CINXE.COM
Search results for: plume
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plume</title> <meta name="description" content="Search results for: plume"> <meta name="keywords" content="plume"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plume" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plume"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 56</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plume</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Chen">Li Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Skvortsov"> Alex Skvortsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Norwood"> Chris Norwood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbly%20plume" title="bubbly plume">bubbly plume</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyant%20plume" title=" buoyant plume"> buoyant plume</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20acoustics" title=" bubble acoustics"> bubble acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=self-similarity%20model" title=" self-similarity model"> self-similarity model</a> </p> <a href="https://publications.waset.org/abstracts/65469/prediction-of-bubbly-plume-characteristics-using-the-self-similarity-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrigank%20Sahai">Mrigank Sahai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sri%20Raghu"> R. Sri Raghu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision-less%20gas" title="collision-less gas">collision-less gas</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=plume%20impingement" title=" plume impingement"> plume impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=rarefied%20exhaust%20plume" title=" rarefied exhaust plume"> rarefied exhaust plume</a> </p> <a href="https://publications.waset.org/abstracts/58713/modelling-of-lunar-landers-thrusters-exhaust-plume-impingement-in-vacuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Suleiman%20Mohammed%20Al-Mashrafi">Khaled Suleiman Mohammed Al-Mashrafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compositional%20plumes" title="compositional plumes">compositional plumes</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded%20domain" title=" bounded domain"> bounded domain</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20boundaries" title=" vertical boundaries"> vertical boundaries</a> </p> <a href="https://publications.waset.org/abstracts/188763/the-influence-of-a-vertical-rotation-on-the-fluid-dynamics-of-compositional-plumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> The Effect of Water Droplets Size in Fire Fighting Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tassadit%20Tabouche">Tassadit Tabouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplets" title="droplets">droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20spray" title=" water spray"> water spray</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets%20size" title=" water droplets size"> water droplets size</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/7533/the-effect-of-water-droplets-size-in-fire-fighting-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Gibbons">M. J. Gibbons</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Robinson"> A. J. Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20cooling" title="electronic cooling">electronic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray" title=" electrospray"> electrospray</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray%20plume%20dispersion" title=" electrospray plume dispersion"> electrospray plume dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20cooling" title=" spray cooling"> spray cooling</a> </p> <a href="https://publications.waset.org/abstracts/36285/electrospray-plume-characterisation-of-a-single-source-cone-jet-for-micro-electronic-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hussaina">M. Hussaina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahboobb"> K. Mahboobb</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Z.%20Ilyasa"> S. Z. Ilyasa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shaheena"> S. Shaheena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making%20process" title="decision making process">decision making process</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20doses" title=" radiation doses"> radiation doses</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20emergency" title=" nuclear emergency"> nuclear emergency</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20implications" title=" meteorological implications"> meteorological implications</a> </p> <a href="https://publications.waset.org/abstracts/138237/implications-of-meteorological-parameters-in-decision-making-for-public-protective-actions-during-a-nuclear-emergency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edda%20E.%20Falcone">Edda E. Falcone</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinzia%20Federico"> Cinzia Federico</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Bellomo"> Sergio Bellomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Brusca"> Lorenzo Brusca</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfredi%20Longo"> Manfredi Longo</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20D%E2%80%99Alessandro"> Walter D’Alessandro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioindicators" title="bioindicators">bioindicators</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=feathers" title=" feathers"> feathers</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20plume" title=" volcanic plume"> volcanic plume</a> </p> <a href="https://publications.waset.org/abstracts/101001/metal-contents-in-bird-feathers-columba-livia-from-mt-etna-volcano-volcanic-plume-contribution-and-biological-fractionation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinzia%20Federico">Cinzia Federico</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetano%20Giudice"> Gaetano Giudice</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvatore%20Inguaggiato"> Salvatore Inguaggiato</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Liuzzo"> Marco Liuzzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Pedone"> Maria Pedone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Vita"> Fabio Vita</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Kern"> Christoph Kern</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20La%20Pica"> Leonardo La Pica</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovannella%20Pecoraino"> Giovannella