structures Using Gravity, Magnetic and Geological Data, in the Sarir-Hameimat Arm of the Sirt Basin, NE Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdalla%20Saleem">Mohamed Abdalla Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ellafi"> Hana Ellafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study area is located in the eastern part of the Sirt Basin, in the Sarir-Hameimat arm of the basin, south of Amal High. The area covers the northern part of the Hamemat Trough and the Rakb High. All of these tectonic elements are part of the major and common tectonics that were created when the old Sirt Arch collapsed, and most of them are trending NW-SE. This study has been conducted to investigate the subsurface structures and the sedimentology characterization of the area and attempt to define its development tectonically and stratigraphically. About 7600 land gravity measurements, 22500 gridded magnetic data, and petrographic core data from some wells were used to investigate the subsurface structural features both vertically and laterally. A third-order separation of the regional trends from the original Bouguer gravity data has been chosen. The residual gravity map reveals a significant number of high anomalies distributed in the area, separated by a group of thick sediment centers. The reduction to the pole magnetic map also shows nearly the same major trends and anomalies in the area. Applying the further interpretation filters reveals that these high anomalies are sourced from different depth levels; some are deep-rooted, and others are intruded igneous bodies within the sediment layers. The petrographic sedimentology study for some wells in the area confirmed the presence of these igneous bodies and defined their composition as most likely to be gabbro hosted by marine shale layers. Depth investigation of these anomalies by the average depth spectrum shows that the average basement depth is about 7.7 km, while the top of the intrusions is about 2.65 km, and some near-surface magnetic sources are about 1.86 km. The depth values of the magnetic anomalies and their location were estimated specifically using the 3D Euler deconvolution technique. The obtained results suggest that the maximum depth of the sources is about 4938m. The total horizontal gradient of the magnetic data shows that the trends are mostly extending NW-SE, others are NE-SW, and a third group has an N-S extension. This variety in trend direction shows that the area experienced different tectonic regimes throughout its geological history. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title="sirt basin">sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonics" title=" tectonics"> tectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a> </p> <a href="https://publications.waset.org/abstracts/177510/delineation-of-subsurface-tectonic-structures-using-gravity-magnetic-and-geological-data-in-the-sarir-hameimat-arm-of-the-sirt-basin-ne-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Saleem">Mohamed A. Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirt%20Basin" title="Sirt Basin">Sirt Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zallah%20Trough" title=" Zallah Trough"> Zallah Trough</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20intrusions" title=" igneous intrusions"> igneous intrusions</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20data" title=" seismic data"> seismic data</a> </p> <a href="https://publications.waset.org/abstracts/147555/identification-of-igneous-intrusions-in-south-zallah-trough-sirt-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emir%20Borovac">Emir Borovac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20I%CC%87nan"> Sedat İnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanezzuft%20formation" title="tanezzuft formation">tanezzuft formation</a>, <a href="https://publications.waset.org/abstracts/search?q=ghadames%20basin" title=" ghadames basin"> ghadames basin</a>, <a href="https://publications.waset.org/abstracts/search?q=silurian%20hot%20shale" title=" silurian hot shale"> silurian hot shale</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/189237/thermal-maturity-and-hydrocarbon-generation-histories-of-the-silurian-tannezuft-shale-formation-ghadames-basin-northwestern-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Investigation of Produced and Ground Water Contamination of Al Wahat Area South-Eastern Part of Sirt Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Abdunaser">Khalifa Abdunaser</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Eljawashi"> Salem Eljawashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study area is threatened by numerous petroleum activities. The most important risk is associated with dramatic dangers of misuse and oil and gas pollutions, such as significant volumes of produced water, which refers to waste water generated during the production of oil and natural gas and disposed on the surface surrounded oil and gas fields. This work concerns the impact of oil exploration and production activities on the physical and environment fate of the area, focusing on the investigation and observation of crude oil migration as toxic fluid. Its penetration in groundwater resulted from the produced water impacted by oilfield operations disposed to the earth surface in Al Wahat area. Describing the areal