CINXE.COM

Fairness | Papers With Code

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'MVaNKreQvudAx1O2g6t41Z6iNXtz1mQQcEEft43rR26YDf5jOrgDW4yNlhRwcziK'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/2.6da00df7.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/101.5f271f23.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/view_task.8e3945a3.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/view_task.e61ab167.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/view_task.8e3945a3.css"> <!-- Metadata --> <title>Fairness | Papers With Code</title> <meta name="description" content="" /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - Fairness"> <meta property="og:description" content=""> <meta property="og:image" content="https://production-media.paperswithcode.com/tasks/default.gif"> <meta property="og:url" content="https://paperswithcode.com/task/fairness"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - Fairness"> <meta name="twitter:description" content=""> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/task/fairness"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "CreativeWork", "@id": "fairness", "name": "Fairness", "description": "", "url": "https://paperswithcode.com/task/fairness", "image": "https://production-media.paperswithcode.com/tasks/default.gif", "subjectOf": [ { "@type": "CreativeWork", "@id": "miscellaneous", "name": "Miscellaneous", "description": "Browse 274 tasks \u2022 494 datasets \u2022 411 ", "image": "https://paperswithcode.com/static/sota.jpeg", "headline": "Browse state-of-the-art in ML leaderboards \u2022 22607 papers with code." } ], "headline": "Fairness" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/task/fairness">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="MVaNKreQvudAx1O2g6t41Z6iNXtz1mQQcEEft43rR26YDf5jOrgDW4yNlhRwcziK"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/task/fairness">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/task/fairness">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <!-- Modals go here --> <!-- Edit Task --> <div class="modal fade" id="editTask" role="dialog" aria-labelledby="editTaskLabel" aria-hidden="true"> <div class="modal-dialog modal-lg" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="editTaskLabel">Edit task</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <form action="" method="post" enctype="multipart/form-data"> <input type="hidden" name="csrfmiddlewaretoken" value="OZwGC5mePhABSKRzDgYaDZa24nQF5SZY7On1rAC0tWBLGptNsFRdehOIu96YHPfV"> <div id="div_id_task_name" class="form-group"> <label for="id_task_name" class="col-form-label requiredField"> Task name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="task_name" value="Fairness" maxlength="200" class="textinput textInput form-control" required="" id="id_task_name" readonly > </div> </div> <div id="div_id_task_area" class="form-group"> <label for="id_task_area" class=" requiredField"> Top-level area:<span class="asteriskField">*</span> </label> <div class=""> <select name="task_area" class="select form-control" required id="id_task_area"> <option value="">---------</option> <option value="17">Adversarial</option> <option value="18">Audio</option> <option value="11">Computer Code</option> <option value="3">Computer Vision</option> <option value="9">Graphs</option> <option value="15">Knowledge Base</option> <option value="7">Medical</option> <option value="6">Methodology</option> <option value="5" selected>Miscellaneous</option> <option value="12">Music</option> <option value="4">Natural Language Processing</option> <option value="13">Playing Games</option> <option value="14">Reasoning</option> <option value="16">Robots</option> <option value="10">Speech</option> <option value="8">Time Series</option> </select> </div> </div> <div id="div_id_task_parent" class="form-group"> <label for="id_task_parent" class=""> Parent task (if any): </label> <div class=""> <select name="task_parent" class="modelselect2 form-control" id="id_task_parent" data-autocomplete-light-language="en" data-autocomplete-light-url="/tag-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_description" class="form-group"> <label for="id_description" class=""> Description with markdown (optional): </label> <div class=""> <textarea name="description" cols="40" rows="3" class="textarea form-control" id="id_description"> </textarea> </div> </div> <div id="div_id_image" class="form-group"> <label for="id_image" class=""> Image </label> <div class=""> <input type="file" name="image" accept="image/*" class="clearablefileinput form-control-file" id="id_image"> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Add Row --> <div class="modal fade" id="addRow" role="dialog" aria-labelledby="addRowLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addRowLabel">Add