CINXE.COM

Search results for: liming materials

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: liming materials</title> <meta name="description" content="Search results for: liming materials"> <meta name="keywords" content="liming materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="liming materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="liming materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6875</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: liming materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6875</span> Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ieva%20Jokubauskaite">Ieva Jokubauskaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvyra%20Slepetiene"> Alvyra Slepetiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Danute%20Karcauskiene"> Danute Karcauskiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Inga%20Liaudanskiene"> Inga Liaudanskiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Amaleviciute"> Kristina Amaleviciute</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20soil" title="acid soil">acid soil</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=long%E2%80%93term%20liming" title=" long–term liming"> long–term liming</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/52987/storage-of-organic-carbon-in-chemical-fractions-in-acid-soil-as-influenced-by-different-liming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6874</span> Field Application of Reduced Crude Conversion Spent Lime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20H.%20Marsh">Brian H. Marsh</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20H.%20Grove"> John H. Grove</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (Typic Hapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year. Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20acidity" title="soil acidity">soil acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=liming%20materials" title=" liming materials"> liming materials</a> </p> <a href="https://publications.waset.org/abstracts/3923/field-application-of-reduced-crude-conversion-spent-lime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6873</span> Utilization of Treated Spend Pot Lining by Product from the Primary Aluminum Production in Cement and Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Tran">Hang Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Brial"> Victor Brial</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Sorelli"> Luca Sorelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudiane%20Ouellet-Plamondon"> Claudiane Ouellet-Plamondon</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Conciatori"> David Conciatori</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Birry"> Laurent Birry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spend pot lining (SPL) is a by-product generated from primary aluminum production. SPL consists of two parts, the first cut is rich in carbonaceous materials, and the second cut is rich in aluminum and silicon oxides. After treating by the hydrometallurgical Low Caustic Leaching and Liming process, the refractory part of SPL becomes an inert material, called LCLL ash in this project. LCLL ash was calcined at different temperatures (800 and 1000°C) and Calcined LCLL ash ground as fines of cement and replacement a part of cement in concrete production. The effect of LCLL ash on the chemical properties, mechanical properties and fresh behavior of concrete was evaluated by isothermal calorimetry, compressive test, and slump test. These results were compared to the reference mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spend%20pot%20lining" title="spend pot lining">spend pot lining</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title=" calorimetry"> calorimetry</a> </p> <a href="https://publications.waset.org/abstracts/141690/utilization-of-treated-spend-pot-lining-by-product-from-the-primary-aluminum-production-in-cement-and-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6872</span> Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Aleali">Hoda Aleali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nastran%20Mansour"> Nastran Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mirzaie"> Maryam Mirzaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoscale%20materials" title="nanoscale materials">nanoscale materials</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20sulfide%20nanoparticles" title=" silver sulfide nanoparticles"> silver sulfide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20absorption" title=" nonlinear absorption"> nonlinear absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20scattering" title=" nonlinear scattering"> nonlinear scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20limiting" title=" optical limiting "> optical limiting </a> </p> <a href="https://publications.waset.org/abstracts/13234/nonlinear-absorption-and-scattering-in-wide-band-gap-silver-sulfide-nanoparticles-colloid-and-their-effects-on-the-optical-limiting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6871</span> An Ontology for Investment in Chinese Steel Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liming%20Chen">Liming Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoxin%20Xu"> Baoxin Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaoyun%20Ding"> Zhaoyun Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu"> Bin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianqiang%20Zhu"> Xianqiang Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of big data, public investors are faced with more complicated information related to investment decisions than ever before. To survive in the fierce competition, it has become increasingly urgent for investors to combine multi-source knowledge and evaluate the companies’ true value efficiently. For this, a rule-based ontology reasoning method is proposed to support steel companies’ value assessment. Considering the delay in financial disclosure and based on cost-benefit analysis, this paper introduces the supply chain enterprises financial analysis and constructs the ontology model used to value the value of steel company. In addition, domain knowledge is formally expressed with the help of Web Ontology Language (OWL) language and SWRL (Semantic Web Rule Language) rules. Finally, a case study on a steel company in China proved the effectiveness of the method we proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=financial%20ontology" title="financial ontology">financial ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20company" title=" steel company"> steel company</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20reasoning" title=" ontology reasoning"> ontology reasoning</a> </p> <a href="https://publications.waset.org/abstracts/116477/an-ontology-for-investment-in-chinese-steel-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6870</span> Characterization of Biocomposites Based on Mussel Shell Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suheyla%20Kocaman">Suheyla Kocaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaaddin%20Cerit"> Alaaddin Cerit</a>, <a href="https://publications.waset.org/abstracts/search?q=Alize%20Yucel"> Alize Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Gozukucuk"> Merve Gozukucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO<sub>3</sub>, shell wastes are suitable to prepare high purity CaCO<sub>3</sub> powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=mussel%20shell" title=" mussel shell"> mussel shell</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/43082/characterization-of-biocomposites-based-on-mussel-shell-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6869</span> Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Sotehi">Nassima Sotehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20materials" title=" thermal materials"> thermal materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/38381/experimental-approach-and-numerical-modeling-of-thermal-properties-of-porous-materials-application-to-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6868</span> Leaf Image Processing: Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Vijayashree">T. Vijayashree</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gopal"> A. Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authenticity" title="authenticity">authenticity</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20processing" title=" imaging processing"> imaging processing</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/5441/leaf-image-processing-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6867</span> Material Analysis for Temple Painting Conservation in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Fu%20Wang">Chen-Fu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin-Ya%20Kung"> Lin-Ya Kung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temple%20painting" title="temple painting">temple painting</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20material" title=" painting material"> painting material</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a> </p> <a href="https://publications.waset.org/abstracts/61781/material-analysis-for-temple-painting-conservation-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6866</span> Polymer Industrial Floors: The Possibility of Using Secondary Raw Materials from Solar Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Kosikova">J. Kosikova</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vacenovska"> B. Vacenovska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vyhnankova"> M. Vyhnankova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fillers" title="fillers">fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20floors" title=" industrial floors"> industrial floors</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20raw%20material" title=" secondary raw material"> secondary raw material</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel" title=" solar panel"> solar panel</a> </p> <a href="https://publications.waset.org/abstracts/10578/polymer-industrial-floors-the-possibility-of-using-secondary-raw-materials-from-solar-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6865</span> Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach">J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brozovsky"> J. Brozovsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials" title="thermal insulating materials">thermal insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool%20fibers" title=" sheep wool fibers"> sheep wool fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/12473/study-of-hydrothermal-behavior-of-thermal-insulating-materials-based-on-natural-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6864</span> The Impact of Using Authentic Materials on Students&#039; Motivation in Learning Indonesian Language as a Foreign Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Elizabeth">Ratna Elizabeth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation is a very important factor since it contributes a lot to the students’ success in learning a language. Using authentic materials is believed as a mean of increasing the motivation. The materials define as authentic if they are not specifically written for the purpose of language teaching. They are genuine spoken or written language data which are drawn from many different sources. The intention of this study is to investigate the impact of using of authentic materials on students’ motivation. A single case study is conducted to the grade 9 students who learn Indonesian Language as a Foreign Language (ILFL) at an international school in Jakarta, Indonesia. Questionnaires are also distributed to the students to know their perceptions on the using of authentic materials. The results show that the using of authentic materials has increased the students’ motivation in learning the language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentic%20materials" title="authentic materials">authentic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ILFL" title=" ILFL"> ILFL</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20learning" title=" language learning"> language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a> </p> <a href="https://publications.waset.org/abstracts/56953/the-impact-of-using-authentic-materials-on-students-motivation-in-learning-indonesian-language-as-a-foreign-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6863</span> Language Teachers as Materials Developers in China: A Multimethod Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiao%20Li">Jiao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Language teachers have been expected to play diversified new roles in times of educational changes. Considering the critical role that materials play in teaching and learning, language