distribution of the dominant groundwater quality constituents has been conducted to identify the major hydro-geochemical processes that affect the quality of water and to evaluate the relations between rock types and groundwater flow to the quality and geochemistry of water in Post-Eocene aquifer. The chemical and physical characteristics of produced water, where it is produced, and its potential impacts on the environment and on oil and gas operations have been discussed. Field work survey was conducted to identify and locate a large number of monitoring wells previously drilled throughout the study area. Groundwater samples were systematically collected in order to detect the fate of spills resulting from the various activities at the oil fields in the study area. Spatial distribution maps of the water quality parameters were built using Kriging methods of interpolation in ArcMap software. Thematic maps were generated using GIS and remote sensing techniques, which were applied to include all these data layers as an active database for the area for the purpose of identifying hot spots and prioritizing locations based on their environmental conditions as well as for monitoring plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirt%20Basin" title="Sirt Basin">Sirt Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20Wahat%20area" title=" Al Wahat area"> Al Wahat area</a>, <a href="https://publications.waset.org/abstracts/search?q=Ground%20water" title=" Ground water "> Ground water </a> </p> <a href="https://publications.waset.org/abstracts/118056/investigation-of-produced-and-ground-water-contamination-of-al-wahat-area-south-eastern-part-of-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Hydrocarbon Source Rocks of the Maragh Low</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elhadi%20Nasr">Elhadi Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Ramadan"> Ibrahim Ramadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geochemical%20analysis%20of%20the%20source%20rocks%20from%20wells%20in%20Eastern%20Sirt%20Basin." title="Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.">Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.</a> </p> <a href="https://publications.waset.org/abstracts/16192/hydrocarbon-source-rocks-of-the-maragh-low" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> SIRT1 Gene Polymorphisms and Its Protein Level in Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olfat%20Shaker">Olfat Shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Wadie"> Miriam Wadie</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20Ali"> Reham Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Yosry"> Ayman Yosry </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer (CRC) is a major cause of mortality and morbidity and accounts for over 9% of cancer incidence worldwide. Silent information regulator 2 homolog 1 (SIRT1) gene is located in the nucleus and exert its effects via modulation of histone and non-histone targets. They function in the cell via histone deacetylase (HDAC) and/or adenosine diphosphate ribosyl transferase (ADPRT) enzymatic activity. The aim of this work was to study the relationship between SIRT1 polymorphism and its protein level in colorectal cancer patients in comparison to control cases. This study includes 2 groups: thirty healthy subjects (control group) & one hundred CRC patients. All subjects were subjected to: SIRT-1 serum level was measured by ELISA and gene polymorphisms of rs12778366, rs375891 and rs3740051 were detected by real time PCR. For CRC patients clinical data were collected (size, site of tumor as well as its grading, obesity) CRC patients showed high significant increase in the mean level of serum SIRT-1 compared to control group (P<0.001). Mean serum level of SIRT-1 showed high significant increase in patients with tumor size ≥5 compared to the size < 5 cm (P<0.05). In CRC patients, percentage of T allele of rs12778366 was significantly lower than controls, CC genotype and C allele C of rs 375891 were significantly higher than control group. In CRC patients, the CC genotype of rs12778366, was 75% in rectosigmoid and 25% in cecum & ascending colon. According to tumor size, the percentage of CC genotype was 87.5% in tumor size ≥5 cm. Conclusion: serum level of SIRT-1 and T allele, C allele of rs12778366 and rs 375891 respectively can be used as diagnostic markers for CRC patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRC" title="CRC">CRC</a>, <a href="https://publications.waset.org/abstracts/search?q=SIRT1" title=" SIRT1"> SIRT1</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphisms" title=" polymorphisms"> polymorphisms</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a> </p> <a href="https://publications.waset.org/abstracts/53267/sirt1-gene-polymorphisms-and-its-protein-level-in-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal">Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Narayan"> J. P. Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20viscoelastic%20simulation" title="3D viscoelastic simulation">3D viscoelastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=basin-generated%20surface%20waves" title=" basin-generated surface waves"> basin-generated surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=basin-shape-ratio%20effects" title=" basin-shape-ratio effects"> basin-shape-ratio effects</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20spectral%20amplification" title=" average spectral amplification"> average spectral amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=aggravation%20factors%20and%20differential%20ground%20motion" title=" aggravation factors and differential ground motion"> aggravation factors and differential ground motion</a> </p> <a href="https://publications.waset.org/abstracts/21727/study-of-effects-of-3d-semi-spheriacl-basin-shape-ratio-on-the-frequency-content-and-spectral-amplitudes-of-the-basin-generated-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Esfandyari%20Darabad">F. Esfandyari Darabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Samadi"> Z. Samadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20number" title="curve number">curve number</a>, <a href="https://publications.waset.org/abstracts/search?q=khiyav%20river%20basin" title=" khiyav river basin"> khiyav river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20estimation" title=" runoff estimation"> runoff estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=SCS" title=" SCS"> SCS</a> </p> <a href="https://publications.waset.org/abstracts/33261/runoff-estimation-in-the-khiyav-river-basin-by-using-the-scs-cn-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ali%20Alafi"> Hana Ali Alafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title="fine migration">fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=soled%20bulging." title=" soled bulging."> soled bulging.</a> </p> <a href="https://publications.waset.org/abstracts/156395/the-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone&#039;s Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20throat" title="pore throat">pore throat</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title=" fine migration"> fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20plugging" title=" solids plugging"> solids plugging</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20loss" title=" porosity loss"> porosity loss</a> </p> <a href="https://publications.waset.org/abstracts/143766/the-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Agricultural Water Consumption Estimation in the Helmand Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Akbari">Mahdi Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Torabi%20Haghighi"> Ali Torabi Haghighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hamun Lakes, located in the Helmand Basin, consisting of four water bodies, were the greatest (>8500 km2) freshwater bodies in Iran plateau but have almost entirely desiccated over the last 20 years. The desiccation of the lakes caused dust storm in the region which has huge economic and health consequences on the inhabitants. The flow of the Hirmand (or Helmand) River, the most important feeding river, has decreased from 4 to 1.9 km3 downstream due to anthropogenic activities. In this basin, water is mainly consumed for farming. Due to the lack of in-situ data in the basin, this research utilizes remote-sensing data to show how croplands and consequently consumed water in the agricultural sector have changed. Based on Landsat NDVI, we suggest using a threshold of around 0.35-0.4 to detect croplands in the basin. Croplands of this basin has doubled since 1990, especially in the downstream of the Kajaki Dam (the biggest dam of the basin). Using PML V2 Actual Evapotranspiration (AET) data and considering irrigation efficiency (≈0.3), we estimate that the consumed water (CW) for farming. We found that CW has increased from 2.5 to over 7.5 km3 from 2002 to 2017 in this basin. Also, the annual average Potential Evapotranspiration (PET) of the basin has had a negative trend in the recent years, although the AET over croplands has an increasing trend. In this research, using remote sensing data, we covered lack of data in the studied area and highlighted anthropogenic activities in the upstream which led to the lakes desiccation in the downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afghanistan-Iran%20transboundary%20Basin" title="Afghanistan-Iran transboundary Basin">Afghanistan-Iran transboundary Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran-Afghanistan%20water%20treaty" title=" Iran-Afghanistan water treaty"> Iran-Afghanistan water treaty</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use" title=" water use"> water use</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20desiccation" title=" lake desiccation"> lake desiccation</a> </p> <a href="https://publications.waset.org/abstracts/147153/agricultural-water-consumption-estimation-in-the-helmand-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Basin Professor, Petroleum Geology Assessor in Indonesia Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arditya%20Nugraha">Arditya Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Herry%20Gunawan"> Herry Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Agung%20P.