a new evaluation result row</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <input type="hidden" name="csrfmiddlewaretoken" value="OZwGC5mePhABSKRzDgYaDZa24nQF5SZY7On1rAC0tWBLGptNsFRdehOIu96YHPfV"> <input id="id_task" disabled="disabled" type="hidden" value="2238"/> <div id="div_id_paper" class="form-group"> <label for="id_paper" class=" requiredField"> Paper title:<span class="asteriskField">*</span> </label> <div class=""> <select name="paper" class="modelselect2 form-control" required id="id_paper" data-autocomplete-light-language="en" data-autocomplete-light-url="/paper-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_dataset" class="form-group"> <label for="id_dataset" class=" requiredField"> Dataset:<span class="asteriskField">*</span> </label> <div class=""> <select name="dataset" class="modelselect2 form-control" required id="id_dataset" data-autocomplete-light-language="en" data-autocomplete-light-url="/dataset-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_model_name" class="form-group"> <label for="id_model_name" class=" requiredField"> Model name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="model_name" class="textinput textInput form-control" required id="id_model_name"> </div> </div> <div id="div_id_metric" class="form-group"> <label for="id_metric" class=" requiredField"> Metric name:<span class="asteriskField">*</span> </label> <div class=""> <select name="metric" class="modelselect2 form-control" required id="id_metric" data-autocomplete-light-language="en" data-autocomplete-light-url="/metric-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="sota-metric-names"> </div> <div class="form-group"> <div id="div_id_metric_higher_is_better" class="form-check"> <input type="checkbox" name="metric_higher_is_better" class="checkboxinput form-check-input" id="id_metric_higher_is_better"> <label for="id_metric_higher_is_better" class="form-check-label"> Higher is better (for the metric) </label> </div> </div> <div id="div_id_metric_value" class="form-group"> <label for="id_metric_value" class=" requiredField"> Metric value:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="metric_value" class="textinput textInput form-control" required id="id_metric_value"> </div> </div> <div id="sota-metric-values"> </div> <div class="form-group"> <div id="div_id_uses_additional_data" class="form-check"> <input type="checkbox" name="uses_additional_data" class="checkboxinput form-check-input" id="id_uses_additional_data"> <label for="id_uses_additional_data" class="form-check-label"> Uses extra training data </label> </div> </div> <div id="div_id_evaluated_on" class="form-group"> <label for="id_evaluated_on" class=""> Data evaluated on </label> <div class=""> <input type="text" name="evaluated_on" autocomplete="off" class="dateinput form-control" id="id_evaluated_on"> </div> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Submit </button> </div> </form> </div> </div> </div> </div> <div class="container content content-buffer "> <main> <div class="row task-content" style="margin-top: 3rem;"> <!-- Task Header --> <div class="dataset-header"> <a href="/area/miscellaneous"> <span class="badge badge-primary"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="images"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M480 417.998v16c0 26.51-21.49 48-48 48H48c-26.51 0-48-21.49-48-48v-256c0-26.51 21.49-48 48-48h16v208c0 44.113 35.888 80 80 80h336zm96-80c0 26.51-21.49 48-48 48H144c-26.51 0-48-21.49-48-48v-256c0-26.51 21.49-48 48-48h384c26.51 0 48 21.49 48 48v256zm-320-208c0-26.51-21.49-48-48-48s-48 21.49-48 48 21.49 48 48 48 48-21.49 48-48zm-96 144v48h352v-112l-87.514-87.514c-4.687-4.687-12.285-4.687-16.971 0L272 257.999l-39.514-39.515c-4.688-4.686-12.285-4.686-16.972 0z"/></svg></span> <span>Miscellaneous</span> </span> </a> </div> <div class="artefact-header"> <div class="float-right task-edit">  <div class="dropdown edit-button"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-method-edit" style="padding-top:10px;"><span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit</span> </a> </div> </div> <h1 id="task-home">Fairness</h1> <div class="artefact-information"> <p> 1477 papers with code • 9 benchmarks • 23 datasets </p> </div> </div> <div class="col-lg-10"> <!--Task Desc--> <div class="description"> <div class="description-content"> This task has no description! <a style="text-decoration: underline !important;" href="" data-bs-toggle="modal" data-bs-target="#loginModal">Would you like to contribute one?</a> </div> </div> <!-- Mobile image --> <!