Pecoraino</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Calderone"> Lorenzo Calderone</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Francofonte"> Vincenzo Francofonte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DOAS" title="DOAS">DOAS</a>, <a href="https://publications.waset.org/abstracts/search?q=fumaroles" title=" fumaroles"> fumaroles</a>, <a href="https://publications.waset.org/abstracts/search?q=plume" title=" plume"> plume</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20laser" title=" tunable laser"> tunable laser</a> </p> <a href="https://publications.waset.org/abstracts/36476/in-plume-h2o-co2-h2s-and-so2-in-the-fumarolic-field-of-la-fossa-cone-vulcano-island-aeolian-archipelago" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Low">Bryan Low</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20bunkering" title="ammonia bunkering">ammonia bunkering</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=harmful%20algal%20blooms" title=" harmful algal blooms"> harmful algal blooms</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20nitrogen%20cycle" title=" marine nitrogen cycle"> marine nitrogen cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=oceanography" title=" oceanography"> oceanography</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20modeling" title=" water quality modeling"> water quality modeling</a> </p> <a href="https://publications.waset.org/abstracts/179063/ammonia-bunkering-spill-scenarios-modelling-plumes-behaviour-and-potential-to-trigger-harmful-algal-blooms-in-the-singapore-straits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Improving Recovery Reuse and Irrigation Scheme Efficiency – North Gaza Emergency Sewage Treatment Project as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20S.%20Kishawi">Yaser S. Kishawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadi%20R.%20Ali"> Sadi R. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Palestine, Gaza Strip (365 km2 and 1.8 million inhabitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed an effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20reuse%20scheme" title=" recovery and reuse scheme"> recovery and reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=north%20gaza" title=" north gaza"> north gaza</a> </p> <a href="https://publications.waset.org/abstracts/27630/improving-recovery-reuse-and-irrigation-scheme-efficiency-north-gaza-emergency-sewage-treatment-project-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20S.%20Kishawi">Yaser S. Kishawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadi%20R.%20Ali"> Sadi R. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20reuse%20scheme" title=" recovery reuse scheme"> recovery reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21235/the-assessment-of-infiltrated-wastewater-on-the-efficiency-of-recovery-reuse-and-irrigation-scheme-north-gaza-emergency-sewage-treatment-project-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> 3-Dimensional Contamination Conceptual Site Model: A Case Study Illustrating the Multiple Applications of Developing and Maintaining a 3D Contamination Model during an Active Remediation Project on a Former Urban Gasworks Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duncan%20Fraser">Duncan Fraser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3-Dimensional (3D) conceptual site model was developed using the Leapfrog Works® platform utilising a comprehensive historical dataset for a large former Gasworks site in Fitzroy, Melbourne. The gasworks had been constructed across two fractured geological units with varying hydraulic conductivities. A Newer Volcanic (basaltic) outcrop covered approximately half of the site and was overlying a fractured Melbourne formation (Siltstone) bedrock outcropping over the remaining portion. During the investigative phase of works, a dense non-aqueous phase liquid (DNAPL) plume (coal tar) was identified within both geological units in the subsurface originating from multiple sources, including gasholders, tar wells, condensers, and leaking pipework. The first stage of model development was undertaken to determine the horizontal and vertical extents of the coal tar in the subsurface and assess the potential causality between potential sources, plume location, and site geology. Concentrations of key contaminants of interest (COIs) were also interpolated within Leapfrog to refine the distribution of contaminated soils. The model was subsequently used to develop a robust soil remediation strategy and achieve endorsement from an Environmental Auditor. A change in project scope, following the removal and validation of the three former gasholders, necessitated the additional excavation of a significant volume of residual contaminated rock to allow for the future construction of two-story underground basements. To assess financial liabilities associated with the offsite disposal or thermal treatment of material, the 3D model was updated with three years of additional analytical data from the active remediation phase of works. Chemical concentrations and the residual tar plume within the rock fractures were modelled to pre-classify the in-situ material and enhance separation strategies to prevent the unnecessary treatment of material and reduce costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title="3D model">3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20land" title=" contaminated land"> contaminated land</a>, <a href="https://publications.waset.org/abstracts/search?q=Leapfrog" title=" Leapfrog"> Leapfrog</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/150672/3-dimensional-contamination-conceptual-site-model-a-case-study-illustrating-the-multiple-applications-of-developing-and-maintaining-a-3d-contamination-model-during-an-active-remediation-project-on-a-former-urban-gasworks-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jadon%20Matthiasa">Jadon Matthiasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Cindy%20Donga"> Cindy Donga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al%20Jibouria"> Ali Al Jibouria</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin%20Kuo"> Hsin Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20emissions" title="air emissions">air emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Plume%20Model" title=" Gaussian Plume Model"> Gaussian Plume Model</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution%20monitoring" title=" air