teachers have been increasingly involved in developing materials. Using identity as an analytic lens, this study aims to explore language teachers’ experiences as materials developers in China, focusing on the challenges they face and responses to them. It will adopt a multimethod approach. At the first stage, about 12 language teachers who have developed or are developing materials will be interviewed to have a broad view of their experiences. At the second stage, three language teachers who are developing materials will be studied by collecting interview data, policy documents, and data obtained from online observation of their group meetings so as to gain a deeper understanding of their experiences in materials development. It is expected that this study would have implications for teacher development, materials development, and curriculum development as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20changes" title="educational changes">educational changes</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20development" title=" teacher development"> teacher development</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20identity" title=" teacher identity"> teacher identity</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20learning" title=" teacher learning"> teacher learning</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20development" title=" materials development"> materials development</a> </p> <a href="https://publications.waset.org/abstracts/125771/language-teachers-as-materials-developers-in-china-a-multimethod-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6862</span> A Review: Recycled Materials Used in Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oghenerukome%20Akponovo">Oghenerukome Akponovo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20I.%20Onyebuchukwu"> Lynda I. Onyebuchukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/159098/a-review-recycled-materials-used-in-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6861</span> The Use of Authentic Materials in the Chinese Language Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiwen%20Jin">Yiwen Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Xiao"> Jing Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinfang%20Su"> Pinfang Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentic%20materials" title="authentic materials">authentic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20as%20a%20second%20language" title=" Chinese as a second language"> Chinese as a second language</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20use%20of%20digital%20resources" title=" developmental use of digital resources"> developmental use of digital resources</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20development%20for%20language%20teaching" title=" materials development for language teaching"> materials development for language teaching</a> </p> <a href="https://publications.waset.org/abstracts/143062/the-use-of-authentic-materials-in-the-chinese-language-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6860</span> Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miko%C5%82aj%20Szyca">Mikołaj Szyca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20pair" title=" friction pair"> friction pair</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20microtomography" title=" X-ray computed microtomography"> X-ray computed microtomography</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a> </p> <a href="https://publications.waset.org/abstracts/146421/microtomographic-analysis-of-friction-materials-used-in-the-brakes-of-railway-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6859</span> Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulla%20Almulla">Abdulla Almulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20Mahdi"> Wafaa Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=NORMs" title=" NORMs"> NORMs</a>, <a href="https://publications.waset.org/abstracts/search?q=HNBRA" title=" HNBRA"> HNBRA</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20concentrations" title=" activity concentrations"> activity concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/154286/radiological-hazard-assessments-and-control-of-radionuclides-emitted-from-building-materials-in-kuwait-using-expert-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6858</span> Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20Ajayi">Michael T. Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwakemi%20E.%20Fapojuwo"> Oluwakemi E. Fapojuwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same farmers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20building" title="capacity building">capacity building</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20agents" title=" extension agents"> extension agents</a>, <a href="https://publications.waset.org/abstracts/search?q=dissemination" title=" dissemination"> dissemination</a>, <a href="https://publications.waset.org/abstracts/search?q=information%2Ftechnologies" title=" information/technologies"> information/technologies</a> </p> <a href="https://publications.waset.org/abstracts/12624/capacity-building-of-extension-agents-for-sustainable-dissemination-of-agricultural-information-and-technologies-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6857</span> Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isik%20Cetintav">Isik Cetintav</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenk%20Misirli"> Cenk Misirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilmaz%20Can"> Yilmaz Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Damla%20Gunel"> Damla Gunel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multimetallic" title="multimetallic">multimetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/76639/experimental-and-numerical-processes-of-open-die-forging-of-multimetallic-materials-with-the-usage-of-different-lubricants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6856</span> Lightweight Materials for Building Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Keprdova">Sarka Keprdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikol%20Zizkova"> Nikol Zizkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the lightweighting of polymer-modified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20aggregates" title=" light aggregates"> light aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20materials" title=" lightweight