-- Task Benchmarks --> <div class="task-benchmarks"> <div id="benchmarks" class="collapsed"> <div class="title"> <h2 id="benchmarks">Benchmarks <div class="float-right"> <div class="dropdown edit-button task-add-a-result"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-primary" style="font-size:12px;"> Add a Result</span> </a> </div> </div> </h2> These leaderboards are used to track progress in Fairness <hr> </div> <div class="sota-table-preview table-responsive"> <table id="benchmarksTable" class="table-striped table-responsive"> <thead> <tr> <th>Trend</th> <th style="padding-left:12px;">Dataset</th> <th style="min-width:200px">Best Model</th> <!-- <th style="width:38%">Paper Title</th> --> <th class="text-center">Paper</th> <th class="text-center">Code</th> <th class="text-center">Compare</th> </tr> </thead> <tbody> <tr onclick="window.location='/sota/fairness-on-baf-base';"> <td> <a href="/sota/fairness-on-baf-base"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-baf-base-small_b3185fa0.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-baf-base"> BAF – Base </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-baf-base"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> 1D-CSNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-baf-base">Improving Fraud Detection with 1D-Convolutional Spiking Neural Networks Through Bayesian Optimization</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/improving-fraud-detection-with-1d"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/improving-fraud-detection-with-1d#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-baf-base" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-diveface';"> <td> <a href="/sota/fairness-on-diveface"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-diveface-small_3c10a278.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-diveface"> DiveFace </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-diveface"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Neighbour Learning </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-diveface">Deep Generative Views to Mitigate Gender Classification Bias Across Gender-Race Groups</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/deep-generative-views-to-mitigate-gender"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-diveface" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-utkface';"> <td> <a href="/sota/fairness-on-utkface"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-utkface-small_5e18e058.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-utkface"> UTKFace </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-utkface"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Neighbour Learning </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-utkface">Deep Generative Views to Mitigate Gender Classification Bias Across Gender-Race Groups</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/deep-generative-views-to-mitigate-gender"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-utkface" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-morph';"> <td> <a href="/sota/fairness-on-morph"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-morph-small_8a5792f1.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-morph"> MORPH </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-morph"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Neighbour Learning </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-morph">Deep Generative Views to Mitigate Gender Classification Bias Across Gender-Race Groups</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/deep-generative-views-to-mitigate-gender"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-morph" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-baf-variant-i';"> <td> <a href="/sota/fairness-on-baf-variant-i"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-baf-variant-i-small_9c161f1e.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-baf-variant-i"> BAF – Variant I </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-baf-variant-i"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> 1D-CSNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-baf-variant-i">Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/exploring-neural-joint-activity-in-spiking"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/exploring-neural-joint-activity-in-spiking#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-baf-variant-i" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-baf-variant-ii';"> <td> <a href="/sota/fairness-on-baf-variant-ii"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-baf-variant-ii-small_864257cf.