%20Widodo"> Agung P. Widodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The various possible strategies to find hydrocarbon are explored within a wide ranging of efforts. It started to identify petroleum concept in the basin. The main objectives of this paper are to integrate and develop information, knowledge, and evaluation from Indonesia’s sedimentary basins system in terms of their suitability for exploration activity and estimate the hydrocarbon potential available. The system which compiled data information and knowledge and comprised exploration and production data of all basins in Indonesia called as Basin Professor which stands for Basin Professional and Processor. Basin Professor is a website application using Geography Information System which consists of all information about basin montage, basin summary, petroleum system, stratigraphy, development play, risk factor, exploration history, working area, regional cross section, well correlation, prospect & lead inventory and infrastructure spatial. From 82 identified sedimentary basins, North Sumatra, Central Sumatra, South Sumatera, East Java, Kutai, and Tarakan basins are respectively positioned of the Indonesia’ s mature basin and the most productive basin. The Eastern of Indonesia also have many hydrocarbon potential and discovered several fields in Papua and East Abadi. Basin Professor compiled the well data in all of the basin in Indonesia from mature basin to frontier basin. Well known geological data, subsurface mapping, prospect and lead, resources and established infrastructures are the main factors make these basins have higher suitability beside another potential basin. The hydrocarbon potential resulted from this paper based on the degree of geological data, petroleum, and economic evaluation. Basin Professor has provided by a calculator tool in lead and prospect for estimate the hydrocarbon reserves, recoverable in place and geological risk. Furthermore, the calculator also defines the preliminary economic evaluation such as investment, POT IRR and infrastructures in each basin. From this Basin Professor, petroleum companies are able to estimate that Indonesia has a huge potential of hydrocarbon oil and gas reservoirs and still interesting for hydrocarbon exploration and production activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basin%20summary" title="basin summary">basin summary</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20system" title=" petroleum system"> petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20evaluation" title=" economic evaluation"> economic evaluation</a> </p> <a href="https://publications.waset.org/abstracts/62961/basin-professor-petroleum-geology-assessor-in-indonesia-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Neotectonic Features of the Fethiye-Burdur Fault Zone between Kozluca and Burdur, SW Anatolia, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkant%20Co%C5%9Fkuner">Berkant Coşkuner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmi%20Aksoy"> Rahmi Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to present some preliminary stratigraphic and structural evidence for the Fethiye-Burdur fault zone between Kozluca and Burdur. The Fethiye-Burdur fault zone, the easternmost extension of the west Anatolian extensional province, extends from the Gulf of Fethiye northeastward through Burdur, a distance of about 300 km. The research area is located in the Burdur segment of the fault zone. Here, the fault zone includes several parallel to subparallel fault branching and en-echelon faults that lie within a linear belt, as much as 20 km in width. The direction of movement in the fault zone has been oblique-slip in the left lateral sense. The basement of the study area consists of the Triassic-Eocene Lycian Nappes, the Eocene-Oligocene molasse sediments and the lower Miocene marine rocks. The Burdur basin contains two basin infills. The ancient and deformed basin fill is composed of lacustrine sediments of the upper Miocene-lower Pliocene age. The younger and undeformed basin fill comprises Plio-Quaternary alluvial fan and recent basin-floor deposits and unconformably overlies the ancient basin infill. The Burdur basin is bounded by the NE-SW trending, left lateral oblique-slip normal faults, the Karakent fault on the northwest and the Burdur fault on the southeast. These faults played a key role in the development of the Burdur basin as a pull-apart basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burdur%20basin" title="Burdur basin">Burdur basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethiye-Burdur%20fault%20zone" title=" Fethiye-Burdur fault zone"> Fethiye-Burdur fault zone</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20lateral%20oblique-slip%20fault" title=" left lateral oblique-slip fault"> left lateral oblique-slip fault</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Anatolia" title=" Western Anatolia"> Western Anatolia</a> </p> <a href="https://publications.waset.org/abstracts/44673/neotectonic-features-of-the-fethiye-burdur-fault-zone-between-kozluca-and-burdur-sw-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Can">Ibrahim Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tosuno%C4%9Flu"> Fatih Tosunoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARMA%20models" title="ARMA models">ARMA models</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87oruh%20basin" title=" Çoruh basin"> Çoruh basin</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/31172/synthetic-daily-flow-duration-curves-for-the-coruh-river-basin-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Neotectonic Characteristics of the Western Part of Konya, Central Anatolia, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmi%20Aksoy">Rahmi Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The