materials"> lightweight materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20mortars" title=" lightweight mortars"> lightweight mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-modified%20mortars" title=" polymer-modified mortars"> polymer-modified mortars</a> </p> <a href="https://publications.waset.org/abstracts/18439/lightweight-materials-for-building-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6855</span> Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Brychta">Josef Brychta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Kratochvil"> Jiri Kratochvil</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Pagac"> Marek Pagac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grained%20cutting%20materials%20difficult%20to%20machine%20materials" title="grained cutting materials difficult to machine materials">grained cutting materials difficult to machine materials</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20utilization" title=" optimum utilization"> optimum utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/6321/optimization-of-cutting-parameters-during-machining-of-fine-grained-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6854</span> Beliefs in Auspicious Materials of Shop Entrepreneurs in Maung Hat Yai, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punya%20Tepsing">Punya Tepsing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to study the beliefs in auspicious materials of entrepreneurs in Muang Hat Yai. The data were collected via documentary research and field work including interviews, observations shops in Hat Yai which used auspicious materials to bring lucks to the shops. The results were as follows. The beliefs in auspicious materials that the entrepreneurs had were of three areas: 1) The auspicious materials could correct the improperness of the shop location, for example, the shop situated opposite a branch road, a shrine, or a bank. The owner usually corrected it by putting Chinese auspicious materials in front of or in the shop, for example, a lion holding a sword in his mouth, or a mirror, etc. 2) The auspicious materials could bring in more income. The owner of the shop usually put the auspicious materials such as a cat beckoning and a bamboo fish trap believed to trap money in front of or inside the shop. 3) The auspicious materials like turtles, paired fish and a monster holding the moon in his mouth could solve life problems including health, family, and safety problems. The use of these auspicious materials showed the blending of the beliefs of the Chinese shop entrepreneurs with the Thai folk beliefs. What is interesting is that Hat Yai is located near the three southern border provinces which are the unrest area and this may cause the number of tourists to decline. This prompted them to build a mechanism in adjusting themselves both to save their lives and to increase the number of customers. Auspicious materials can make them feel more confident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belief" title="belief">belief</a>, <a href="https://publications.waset.org/abstracts/search?q=auspicious%20materials" title=" auspicious materials"> auspicious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=shop" title=" shop"> shop</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneur" title=" entrepreneur"> entrepreneur</a>, <a href="https://publications.waset.org/abstracts/search?q=Maung%20Hat%20Yai" title=" Maung Hat Yai"> Maung Hat Yai</a> </p> <a href="https://publications.waset.org/abstracts/3683/beliefs-in-auspicious-materials-of-shop-entrepreneurs-in-maung-hat-yai-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6853</span> A Review on the Use of Salt in Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Pungercar">Vesna Pungercar</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Musso"> Florian Musso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20material" title=" building material"> building material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20properties" title=" hygrothermal properties"> hygrothermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/131197/a-review-on-the-use-of-salt-in-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6852</span> Termite Mound Floors: Ready-to-Use Ecological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yann%C3%A9%20Etienne">Yanné Etienne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=termite%20mound%20soil" title="termite mound soil">termite mound soil</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20materials" title=" ecological materials"> ecological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20tests" title=" geotechnical tests"> geotechnical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20and%20mechanical%20tests" title=" physical and mechanical tests"> physical and mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/143494/termite-mound-floors-ready-to-use-ecological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6851</span> Application of Unconventional Materials for ‘Statement Jewellery’</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaleni%20Bajpai">Shaleni Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Niveditha"> V. Niveditha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fashion accessory is a product which used to give secondary way to the wearer’s outfit. The term came into use in the 19th century and was specifically chosen to complement the wearer’s look. The aim of project was to introduce the unconventional materials for statement jewellery. The materials used for statement jewellery were waste Cd’s, and scrap fabric. These materials were amalgamated with the traditional raw materials such as beads, sequins, charms and chains to form unique jewellery sets. The sets were divided into two categories based on the type of raw material used i.e. Category 1: Clef-Cd Jewellery, Category 2: Crumb-Fabric Jewellery. Each Jewellery set consisted of a necklace, a pair of earrings, a ring and a bracelet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statement%20jewellery" title="statement jewellery">statement jewellery</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional" title=" unconventional"> unconventional</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20fabric" title=" crumb fabric"> crumb fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=Cd%E2%80%99s" title=" Cd’s"> Cd’s</a> </p> <a