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-baf-variant-ii"> BAF – Variant II </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-baf-variant-ii"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> 1D-CSNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-baf-variant-ii">Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/exploring-neural-joint-activity-in-spiking"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/exploring-neural-joint-activity-in-spiking#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-baf-variant-ii" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-baf-variant-iii';"> <td> <a href="/sota/fairness-on-baf-variant-iii"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-baf-variant-iii-small_3779b99c.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-baf-variant-iii"> BAF – Variant III </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-baf-variant-iii"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> 1D-CSNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-baf-variant-iii">Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/exploring-neural-joint-activity-in-spiking"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/exploring-neural-joint-activity-in-spiking#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-baf-variant-iii" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-baf-variant-iv';"> <td> <a href="/sota/fairness-on-baf-variant-iv"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-baf-variant-iv-small_0149a4c1.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-baf-variant-iv"> BAF – Variant IV </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-baf-variant-iv"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> 1D-CSNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-baf-variant-iv">Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/exploring-neural-joint-activity-in-spiking"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/exploring-neural-joint-activity-in-spiking#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-baf-variant-iv" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/fairness-on-baf-variant-v';"> <td> <a href="/sota/fairness-on-baf-variant-v"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/fairness-on-baf-variant-v-small_69ca881d.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/fairness-on-baf-variant-v"> BAF – Variant V </a> </div> </td> <td> <div class="black-links"> <a href="/sota/fairness-on-baf-variant-v"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> 1D-CSNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/fairness-on-baf-variant-v">Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/exploring-neural-joint-activity-in-spiking"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/exploring-neural-joint-activity-in-spiking#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/fairness-on-baf-variant-v" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> </tbody> </table> </div> </div> </div> <!-- Task Datasets --> <div class="title"> <h2 id="datasets">Datasets</h2> <hr> <div class="task-datasets"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/dataset/netflix-prize"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000003694-60936df7_370B5WT.jpg"> Netflix Prize </span> </a> </li> <li> <a href="/dataset/utkface"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000000710-ea40a961_PpZZLu2.jpg"> UTKFace </span> </a> </li> <li> <a href="/dataset/fairface"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> FairFace </span> </a> </li> <li> <a href="/dataset/morph"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000000550-4597183e_P601veL.jpg"> MORPH </span> </a> </li> <li> <a href="/dataset/winobias"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000003638-1a926642_tNHAOVT.jpg"> WinoBias </span> </a> </li> <li> <a href="/dataset/rfw"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> RFW </span> </a> </li> <li> <a href="/dataset/gvgai"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000003612-71ac7101_CjttmDd.jpg"> GVGAI </span> </a> </li> <li> <a href="/dataset/help"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000004708-29bc2348_WZjdrw5.jpg"> HELP </span> </a> </li> <li> <a href="/dataset/miap"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000007228-e093de7b.jpg"> MIAP </span> </a> </li> <li> <a href="/dataset/diveface"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> DiveFace </span> </a> </li> <a href="/datasets?task=fairness"> <button class="dropdown-toggle badge badge-edit w-100 collapsed" type="button" > See all 23 fairness datasets </button> </a> </ul> </div> </div> </div> <!-- Subtasks --> <div class="title"> <h2 id="subtasks">Subtasks</h2> <hr> <div class="task-subtasks"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/task/exposure-fairness"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Exposure Fairness</span> </span> </a> </li> </ul> </div> </div> </div> <!