pollution monitoring"> air pollution monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20dispersion%20visualization" title=" pollutant dispersion visualization"> pollutant dispersion visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20analysis" title=" heavy metal analysis"> heavy metal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title=" environmental impact assessment"> environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20control%20effectiveness" title=" emission control effectiveness"> emission control effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/192268/assessment-of-air-pollutant-dispersion-and-soil-contamination-the-critical-role-of-matlab-modeling-in-evaluating-emissions-from-the-covanta-municipal-solid-waste-incineration-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nipa%20Debnath">Nipa Debnath</a>, <a href="https://publications.waset.org/abstracts/search?q=Harinarayan%20Das"> Harinarayan Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiko%20Kawaguchi"> Takahiko Kawaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naonori%20Sakamoto"> Naonori Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Shinozaki"> Kazuo Shinozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisao%20Suzuki"> Hisao Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Wakiya"> Naoki Wakiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Aurora%20PLD" title="Dynamic Aurora PLD">Dynamic Aurora PLD</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20anisotropy" title=" magnetic anisotropy"> magnetic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=spinodal%20decomposition" title=" spinodal decomposition"> spinodal decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel%20ferrite%20thin%20film" title=" spinel ferrite thin film"> spinel ferrite thin film</a> </p> <a href="https://publications.waset.org/abstracts/86528/evolution-of-microstructure-through-phase-separation-via-spinodal-decomposition-in-spinel-ferrite-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Besbes">Sonia Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20El%20Hajem"> Mahmoud El Hajem</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Ben%20Aissia"> Habib Ben Aissia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Yves%20Champagne"> Jean Yves Champagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Jay"> Jacques Jay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20DPM%20and%20VOF%20model" title=" coupled DPM and VOF model"> coupled DPM and VOF model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/64223/computational-fluid-dynamics-cfd-simulation-of-transient-flow-in-a-rectangular-bubble-column-using-a-coupled-discrete-phase-model-dpm-and-volume-of-fluid-vof-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Beyond the “Breakdown” of Karman Vortex Street</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20Kumar%20S.">Ajith Kumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankaran%20Namboothiri"> Sankaran Namboothiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankrish%20J."> Sankrish J.</a>, <a href="https://publications.waset.org/abstracts/search?q=SarathKumar%20S."> SarathKumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anil%20Lal"> S. Anil Lal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20over%20circular%20cylinder" title=" flow over circular cylinder"> flow over circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection%20flow" title=" mixed convection flow"> mixed convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20breakdown" title=" vortex breakdown"> vortex breakdown</a> </p> <a href="https://publications.waset.org/abstracts/27437/beyond-the-breakdown-of-karman-vortex-street" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B3mez%20R.%20Marta">Gómez R. Marta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mart%C3%ADn%20M.%20Jes%C3%BAs%20Mar%C3%ADa"> Martín M. Jesús María</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20dispersion" title="atmospheric dispersion">atmospheric dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=dioxin" title=" dioxin"> dioxin</a>, <a href="https://publications.waset.org/abstracts/search?q=furan" title=" furan"> furan</a>, <a href="https://publications.waset.org/abstracts/search?q=incinerator" title=" incinerator"> incinerator</a> </p> <a href="https://publications.waset.org/abstracts/56836/study-of-polychlorinated-dibenzo-p-dioxins-and-dibenzofurans-dispersion-in-the-environment-of-a-municipal-solid-waste-incinerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Barbosa">Sofia Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Pinto"> Mariana Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ant%C3%B3nio%20Almeida"> José António Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Carvalho"> Edgar Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Diamantino"> Catarina Diamantino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Contamination%20plume%20migration" title="Contamination plume migration">Contamination plume migration</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20of%20PCA%20scores" title=" K-means of PCA scores"> K-means of PCA scores</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20and%20mine%20water%20monitoring" title=" groundwater and mine water monitoring"> groundwater and mine water monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20hydrochemical%20trends" title=" spatial-temporal hydrochemical trends"> spatial-temporal hydrochemical trends</a> </p> <a href="https://publications.waset.org/abstracts/139590/hydrochemical-contamination-profiling-and-spatial-temporal-mapping-with-the-support-of-multivariate-and-cluster-statistical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Baum">M. J. Baum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Gibbes"> B. Gibbes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Grinham"> A. Grinham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Albert"> S. Albert</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gale"> D. Gale</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Fisher"> P. Fisher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s<sup>-1</sup>, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg<sup>-1</sup> were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brine%20disposal" title="brine disposal">brine disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20study" title=" field study"> field study</a>, <a