href="https://publications.waset.org/abstracts/64409/application-of-unconventional-materials-for-statement-jewellery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6850</span> Recycling Carbon Fibers/Epoxy Composites Wastes in Building Materials Based on Geopolymer Binders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Saccani">A. Saccani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Lancellotti"> I. Lancellotti</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bursi"> E. Bursi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scraps deriving from the production of epoxy-carbon fibers composites have been recycled as a reinforcement to produce building materials. Short chopped fibers (5-7 mm length) have been added at low volume content (max 10%) to produce mortars. The microstructure, mechanical properties (mainly flexural strength) and dimensional stability of the derived materials have been investigated. Two different types of matrix have been used: one based on conventional Portland Cement and the other containing geopolymers formed starting from activated metakaolin and fly ashes. In the second case the materials is almost completely made of recycled ingredients. This is an attempt to produce reliable materials solving waste disposal problems. The first collected results show promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibres" title=" carbon fibres"> carbon fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ashes" title=" fly ashes"> fly ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title=" geopolymers"> geopolymers</a> </p> <a href="https://publications.waset.org/abstracts/83019/recycling-carbon-fibersepoxy-composites-wastes-in-building-materials-based-on-geopolymer-binders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6849</span> The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Scalisi">Francesca Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesare%20Sposito"> Cesare Sposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20construction" title=" material construction"> material construction</a> </p> <a href="https://publications.waset.org/abstracts/77543/the-eco-efficient-construction-a-review-of-embodied-energy-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6848</span> Mathematical Analysis of Matrix and Filler Formulation in Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20A.%20Afolabi">Olusegun A. Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndivhuwo%20Ndou"> Ndivhuwo Ndou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=percentage%20weight" title=" percentage weight"> percentage weight</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20fraction" title=" volume fraction"> volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/182436/mathematical-analysis-of-matrix-and-filler-formulation-in-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6847</span> Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoua%20Zohra">Draoua Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine"> Harrane Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymers" title="block copolymers">block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29" title=" poly(e-caprolactone)"> poly(e-caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/97417/synthesis-of-solid-polymeric-materials-by-maghnite-h-as-a-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6846</span> Isolation and Identification of Novel Escherichia Marmotae Spp.: Their Enzymatic Biodegradation of Zearalenone and Deep-oxidation of Deoxynivalenol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Murtaza">Bilal Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Li"> Xiaoyu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liming%20Dong"> Liming Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Kashif%20Saleemi"> Muhammad Kashif Saleemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gen%20Li"> Gen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bowen%20Jin"> Bowen Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lili%20Wang"> Lili Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongping%20Xu"> Yongping Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium spp. produce numerous mycotoxins, such as zearalenone (ZEN), deoxynivalenol (DON), and its acetylated compounds, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) (15-ADON). In a co-culture system, the soil-derived Escherichia marmotae strain degrades ZEN and DON into 3-keto-DON and DOM-1 via enzymatic deep-oxidation. When pure mycotoxins were subjected to Escherichia marmotae in culture flasks, degradation, and detoxification were also attained. DON and ZEN concentrations, ambient pH, incubation temperatures, bacterium concentrations, and the impact of acid treatment on degradation were all evaluated. The results of the ELISA and high-performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) tests demonstrated that the concentration of mycotoxins exposed to Escherichia marmotae was significantly lower than the control. ZEN levels were reduced by 43.9%, while zearalenone sulfate ([M/z 397.1052 C18H21O8S1) was discovered as a derivative of ZEN converted by microbes to a less toxic molecule. Furthermore, Escherichia marmotae appeared to metabolize DON 35.10% into less toxic derivatives (DOM-1 at m/z 281 of [DON - O]+ and 3-keto-DON at m/z 295 of [DON - 2H]+). These results show that Escherichia marmotae can reduce Fusarium mycotoxins production, degrade pure mycotoxins, and convert them to less harmful compounds, opening up new possibilities for study and innovation in mycotoxin detoxification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title="mycotoxins">mycotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=zearalenone" title=" zearalenone"> zearalenone</a>, <a href="https://publications.waset.org/abstracts/search?q=deoxynivalenol" title=" deoxynivalenol"> deoxynivalenol</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20degradation" title=" bacterial degradation"> bacterial degradation</a> </p> <a href="https://publications.waset.org/abstracts/163980/isolation-and-identification-of-novel-escherichia-marmotae-spp-their-enzymatic-biodegradation-of-zearalenone-and-deep-oxidation-of-deoxynivalenol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=229">229</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=230">230</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liming%20materials&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10