-- Papers --> <div class="title paper-list" id="code"> <h2 id="papers-list" class="home-page-title">Most implemented papers</h2> <div class="paper-filter-btn"> <div class="btn-group" role="group"> <a data-title="Most implemented papers" data-call-url="/tasklist/fairness/greatest" data-target="/task/fairness" class="list-papers-button list-button-active" style="margin-right:0">Most implemented</a> <a data-title="Hot papers on social media" data-call-url="/tasklist/fairness/social" data-target="/task/fairness/social" class="list-papers-button list-button" style="margin-right:0">Social</a> <a data-title="Latest papers" data-call-url="/tasklist/fairness/latest" data-target="/task/fairness/latest" class="list-papers-button list-button" style="margin-right:0">Latest</a> <a data-title="Latest papers with no code" data-call-url="/tasklist/fairness/codeless" data-target="/task/fairness/codeless" class="list-papers-button list-button">No code</a> </div> </div> </div> <!-- <input id="paper-list-search" type="search" class="form-control form-control-sm" placeholder="Search for a paper, author or keyword"> --> <input id="paper-list-search" type="search" class="form-control form-control-sm" placeholder="Search for a paper, author or keyword"> <div class="loading-tab" style="display: none"> <div class="loader-ellips"> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> </div> </div> <div id="task-papers-list"> <div class="infinite-container text-center"> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/a-simple-baseline-for-multi-object-tracking"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/2004.01888.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/a-simple-baseline-for-multi-object-tracking">FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/ifzhang/FairMOT" onclick="captureOutboundLink('https://github.com/ifzhang/FairMOT'); return true;" style="font-size:13px"> ifzhang/FairMOT </a> </span> • <span class="item-framework-link"> <img class="" src="https://production-assets.paperswithcode.com/perf/images/frameworks/pytorch-2fbf2cb9.png" /> </span> • <span class="author-name-text item-date-pub">4 Apr 2020</span> </p> <p class="item-strip-abstract">Formulating MOT as multi-task learning of object detection and re-ID in a single network is appealing since it allows joint optimization of the two tasks and enjoys high computation efficiency.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 33</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/a-simple-baseline-for-multi-object-tracking" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/a-simple-baseline-for-multi-object-tracking#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/ai-fairness-360-an-extensible-toolkit-for"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1810.01943.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/ai-fairness-360-an-extensible-toolkit-for">AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/IBM/AIF360" onclick="captureOutboundLink('https://github.com/IBM/AIF360'); return true;" style="font-size:13px"> IBM/AIF360 </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="author-name-text item-date-pub">3 Oct 2018</span> </p> <p class="item-strip-abstract">Such architectural design and abstractions enable researchers and developers to extend the toolkit with their new algorithms and improvements, and to use it for performance benchmarking.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 13</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/ai-fairness-360-an-extensible-toolkit-for" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/ai-fairness-360-an-extensible-toolkit-for#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/score-camimproved-visual-explanations-via"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1910.01279.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/score-camimproved-visual-explanations-via">Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/haofanwang/Score-CAM" onclick="captureOutboundLink('https://github.com/haofanwang/Score-CAM'); return true;" style="font-size:13px"> haofanwang/Score-CAM </a> </span> • <span class="item-framework-link"> <img class="" src="https://production-assets.paperswithcode.com/perf/images/frameworks/pytorch-2fbf2cb9.png" /> </span> • <span class="author-name-text item-date-pub">3 Oct 2019</span> </p> <p class="item-strip-abstract">Recently, increasing attention has been drawn to the internal mechanisms of convolutional neural networks, and the reason why the network makes specific decisions.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 9</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/score-camimproved-visual-explanations-via" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/score-camimproved-visual-explanations-via#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/a-critic-evaluation-of-methods-for-covid-19"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/2004.12823.