western part of Konya consists of an area of block faulted basin and ranges. Present day topography is characterized by alternating elongate mountains and depressions trending east-west. A number of depressions occur in the region. One of the large depressions is the E-W trending Kızılören-Küçükmuhsine (KK basin) basin bounded on both sides by normal faults and located on the west of the Konya city. The basin is about 5-12 km wide and 40 km long. Ranges north and south of the basin are composed of undifferentiated low grade metamorphic rocks of Silurian-Cretaceous age and smaller bodies of ophiolites of probable Cretaceous age. The basin fill consists of the upper Miocene-lower Pliocene fluvial, lacustrine, alluvial sediments and volcanic rocks. The younger and undeformed Plio-Quaternary basin fill unconformably overlies the older basin fill and is composed predominantly of conglomerate, mudstone, silt, clay and recent basin floor deposits. The paleostress data on the striated fault planes in the basin indicates NW-SE extension and associated with an NE-SW compression. The eastern end of the KK basin is cut and terraced by the active Konya fault zone. The Konya fault zone is NE trending, east dipping normal fault forming the western boundary of the Konya depression. The Konya depression consists mainly of Plio-Quaternary alluvial complex and recent basin floor sediments. The structural data gathered from the Konya fault zone support normal faulting with a small amount of dextral strike-slip tensional tectonic regime that shaped under the WNW-ESE extensional stress regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia" title="central Anatolia">central Anatolia</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20kinematics" title=" fault kinematics"> fault kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C4%B1z%C4%B1l%C3%B6ren-K%C3%BC%C3%A7%C3%BCkmuhsine%20basin" title=" Kızılören-Küçükmuhsine basin"> Kızılören-Küçükmuhsine basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Konya%20fault%20zone" title=" Konya fault zone"> Konya fault zone</a>, <a href="https://publications.waset.org/abstracts/search?q=neotectonics" title=" neotectonics"> neotectonics</a> </p> <a href="https://publications.waset.org/abstracts/44672/neotectonic-characteristics-of-the-western-part-of-konya-central-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehaiguene%20Madjid">Mehaiguene Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Touhari%20Fadhila"> Touhari Fadhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Meddi%20Mohamed"> Meddi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20assessment" title="hydrological assessment">hydrological assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20resources" title=" surface water resources"> surface water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheliff" title=" Cheliff"> Cheliff</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/36268/hydrologic-balance-and-surface-water-resources-of-the-cheliff-zahrez-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Outcome-Based Water Resources Management in the Gash River Basin, Eastern Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Mohamed%20Omer%20Mirghani">Muna Mohamed Omer Mirghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper responds to one of the key national development strategies and a typical challenge in the Gash Basin as well as in different parts of Sudan, namely managing water scarcity in view of climate change impacts in minor water systems sustaining over 50% of the Sudan population. While now focusing on the Gash river basin, the ultimate aim is to replicate the same approach in similar water systems in central and west Sudan. The key objective of the paper is the identification of outcome-based water governance interventions in Gash Basin, guided by the global Sustainable Development Goal six (SDG 6 on water and sanitation) and the Sudan water resource policy framework. The paper concluded that improved water resources management of the Gash Basin is a prerequisite for ensuring desired policy outcomes of groundwater use and flood risk management purposes. Analysis of various water governance dimensions in the Gash indicated that the operationalization of a Basin-level institutional reform is critically focused on informed actors and adapted practices through knowledge and technologies along with the technical data and capacity needed to make that. Adapting the devolved Institutional structure at state level is recommended to strengthen the Gash basin regulatory function and improve compliance of groundwater users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title="water governance">water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=Gash%20Basin" title=" Gash Basin"> Gash Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20groundwater%20management" title=" integrated groundwater management"> integrated groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan" title=" Sudan"> Sudan</a> </p> <a href="https://publications.waset.org/abstracts/91378/outcome-based-water-resources-management-in-the-gash-river-basin-eastern-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Performance Evaluation of Single Basin Solar