href="https://publications.waset.org/abstracts/search?q=negatively%20buoyant%20discharge" title=" negatively buoyant discharge"> negatively buoyant discharge</a> </p> <a href="https://publications.waset.org/abstracts/60323/performance-assessment-of-the-gold-coast-desalination-plant-offshore-multiport-brine-diffuser-during-hot-standby-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezhan%20Tutberidze">Bezhan Tutberidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calc-alkalic" title="calc-alkalic">calc-alkalic</a>, <a href="https://publications.waset.org/abstracts/search?q=dolerite" title=" dolerite"> dolerite</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia" title=" Georgia"> Georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=Javakheti%20Highland" title=" Javakheti Highland"> Javakheti Highland</a> </p> <a href="https://publications.waset.org/abstracts/68226/petrology-of-the-post-collisional-dolerites-basalts-from-the-javakheti-highland-south-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El%20Raey">Mohammed El Raey</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Osman%20Mohammed"> Moustafa Osman Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial-ecological%20modeling" title="spatial-ecological modeling">spatial-ecological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20structure%20orientation%20impact" title=" spatial structure orientation impact"> spatial structure orientation impact</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20structure" title=" composite structure"> composite structure</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20ecology" title=" industrial ecology"> industrial ecology</a> </p> <a href="https://publications.waset.org/abstracts/167398/the-environmental-impact-of-sustainability-dispersion-of-chlorine-releases-in-coastal-zone-of-alexandra-spatial-ecological-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hanif">Muhammad Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Salik"> Muhammad Salik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research work we present the optical emission studies of the Indium (In)-Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (InI) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indium-tin%20plasma" title="indium-tin plasma">indium-tin plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20emission%20spectroscopy" title=" optical emission spectroscopy"> optical emission spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20temperature" title=" electron temperature"> electron temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20number%20density" title=" electron number density"> electron number density</a> </p> <a href="https://publications.waset.org/abstracts/26921/spectroscopic-characterization-of-indium-tin-laser-ablated-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamison%20Duckworth">Jamison Duckworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankarachary%20Ragi"> Shankarachary Ragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-RCNN" title=" mask-RCNN"> mask-RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20plumes" title=" smoke plumes"> smoke plumes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20bands" title=" spectral bands"> spectral bands</a> </p> <a href="https://publications.waset.org/abstracts/150196/instance-segmentation-of-wildfire-smoke-plumes-using-mask-rcnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> A Study on Removal of SO3 in Flue Gas Generated from Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Y.%20Jo">E. Y. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Park"> S. M. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Yeo"> I. S. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Kim"> K. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Park"> S. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Kim"> Y. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20D.%20Kim"> Y. D. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Park"> C. G. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurization" title="flue gas desulfurization">flue gas desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title=" petroleum cokes"> petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulfur%20trioxide" title=" Sulfur trioxide"> Sulfur trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=SO3%20removal" title=" SO3 removal"> SO3 removal</a> </p> <a href="https://publications.waset.org/abstracts/18701/a-study-on-removal-of-so3-in-flue-gas-generated-from-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Electric Field Effect on the Rise of Single Bubbles during Boiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Masoudnia">N. Masoudnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatahi"> M. Fatahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20bubbles" title="single bubbles">single bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=effect" title=" effect "> effect </a> </p> <a href="https://publications.waset.org/abstracts/50072/electric-field-effect-on-the-rise-of-single-bubbles-during-boiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Impact of the Transport on the Urban Heat Island</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Haddad">L. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aouachria"> Z. Aouachria </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pollution" title="atmospheric pollution">atmospheric pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20the%20health" title=" impact on the health"> impact on the health</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20transport" title=" urban transport"> urban transport</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20island" title=" heat island"> heat island</a> </p> <a href="https://publications.waset.org/abstracts/26996/impact-of-the-transport-on-the-urban-heat-island" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Gholam%20Ale%20Mohammad">Masoud Gholam Ale Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Hafezi%20Birgani"> Mojtaba Hafezi Birgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20and%20double%20bubbles" title="single and double bubbles">single and double bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=rising" title=" rising"> rising</a> </p> <a href="https://publications.waset.org/abstracts/87592/rising-of-single-and-double-bubbles-during-boiling-and-effect-of-electric-field-in-this-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Charcoal Traditional Production in Portugal: Contribution to the Quantification of Air Pollutant Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A1tia%20Gon%C3%A7alves">Cátia Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Nunes"> Teresa Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=In%C3%AAs%20Pina"> Inês Pina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vicente"> Ana Vicente</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Alves"> C. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Charvet"> Felix Charvet</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Neves"> Daniel Neves</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Matos"> A. Matos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of charcoal relies on rudimentary technologies using traditional brick kilns. Charcoal is produced under pyrolysis conditions: breaking down the chemical structure of biomass under high temperature in the absence of air. The amount of the pyrolysis products (charcoal, pyroligneous extract, and flue gas) depends on various parameters, including temperature, time, pressure, kiln design, and wood characteristics like the moisture content. This activity is recognized for its inefficiency and high pollution levels, but it is poorly characterized. This activity is widely distributed and is a vital economic activity in certain regions of Portugal, playing a relevant role in the management of woody residues. The location of the units establishes the biomass used for charcoal production. The Portalegre district, in the Alto Alentejo region (Portugal), is a good example, essentially with rural characteristics, with a predominant farming, agricultural, and forestry profile, and with a significant charcoal production activity. In this district, a recent inventory identifies almost 50 charcoal production units, equivalent to more than 450 kilns, of which 80% appear to be in operation. A field campaign was designed with the objective of determining the composition of the emissions released during a charcoal production cycle. A total of 30 samples of particulate matter and 20 gas samples in Tedlar bags were collected. Particulate and gas samplings were performed in parallel, 2 in the morning and 2 in the afternoon, alternating the inlet heads (PM₁₀ and PM₂.₅), in the particulate sampler. The gas and particulate samples were collected in the plume as close as the emission chimney point. The biomass (dry basis) used in the carbonization process was a mixture of cork oak (77 wt.%), holm oak (7 wt.%), stumps (11 wt.%), and charred wood (5 wt.%) from previous carbonization processes. A cylindrical batch kiln (80 m³) with 4.5 m diameter and 5 m of height was used in this study. The composition of the gases was determined by gas chromatography, while the particulate samples (PM₁₀, PM₂.₅) were subjected to different analytical techniques (thermo-optical transmission technique, ion chromatography, HPAE-PAD, and GC-MS after solvent extraction) after prior gravimetric determination, to study their organic and inorganic constituents. The charcoal production cycle presents widely varying operating conditions, which will be reflected in the composition of gases and particles produced and emitted throughout the process. The concentration of PM₁₀ and PM₂.₅ in the plume was calculated, ranging between 0.003 and 0.293 g m⁻³, and 0.004 and 0.292 g m⁻³, respectively. Total carbon, inorganic ions, and sugars account, in average, for PM10 and PM₂.₅, 65 % and 56 %, 2.8 % and 2.3 %, 1.27 %, and 1.21 %, respectively. The organic fraction studied until now includes more than 30 aliphatic compounds and 20 PAHs. The emission factors of particulate matter to produce charcoal in the traditional kiln were 33 g/kg (wooddb) and 27 g/kg (wooddb) for PM₁₀ and PM₂.₅, respectively. With the data obtained in this study, it is possible to fill the lack of information about the environmental impact of the traditional charcoal production in Portugal. Acknowledgment: Authors thanks to FCT – Portuguese Science Foundation, I.P. and to Ministry of Science, Technology and Higher Education of Portugal for financial support within the scope of the project CHARCLEAN (PCIF/GVB/0179/2017) and CESAM (UIDP/50017/2020 + UIDB/50017/2020). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20kilns" title="brick kilns">brick kilns</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20factors" title=" emission factors"> emission factors</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carbon" title=" total carbon"> total carbon</a> </p> <a href="https://publications.waset.org/abstracts/147814/charcoal-traditional-production-in-portugal-contribution-to-the-quantification-of-air-pollutant-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang">Lei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-jun%20Ruan"> Wen-jun Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Xin%20Wang"> Peng-Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20gas%20jet" title="supersonic gas jet">supersonic gas jet</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation%28LES%29" title=" Large Eddy Simulation(LES)"> Large Eddy Simulation(LES)</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20noise" title=" acoustic noise"> acoustic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs%20Williams-Hawkings%28FW-H%29%20equations" title=" Ffowcs Williams-Hawkings(FW-H) equations"> Ffowcs Williams-Hawkings(FW-H) equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20size" title=" nozzle size"> nozzle size</a> </p> <a href="https://publications.waset.org/abstracts/44797/numerical-simulation-of-supersonic-gas-jet-flows-and-acoustics-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingjun%20Xu">Mingjun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Pun%20Wan"> Man Pun Wan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title="performance-based design">performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20tenability" title=" perpetual tenability"> perpetual tenability</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20control" title=" smoke control"> smoke control</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20plume" title=" fire plume"> fire plume</a> </p> <a href="https://publications.waset.org/abstracts/172186/zonal-and-sequential-extraction-design-for-large-flat-space-to-achieve-perpetual-tenability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plume&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plume&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>