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/a-critic-evaluation-of-methods-for-covid-19">A Critic Evaluation of Methods for COVID-19 Automatic Detection from X-Ray Images</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/imanpalsingh/COVID-19-Diagnosis-using-Convolutional-and-Generative-models" onclick="captureOutboundLink('https://github.com/imanpalsingh/COVID-19-Diagnosis-using-Convolutional-and-Generative-models'); return true;" style="font-size:13px"> imanpalsingh/COVID-19-Diagnosis-using-Convolutional-and-Generative-models </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="author-name-text item-date-pub">27 Apr 2020</span> </p> <p class="item-strip-abstract">In this paper, we compare and evaluate different testing protocols used for automatic COVID-19 diagnosis from X-Ray images in the recent literature.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 9</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/a-critic-evaluation-of-methods-for-covid-19" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/a-critic-evaluation-of-methods-for-covid-19#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/elevater-a-benchmark-and-toolkit-for"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/2204.08790.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/elevater-a-benchmark-and-toolkit-for">ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/computer-vision-in-the-wild/cvinw_readings" onclick="captureOutboundLink('https://github.com/computer-vision-in-the-wild/cvinw_readings'); return true;" style="font-size:13px"> computer-vision-in-the-wild/cvinw_readings </a> </span> • <span class="author-name-text item-date-pub">19 Apr 2022</span> </p> <p class="item-strip-abstract">In general, these language-augmented visual models demonstrate strong transferability to a variety of datasets and tasks.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 9</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/elevater-a-benchmark-and-toolkit-for" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/elevater-a-benchmark-and-toolkit-for#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/learning-adversarially-fair-and-transferable"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1802.06309.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/learning-adversarially-fair-and-transferable">Learning Adversarially Fair and Transferable Representations</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/VectorInstitute/laftr" onclick="captureOutboundLink('https://github.com/VectorInstitute/laftr'); return true;" style="font-size:13px"> VectorInstitute/laftr </a> </span> • <span class="item-conference-link"> <a href="/conference/icml-2018-7"> ICML 2018 </a> </span> </p> <p class="item-strip-abstract">In this paper, we advocate for representation learning as the key to mitigating unfair prediction outcomes downstream.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 7</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/learning-adversarially-fair-and-transferable" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/learning-adversarially-fair-and-transferable#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/agnostic-federated-learning"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1902.00146.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/agnostic-federated-learning">Agnostic Federated Learning</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/litian96/fair_flearn" onclick="captureOutboundLink('https://github.com/litian96/fair_flearn'); return true;" style="font-size:13px"> litian96/fair_flearn </a> </span> • <span class="author-name-text item-date-pub">1 Feb 2019</span> </p> <p class="item-strip-abstract">A key learning scenario in large-scale applications is that of federated learning, where a centralized model is trained based on data originating from a large number of clients.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 7</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/agnostic-federated-learning" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/agnostic-federated-learning#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/learning-to-pivot-with-adversarial-networks"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1611.01046.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/learning-to-pivot-with-adversarial-networks">Learning to Pivot with Adversarial Networks</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/glouppe/paper-learning-to-pivot" onclick="captureOutboundLink('https://github.com/glouppe/paper-learning-to-pivot'); return true;" style="font-size:13px"> glouppe/paper-learning-to-pivot </a> </span> • <span class="item-conference-link"> <a href="/conference/neurips-2017-12"> NeurIPS 2017 </a> </span> </p> <p class="item-strip-abstract">Several techniques for domain adaptation have been proposed to account for differences in the distribution of the data used for training and testing.