Still</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prem%20Singh">Prem Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdeep%20Singh"> Jagdeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml, respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square meter aperture area and annual performance ratio for single basin solar still is 1095 liters and 0.43 liters, respectively. The payback period for micro-stepped solar still is 2.5 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation" title="solar distillation">solar distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20still" title=" solar still"> solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20basin" title=" single basin"> single basin</a>, <a href="https://publications.waset.org/abstracts/search?q=still" title=" still"> still</a> </p> <a href="https://publications.waset.org/abstracts/28282/performance-evaluation-of-single-basin-solar-still" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Babaali">Hamidreza Babaali</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mojtahedi"> Alireza Mojtahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Soori"> Nasim Soori</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Soori"> Saba Soori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the &lrm;energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is &lrm;caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope &lrm;has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D &lrm;software. The numerical model is verified by experimental data of water depth in &lrm;stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air &lrm;entrainment and turbulent dissipation investigated for discharging 300 m<sup>3</sup>/s using K-Ɛ and Re-Normalization Group (RNG) turbulence &lrm;models. The results showed a good agreement between numerical and experimental model&lrm; as &lrm;numerical model can be used to optimize of stilling basins.&lrm; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20and%20numerical%20modelling" title="experimental and numerical modelling">experimental and numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20adverse%20slope" title=" end adverse slope"> end adverse slope</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20%E2%80%8Eparameters" title=" flow ‎parameters"> flow ‎parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=USBR%20II%20stilling%20basin" title=" USBR II stilling basin"> USBR II stilling basin</a> </p> <a href="https://publications.waset.org/abstracts/93364/numerical-modeling-of-flow-in-usbr-ii-stilling-basin-with-end-adverse-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Petroleum Play Fairway Analysis of the Middle Paleocene Lower Beda Formation, Concession 71, South-Central Sirt Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20K.%20Hamed">Hatem K. Hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Hrouda"> Mohamed S. Hrouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Middle Paleocene Lower Beda Formation was deposited in a ramp system with local shoaling. The main constituent is limestone, with subordinate dolomites and Shales. Reservoir quality is largely influenced by depositional environments and diagenesis processes. Generally the reservoir quality of Lower Beda Formation is low risk on the Inferred Horst and in the Southern Shelf where the Lower Beda formation comprises mainly of calcarenties. In the vicinity of the well GG1 the Lower Beda comprise mainly of argillaceous calcilutites and shale. The reservoir quality gradually improves from high risk to moderate risk towards KK1, LL1 and NN1 wells. The average gross thickness of Lower Beda Formation is about 300 ft. The net thickness varies from about 270 ft. in the E1-71 well to about 30 ft. in the vicinity of GG1-71 well. The net thickest of Lower Beda form a NNW-SSW trend with an average of 250 ft. the change in facies is due to change in the depositional environment, from lagoonal to shoal barrier to open marine affected the reservoir quality. The Upper Cretaceous Sirte Shale is the main source rock. It is developed within the three troughs surrounding the study area. S-Marada Trough to the N- E, Gerad Trough to the N N-W, and Abu Tummym Sub-basin to the S-W of the Inferred Horst. Sirte shale reaches 1000ft, of organically rich section. It has good organic contents over large area 2% to 3%. Hydrocarbon shows were encountered in several wells in Beda Formation this is an indication of vertical and lateral migration of hydrocarbon. The overlying Upper Paleocene Khalifa Formation is a transgressive shale, it is an effective regional top seal. Lithofacies variations in Khalifa Shale, from shales to limestones in the southern shelf in R1-71 well approximately 50-75% of the secession is limestone. About 47 million barrel of hydrocarbon recoverable reserves is expected to be trapped in structural and stratigraphic traps in Beda Formation in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirte%20basin" title="Sirte basin">Sirte basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Beda%20formation" title=" Beda formation"> Beda formation</a>, <a href="https://publications.waset.org/abstracts/search?q=concession%2071" title=" concession 71"> concession 71</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20play%20fairway%20analysis" title=" petroleum play fairway analysis"> petroleum play fairway analysis</a> </p> <a