CINXE.COM
Outermorphism - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Outermorphism - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ac2d24f8-b235-4a4c-85c3-18c756803c45","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Outermorphism","wgTitle":"Outermorphism","wgCurRevisionId":1270494067,"wgRevisionId":1270494067,"wgArticleId":39487937,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Geometric algebra"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Outermorphism","wgRelevantArticleId":39487937,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}}, "wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q17097714","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user": "ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns", "ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Outermorphism - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Outermorphism"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Outermorphism&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Outermorphism"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Outermorphism rootpage-Outermorphism skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Outermorphism" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Outermorphism" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Outermorphism" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Outermorphism" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Adjoint" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Adjoint"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Adjoint</span> </div> </a> <ul id="toc-Adjoint-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Outermorphism</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17097714#sitelinks-wikipedia" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Outermorphism" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Outermorphism" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Outermorphism"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Outermorphism&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Outermorphism&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Outermorphism"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Outermorphism&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Outermorphism&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Outermorphism" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Outermorphism" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Outermorphism&oldid=1270494067" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Outermorphism&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Outermorphism&id=1270494067&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOutermorphism"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOutermorphism"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Outermorphism&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Outermorphism&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17097714" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Unital algebra homomorphism of exterior algebras</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about outermorphisms of <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebra</a>. For the concept in group theory, see <a href="/wiki/Outer_automorphism_group" title="Outer automorphism group">Outer automorphism group</a>.</div> <p>In <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebra</a>, the <b>outermorphism</b> of a <a href="/wiki/Linear_map" title="Linear map">linear function</a> between <a href="/wiki/Vector_space" title="Vector space">vector spaces</a> is a natural extension of the map to arbitrary <a href="/wiki/Multivector" title="Multivector">multivectors</a>.<sup id="cite_ref-FOOTNOTEDorstDoranLasenby2001_1-0" class="reference"><a href="#cite_note-FOOTNOTEDorstDoranLasenby2001-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> It is the unique unital <a href="/wiki/Algebra_homomorphism" class="mw-redirect" title="Algebra homomorphism">algebra homomorphism</a> of <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebras</a> whose restriction to the vector spaces is the original function.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> be an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>-linear map from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>. The extension of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> to an outermorphism is the unique map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\underline {\mathsf {f}}}:\bigwedge (V)\to \bigwedge (W)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo>:</mo> <mo>⋀<!-- ⋀ --></mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo>⋀<!