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 5</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/learning-to-pivot-with-adversarial-networks" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/learning-to-pivot-with-adversarial-networks#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/preventing-fairness-gerrymandering-auditing"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1711.05144.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/preventing-fairness-gerrymandering-auditing">Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/algowatchpenn/GerryFair" onclick="captureOutboundLink('https://github.com/algowatchpenn/GerryFair'); return true;" style="font-size:13px"> algowatchpenn/GerryFair </a> </span> • <span class="item-conference-link"> <a href="/conference/icml-2018-7"> ICML 2018 </a> </span> </p> <p class="item-strip-abstract">We prove that the computational problem of auditing subgroup fairness for both equality of false positive rates and statistical parity is equivalent to the problem of weak agnostic learning, which means it is computationally hard in the worst case, even for simple structured subclasses.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 5</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/preventing-fairness-gerrymandering-auditing" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/preventing-fairness-gerrymandering-auditing#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/an-empirical-study-of-rich-subgroup-fairness"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1808.08166.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/an-empirical-study-of-rich-subgroup-fairness">An Empirical Study of Rich Subgroup Fairness for Machine Learning</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/algowatchpenn/GerryFair" onclick="captureOutboundLink('https://github.com/algowatchpenn/GerryFair'); return true;" style="font-size:13px"> algowatchpenn/GerryFair </a> </span> • <span class="author-name-text item-date-pub">24 Aug 2018</span> </p> <p class="item-strip-abstract">In this paper, we undertake an extensive empirical evaluation of the algorithm of Kearns et al. On four real datasets for which fairness is a concern, we investigate the basic convergence of the algorithm when instantiated with fast heuristics in place of learning oracles, measure the tradeoffs between fairness and accuracy, and compare this approach with the recent algorithm of Agarwal et al. [2018], which implements weaker and more traditional marginal fairness constraints defined by individual protected attributes.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 5</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/an-empirical-study-of-rich-subgroup-fairness" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/an-empirical-study-of-rich-subgroup-fairness#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> </div> <div class="loading" style="display: none"> <div class="loader-ellips infinite-scroll-request"> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> </div> </div> <a class="infinite-more-link" href="?page=2&q="></a> </div> <div class="loading-trigger"></div> </div> <div class="col-lg-2 slim-sidebar task-infobox" id="task-sidebar"> <div class="task-toc"> <h4>Content</h4> <hr> <nav> <a class="toc-link" href="#task-home"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="book"><svg viewBox="0 0 448 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M356 161H188c-6.6 0-12-5.4-12-12v-8c0-6.6 5.4-12 12-12h168c6.6 0 12 5.4 12 12v8c0 6.6-5.4 12-12 12zm12 52c0 6.6-5.4 12-12 12H188c-6.6 0-12-5.4-12-12v-8c0-6.6 5.4-12 12-12h168c6.6 0 12 5.4 12 12v8zm64.7 268h3.3c6.6 0 12 5.4 12 12v8c0 6.6-5.4 12-12 12H80c-44.2 0-80-35.8-80-80V81C0 36.8 35.8 1 80 1h344c13.3 0 24 10.7 24 24v368c0 10-6.2 18.6-14.9 22.2-3.6 16.1-4.4 45.6-.4 65.8zM128 385h288V33H128v352zm-96 16c13.4-10 30-16 48-16h16V33H80c-26.5 0-48 21.5-48 48v320zm372.3 80c-3.1-20.4-2.9-45.2 0-64H80c-64 0-64 64 0 64h324.3z"/></svg></span> Introduction</a> <a class="toc-link" href="#benchmarks"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="chart-line"><svg viewBox="0 0 512 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M504 417c4.42 0 8 3.58 8 8v16c0 4.42-3.58 8-8 8H16c-8.84 0-16-7.16-16-16V73c0-4.42 3.58-8 8-8h16c4.42 0 8 3.58 8 8v344h472zM98.34 264.03l84.12-83.32c6.25-6.2 16.34-6.18 22.57.05l84.63 84.63 82.22-82.22-44.71-44.71C311.87 123.16 322.7 97 344.34 97h119.47c8.94 0 16.19 7.25 16.19 16.19v119.47c0 14.64-11.98 24.34-24.46 24.34-5.97 0-12.05-2.21-17-7.16L394.5 205.8l-93.53 93.53c-6.25 6.25-16.38 6.25-22.63 0l-84.69-84.69-72.69 72.01c-3.12 3.12-8.19 3.12-11.31 0l-11.31-11.31c-3.12-3.12-3.12-8.19 0-11.31zM362.96 129L448 