href="https://publications.waset.org/abstracts/159363/petroleum-play-fairway-analysis-of-the-middle-paleocene-lower-beda-formation-concession-71-south-central-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Preliminary Analysis for Oil and Gas Geological Characteristics and Exploration Prospects of Doseo Basin in Central Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiqiang%20Song">Haiqiang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiqing%20Liu"> Huiqing Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Doseo basin in Chad, Central Africa is one of the most important oil and gas blocks in the world. However, the low degree of oil and gas exploration and the lack of relevant geological data restrict the understanding and resource evaluation of the basin. To further develop the Doseo basin efficiently, it is urgent to deeply analyze the source rock characteristics and hydrocarbon generation potential of the Doseo basin. Based on seismic and drilling data in recent years, this paper systematically evaluates the geochemical characteristics of source rocks and their generated oils in Doseo Basin, explores the development, distribution, and evolution characteristics of source rocks, and evaluates the exploration potential of Doseo Basin according to the hydrocarbon enrichment law. The results show that the Lower Cretaceous Baliemian and Apudian source rocks in Doseo Basin are well developed, with high organic matter abundance (average TOC≥3%) and good organic matter types (type I~II), which are the main development layers of source rocks, but the organic matter maturity is generally low (Ro of the drilled source rocks is mainly between 0.4%~0.8%). The planar structure also shows that the main hydrocarbon accumulation mode in Doseo sag is the forward tectonic reservoirs such as near source anticlines and faulted noses. Finally, it is estimated that the accumulative resources of the main source rocks in the Doseo Basin are about 4.33× 108T in Apudite and Balim terrace layers. The results of this study will help guide the next step of oil and gas exploration, which is expected to drive the next step of oil and gas development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doseo%20basin" title="Doseo basin">Doseo basin</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous" title=" lower cretaceous"> lower cretaceous</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20rock%20characteristics" title=" source rock characteristics"> source rock characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20characteristics" title=" developmental characteristics"> developmental characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20generation%20potential" title=" hydrocarbon generation potential"> hydrocarbon generation potential</a> </p> <a href="https://publications.waset.org/abstracts/158057/preliminary-analysis-for-oil-and-gas-geological-characteristics-and-exploration-prospects-of-doseo-basin-in-central-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golaleh%20Ghaffari">Golaleh Ghaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheshlagh%20dam" title=" Gheshlagh dam"> Gheshlagh dam</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT "> SWAT </a> </p> <a href="https://publications.waset.org/abstracts/33372/hydrological-modelling-to-identify-critical-erosion-areas-in-gheshlagh-dam-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Determination and Distribution of Formation Thickness Using Seismic and Well Data in Baga/Lake Sub-basin, Chad Basin Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Efomeh%20Omolaiye">Gabriel Efomeh Omolaiye</a>, <a href="https://publications.waset.org/abstracts/search?q=Olatunji%20Seminu"> Olatunji Seminu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Ajadi"> Jimoh Ajadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ayoola%20Jimoh"> Yusuf Ayoola Jimoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nigerian part of the Chad Basin till date has been one of the few critically studied basins, with few published scholarly works, compared to other basins such as Niger Delta, Dahomey, etc. This work was undertaken by the integration of 3D seismic interpretations and the well data analysis of eight wells fairly distributed in block A, Baga/Lake sub-basin in Borno basin with the aim of determining the thickness of Chad, Kerri-Kerri, Fika, and Gongila Formations in the sub-basin. Da-1 well (type-well) used in this study was subdivided into stratigraphic units based on the regional stratigraphic subdivision of the Chad basin and was later correlated with other wells using similarity of observed log responses. The combined density and sonic logs were used to generate synthetic seismograms for seismic to well ties. Five horizons were mapped, representing the tops of the formations on the 3D seismic data covering the block; average velocity function with maximum error/residual of 0.48% was adopted in the time to depth conversion of all the generated maps. There is a general thickening of sediments from the west to the east, and the estimated thicknesses of the various formations in the Baga/Lake sub-basin are Chad Formation (400-750 m), Kerri-Kerri Formation (300-1200 m), Fika Formation (300-2200 m) and Gongila Formation (100-1300 m). The thickness of the Bima Formation could not be established because the deepest well (Da-1) terminates within the formation. This