-- ⋀ --></mo> <mo stretchy="false">(</mo> <mi>W</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\underline {\mathsf {f}}}:\bigwedge (V)\to \bigwedge (W)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73e1d5ca78b44eca42ce630a221f40e6a953900a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:18.425ex; height:3.343ex;" alt="{\displaystyle \textstyle {\underline {\mathsf {f}}}:\bigwedge (V)\to \bigwedge (W)}"></span> satisfying </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(1)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(1)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e26cdb52211932dc387a1a7b05653310f8ebdb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:8.394ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(1)=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(x)=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(x)=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd8080dd44362cf16e4d5958d9b0cf23f4fbd33c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:11.816ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(x)=f(x)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(A\wedge B)={\underline {\mathsf {f}}}(A)\wedge {\underline {\mathsf {f}}}(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(A\wedge B)={\underline {\mathsf {f}}}(A)\wedge {\underline {\mathsf {f}}}(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71bad3866ba8445d79ff0a89e0fabc32063a3e02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:24.068ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(A\wedge B)={\underline {\mathsf {f}}}(A)\wedge {\underline {\mathsf {f}}}(B)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(A+B)={\underline {\mathsf {f}}}(A)+{\underline {\mathsf {f}}}(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(A+B)={\underline {\mathsf {f}}}(A)+{\underline {\mathsf {f}}}(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e621dc1536be9f087780f411c987e1af04de373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:24.584ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(A+B)={\underline {\mathsf {f}}}(A)+{\underline {\mathsf {f}}}(B)}"></span></dd></dl> <p>for all vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and all multivectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \bigwedge (V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>⋀<!-- ⋀ --></mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \bigwedge (V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d042919ecc1033b6d3eb18b0a41c69c09cd8cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.532ex; height:2.843ex;" alt="{\displaystyle \textstyle \bigwedge (V)}"></span> denotes the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>. That is, an outermorphism is a unital <a href="/wiki/Algebra_homomorphism" class="mw-redirect" title="Algebra homomorphism">algebra homomorphism</a> between exterior algebras. </p><p>The outermorphism inherits linearity properties of the original linear map. For example, we see that for scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> and vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, the outermorphism is linear over bivectors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\underline {\mathsf {f}}}(\alpha x\wedge z+\beta y\wedge z)&={\underline {\mathsf {f}}}((\alpha x+\beta y)\wedge z)\\[6pt]&=f(\alpha x+\beta y)\wedge f(z)\\[6pt]&=(\alpha f(x)+\beta f(y))\wedge f(z)\\[6pt]&=\alpha (f(x)\wedge f(z))+\beta (f(y)\wedge f(z))\\[6pt]&=\alpha \,{\underline {\mathsf {f}}}(x\wedge z)+\beta \,{\underline {\mathsf {f}}}(y\wedge z),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo>+</mo> <mi>β<!-- β --></mi> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo>+</mo> <mi>β<!-- β --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo>+</mo> <mi>β<!-- β --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>β<!-- β --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>α<!-- α --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>β<!-- β --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\underline {\mathsf {f}}}(\alpha x\wedge z+\beta y\wedge z)&={\underline {\mathsf {f}}}((\alpha x+\beta y)\wedge z)\\[6pt]&=f(\alpha x+\beta y)\wedge f(z)\\[6pt]&=(\alpha f(x)+\beta f(y))\wedge f(z)\\[6pt]&=\alpha (f(x)\wedge f(z))+\beta (f(y)\wedge f(z))\\[6pt]&=\alpha \,{\underline {\mathsf {f}}}(x\wedge z)+\beta \,{\underline {\mathsf {f}}}(y\wedge z),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d666b3257e697ca3067f370fcfc706033bfb748" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.703ex; margin-bottom: -0.802ex; width:53.703ex; height:21.676ex;" alt="{\displaystyle {\begin{aligned}{\underline {\mathsf {f}}}(\alpha x\wedge z+\beta y\wedge z)&={\underline {\mathsf {f}}}((\alpha x+\beta y)\wedge z)\\[6pt]&=f(\alpha x+\beta y)\wedge f(z)\\[6pt]&=(\alpha f(x)+\beta f(y))\wedge f(z)\\[6pt]&=\alpha (f(x)\wedge f(z))+\beta (f(y)\wedge f(z))\\[6pt]&=\alpha \,{\underline {\mathsf {f}}}(x\wedge z)+\beta \,{\underline {\mathsf {f}}}(y\wedge z),\end{aligned}}}"></span></dd></dl> <p>which extends through the axiom of distributivity over addition above to linearity over all multivectors. </p> <div class="mw-heading mw-heading2"><h2 id="Adjoint">Adjoint</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=2" title="Edit section: Adjoint"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7ffbc4fe86370ba759e8644658e0c301a8ffa9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.511ex; margin-left: -0.061ex; margin-bottom: -0.827ex; width:1.161ex; height:3.176ex;" alt="{\displaystyle {\underline {\mathsf {f}}}}"></span> be an outermorphism. We define the <i>adjoint</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathsf {f}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathsf {f}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe46814434ab587f5b2444e3df7a5f4b647a30cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.984ex; height:3.009ex;" alt="{\displaystyle {\overline {\mathsf {f}}}}"></span> to be the outermorphism that satisfies the property </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathsf {f}}}(a)\cdot b=a\cdot {\underline {\mathsf {f}}}(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathsf {f}}}(a)\cdot b=a\cdot {\underline {\mathsf {f}}}(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fcb4ec107a8ba286fcc7fa02b061e8147983071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-bottom: -0.755ex; width:16.615ex; height:4.009ex;" alt="{\displaystyle {\overline {\mathsf {f}}}(a)\cdot b=a\cdot {\underline {\mathsf {f}}}(b)}"></span></dd></dl> <p>for all vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> is the nondegenerate symmetric bilinear form (scalar product of vectors). </p><p>This results in the property that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathsf {f}}}(A)*B=A*{\underline {\mathsf {f}}}(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>∗<!-- ∗ --></mo> <mi>B</mi> <mo>=</mo> <mi>A</mi> <mo>∗<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathsf {f}}}(A)*B=A*{\underline {\mathsf {f}}}(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/239e170ef6d8880f270895bd9397fc189d9c9577" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-bottom: -0.755ex; width:20.205ex; height:4.009ex;" alt="{\displaystyle {\overline {\mathsf {f}}}(A)*B=A*{\underline {\mathsf {f}}}(B)}"></span></dd></dl> <p>for all multivectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∗<!-- ∗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9972f426d9e07855984f73ee195a21dbc21755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.079ex; margin-bottom: -0.25ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle *}"></span> is the <a href="/wiki/Geometric_algebra#Extensions_of_the_inner_and_exterior_products" title="Geometric algebra">scalar product of multivectors</a>. </p><p>If <a href="/wiki/Geometric_calculus" title="Geometric calculus">geometric calculus</a> is available, then the adjoint may be extracted more directly: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathsf {f}}}(a)=\nabla _{b}\left\langle a{\underline {\mathsf {f}}}(b)\right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mrow> <mo>⟨</mo> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mo>⟩</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathsf {f}}}(a)=\nabla _{b}\left\langle a{\underline {\mathsf {f}}}(b)\right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf3badccbf52c8e505c3c0675be78806e399ee04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-bottom: -0.755ex; width:18.363ex; height:4.009ex;" alt="{\displaystyle {\overline {\mathsf {f}}}(a)=\nabla _{b}\left\langle a{\underline {\mathsf {f}}}(b)\right\rangle .}"></span></dd></dl> <p>The above definition of <i>adjoint</i> is like the definition of the <a href="/wiki/Transpose" title="Transpose">transpose</a> in matrix theory. When the context is clear, the <a href="/wiki/Underline" class="mw-redirect" title="Underline">underline</a> below the function is often omitted. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=3" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It follows from the definition at the beginning that the outermorphism of a multivector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is grade-preserving:<sup id="cite_ref-FOOTNOTEHestenesSobczyk198768_3-0" class="reference"><a href="#cite_note-FOOTNOTEHestenesSobczyk198768-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(\left\langle A\right\rangle _{r})=\left\langle {\underline {\mathsf {f}}}(A)\right\rangle _{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <msub> <mrow> <mo>⟨</mo> <mi>A</mi> <mo>⟩</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo>⟨</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mo>⟩</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(\left\langle A\right\rangle _{r})=\left\langle {\underline {\mathsf {f}}}(A)\right\rangle _{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/352ee339598f3ba311a14f74acaf89e4958f0714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.685ex; margin-left: -0.061ex; margin-bottom: -0.653ex; width:18.031ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(\left\langle A\right\rangle _{r})=\left\langle {\underline {\mathsf {f}}}(A)\right\rangle _{r}}"></span></dd></dl> <p>where the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle ~\rangle _{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mtext> </mtext> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle ~\rangle _{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4afc47dc89f71915b80dcd001513836ad9c3b1ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.364ex; height:2.843ex;" alt="{\displaystyle \langle ~\rangle _{r}}"></span> indicates the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>-vector part of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p><p>Since any vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> may be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1\wedge x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>∧<!