214.04V129h-85.04z"/></svg></span> Benchmarks</a> <a class="toc-link" href="#datasets"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="database"><svg viewBox="0 0 448 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M224 33C118 33 32 61.75 32 97v32c0 35.25 86 64 192 64s192-28.75 192-64V97c0-35.25-86-64-192-64zm192 149.5c-41.251 29-116.75 42.5-192 42.5S73.25 211.5 32 182.5V225c0 35.25 86 64 192 64s192-28.75 192-64v-42.5zm0 96c-41.251 29-116.75 42.5-192 42.5S73.25 307.5 32 278.5V321c0 35.25 86 64 192 64s192-28.75 192-64v-42.5zm0 96c-41.251 29-116.75 42.5-192 42.5S73.25 403.5 32 374.5V417c0 35.25 86 64 192 64s192-28.75 192-64v-42.5zM224 1c77.904 0 224 18.662 224 96v320c0 77.2-145.858 96-224 96-77.904 0-224-18.662-224-96V97C0 19.8 145.858 1 224 1z"/></svg></span> Datasets</a> <a class="toc-link" href="#subtasks"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="sitemap"><svg viewBox="0 0 640 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M608 353c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32h-96c-17.67 0-32-14.33-32-32v-96c0-17.67 14.33-32 32-32h32v-96H336v96h32c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32h-96c-17.67 0-32-14.33-32-32v-96c0-17.67 14.33-32 32-32h32v-96H96v96h32c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32H32c-17.67 0-32-14.33-32-32v-96c0-17.67 14.33-32 32-32h32v-97.59C64 238.64 77.62 225 94.41 225H304v-64h-48c-17.67 0-32-14.33-32-32V33c0-17.67 14.33-32 32-32h128c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32h-48v64h209.59c16.79 0 30.41 13.64 30.41 30.41V353h32zm-480 32H32v96h96v-96zm240 0h-96v96h96v-96zM256 129h128V33H256v96zm352 352v-96h-96v96h96z"/></svg></span> Subtasks</a> <a class="toc-link" href="#task-libraries"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="file-code"><svg viewBox="0 0 384 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M369.941 98.941c7.76 7.76 14.059 22.966 14.059 33.94V465c0 26.51-21.49 48-48 48H48c-26.51 0-48-21.49-48-48V49C0 22.49 21.49 1 48 1h204.118c10.975 0 26.18 6.3 33.94 14.059zm-22.627 22.628l-83.883-83.884c-1.728-1.73-5.057-3.608-7.431-4.194V129h95.509c-.586-2.374-2.465-5.703-4.195-7.431zM336 481c8.837 0 16-7.163 16-16V161H248c-13.254 0-24-10.745-24-24V33H48c-8.836 0-16 7.163-16 16v416c0 8.837 7.164 16 16 16h288zm-161.47-67.404l-25.93-7.527c-2.03-.59-3.677-2.784-3.677-4.898 0-.4.09-1.037.202-1.422l58.027-199.869c.59-2.03 2.784-3.678 4.898-3.678.4 0 1.038.09 1.422.202l25.928 7.527c2.03.59 3.677 2.784 3.677 4.898 0 .4-.09 1.037-.202 1.422l-58.026 199.87c-.59 2.03-2.784 3.677-4.898 3.677-.4 0-1.037-.09-1.422-.202zm-48.447-47.674c-.834.89-2.5 1.612-3.72 1.612-1.115 0-2.677-.618-3.49-1.38L57.611 308.72c-.89-.834-1.613-2.501-1.613-3.721 0-1.219.723-2.886 1.613-3.72l61.262-57.434c.813-.761 2.375-1.38 3.489-1.38 1.22 0 2.886.723 3.72 1.613l18.493 19.724c.761.812 1.38 2.375 1.38 3.488 0 1.273-.776 2.988-1.732 3.83L105.725 305l38.5 33.88c.954.842 1.73 2.557 1.73 3.83 0 1.113-.619 2.676-1.38 3.488zm139.043.232c-.812.762-2.375 1.38-3.488 1.38-1.22 0-2.887-.722-3.72-1.612l-18.493-19.724c-.762-.812-1.38-2.375-1.38-3.488 0-1.273.776-2.988 1.732-3.83L278.276 305l-38.5-33.88c-.954-.842-1.73-2.557-1.73-3.83 0-1.113.619-2.676 1.38-3.488l18.491-19.724c.834-.89 2.501-1.612 3.721-1.612 1.113 0 2.676.618 3.488 1.379l61.262 57.434c.89.834 1.612 2.501 1.612 3.72 0 1.22-.722 2.887-1.612 3.72z"/></svg></span> Libraries</a> <a class="toc-link" href="#papers-list"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="file"><svg viewBox="0 0 384 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M369.9 98.9c9 9 14.1 21.3 14.1 34V465c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V49C0 22.5 21.5 1 48 .9h204.1C264.8.9 277 6 286 15zm-22.6 22.7l-83.899-83.9c-2.1-2.1-4.6-3.5-7.4-4.2V129h95.5c-.7-2.8-2.1-5.3-4.2-7.4zM336 481c8.8 0 16-7.2 16-16V161H248c-13.3 0-24-10.7-24-24V33H48c-8.8 0-16 7.2-16 16v416c0 8.8 7.2 16 16 16h288z"/></svg></span> Papers</a> <a data-call-url="/tasklist/fairness/greatest" data-target="/task/fairness" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- Most implemented</a> <a data-call-url="/tasklist/fairness/social" data-target="/task/fairness/social" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- Social</a> <a data-call-url="/tasklist/fairness/latest" data-target="/task/fairness/latest" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- Latest</a> <a data-call-url="/tasklist/fairness/codeless" data-target="/task/fairness/codeless" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- No code</a> </nav> </div> </div> </main> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/2.6da00df7.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/101.5f271f23.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/view_task.e61ab167.js" defer></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10