is a modification to the previous and widely referenced studies of over forty decades that based the estimation of formation thickness within the study area on the observed outcrops at different locations and the use of few well data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baga%2FLake%20sub-basin" title="Baga/Lake sub-basin">Baga/Lake sub-basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chad%20basin" title=" Chad basin"> Chad basin</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20thickness" title=" formation thickness"> formation thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/135598/determination-and-distribution-of-formation-thickness-using-seismic-and-well-data-in-bagalake-sub-basin-chad-basin-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lghoul">M. Lghoul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20El%20Goumi"> N. El Goumi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Guernouche"> M. Guernouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic" title="magnetic">magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20trend" title=" structural trend"> structural trend</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20to%20basement" title=" depth to basement"> depth to basement</a> </p> <a href="https://publications.waset.org/abstracts/147461/delineating-subsurface-linear-features-and-faults-under-sedimentary-cover-in-the-bahira-basin-using-integrated-gravity-and-magnetic-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Insights into Kinematics and Basin Development through Palinspastic Reconstructions in Pull-Apart Basin Sunda Strait: Implication for the Opportunity of Hydrocarbon Exploration in Fore-Arc Basin, Western Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfathony%20Krisnabudhi">Alfathony Krisnabudhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syahli%20Reza%20Ananda"> Syahli Reza Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Edo%20Marshal"> M. Edo Marshal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maaruf%20Mukti"> M. Maaruf Mukti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the kinematics and basin development of pull-apart basin Sunda Strait based on palinspastic reconstructions of new acquired seismic reflection data to unravel hydrocarbon exploration opportunity in frontier area, fore-arc basin western Indonesia. We use more than 780 km seismic reflection data that cover whole basin. Structural patterns in Sunda Strait are dominated by northwest-southeast trending planar and listric-normal faults which appear to be graben and half-graben system. The main depocentre of this basin is East Semangko graben and West Semangko graben that are formed by overstepping of Sumatra Fault Zone and Ujungkulon Fault Zone. In father east, another depocentre is recognized as the Krakatau graben. The kinematic evolution started in Middle Miocene, characterized by the initiation of basement faulting with 0% to 7.00% extension. Deposition stratigraphic unit 1 and unit 2 started at 7.00% to 10.00% extension in Late Miocene and recognized as pre-transtensional deposit. The Plio-Pleistocene unit 3 and 4 were deposited as syn-transtensional deposit with 10.00% to 17.00% extension contemporaneously with the initiation of uplift NW-SE trending ridges due to the evolution of cross-basin fault in central basin and the development of en-echelon basin margin in a transtensional system. The control of sedimentation rate and basin subsidence cause the Neogene sediment to be very thick. We suggest that both controls allow thermal and pressure to generate hydrocarbon habitats in the pre-transtensional deposits. It is reinforced by stable kinematic evolution and interpretation of the deposition environment of pre-transtensional deposits that are deposited in the marine environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=palinspastic" title=" palinspastic"> palinspastic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunda%20Strait" title=" Sunda Strait"> Sunda Strait</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20exploration" title=" hydrocarbon exploration"> hydrocarbon exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=fore-arc%20basin" title=" fore-arc basin"> fore-arc basin</a> </p> <a href="https://publications.waset.org/abstracts/93385/insights-into-kinematics-and-basin-development-through-palinspastic-reconstructions-in-pull-apart-basin-sunda-strait-implication-for-the-opportunity-of-hydrocarbon-exploration-in-fore-arc-basin-western-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Bilawal%20Ali%20Shah">Syed Bilawal Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Potwar%20Basin" title="Potwar Basin">Potwar Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Patala%20Shale" title=" Patala Shale"> Patala Shale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rock-Eval%20pyrolysis" title=" Rock-Eval pyrolysis"> Rock-Eval pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Indus%20Basin" title=" Indus Basin"> Indus Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=VR%20%25Ro" title=" VR %Ro"> VR %Ro</a> </p> <a href="https://publications.waset.org/abstracts/179984/petroleum-generative-potential-of-eocene-paleocene-sequences-of-potwar-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lidam%20Fm.%20Sirt%20Basin&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10