-- ∧ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1\wedge x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/421929154b99c1a0e8672a56b9d067c9b2d4d107" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.503ex; height:2.176ex;" alt="{\displaystyle x=1\wedge x}"></span>, it follows that scalars are unaffected with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(1)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(1)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e26cdb52211932dc387a1a7b05653310f8ebdb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:8.394ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(1)=1}"></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> Similarly, since there is only one <a href="/wiki/Pseudoscalar" title="Pseudoscalar">pseudoscalar</a> <a href="/wiki/Up_to" title="Up to">up to</a> a scalar multiplier, we must have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(I)\propto I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>∝<!-- ∝ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(I)\propto I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96c92dfeca59710a7812311d5f413a9bbf821edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:8.413ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(I)\propto I}"></span>. The <a href="/wiki/Determinant" title="Determinant">determinant</a> is defined to be the proportionality factor:<sup id="cite_ref-FOOTNOTEHestenesSobczyk198770_5-0" class="reference"><a href="#cite_note-FOOTNOTEHestenesSobczyk198770-5"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det {\mathsf {f}}={\underline {\mathsf {f}}}(I)I^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det {\mathsf {f}}={\underline {\mathsf {f}}}(I)I^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da804c303eb2b71cc52d118573c4b1577044170d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-bottom: -0.755ex; width:15.153ex; height:3.676ex;" alt="{\displaystyle \det {\mathsf {f}}={\underline {\mathsf {f}}}(I)I^{-1}}"></span></dd></dl> <p>The underline is not necessary in this context because the determinant of a function is the same as the determinant of its adjoint. The determinant of the composition of functions is the product of the determinants: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det({\mathsf {f}}\circ {\mathsf {g}})=\det {\mathsf {f}}\det {\mathsf {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> </mrow> <mo>∘<!-- ∘ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det({\mathsf {f}}\circ {\mathsf {g}})=\det {\mathsf {f}}\det {\mathsf {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e80e1a4b04040805cedb0e6020ebe97d4334908e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.892ex; height:2.843ex;" alt="{\displaystyle \det({\mathsf {f}}\circ {\mathsf {g}})=\det {\mathsf {f}}\det {\mathsf {g}}}"></span></dd></dl> <p>If the determinant of a function is nonzero, then the function has an inverse given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}^{-1}(X)={\frac {{\overline {\mathsf {f}}}(XI)I^{-1}}{\det {\mathsf {f}}}}={\overline {\mathsf {f}}}(XI)[{\overline {\mathsf {f}}}(I)]^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mi>I</mi> <mo stretchy="false">)</mo> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mi>I</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}^{-1}(X)={\frac {{\overline {\mathsf {f}}}(XI)I^{-1}}{\det {\mathsf {f}}}}={\overline {\mathsf {f}}}(XI)[{\overline {\mathsf {f}}}(I)]^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d8da26c9a306ed0142c15143fac498205d070b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.061ex; width:37.994ex; height:6.509ex;" alt="{\displaystyle {\underline {\mathsf {f}}}^{-1}(X)={\frac {{\overline {\mathsf {f}}}(XI)I^{-1}}{\det {\mathsf {f}}}}={\overline {\mathsf {f}}}(XI)[{\overline {\mathsf {f}}}(I)]^{-1},}"></span></dd></dl> <p>and so does its adjoint, with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathsf {f}}}^{-1}(X)={\frac {I^{-1}{\underline {\mathsf {f}}}(IX)}{\det {\mathsf {f}}}}=[{\underline {\mathsf {f}}}(I)]^{-1}{\underline {\mathsf {f}}}(IX).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathsf {f}}}^{-1}(X)={\frac {I^{-1}{\underline {\mathsf {f}}}(IX)}{\det {\mathsf {f}}}}=[{\underline {\mathsf {f}}}(I)]^{-1}{\underline {\mathsf {f}}}(IX).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb071101ab1a9671722d95451e304bf3d468348f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:38.166ex; height:6.009ex;" alt="{\displaystyle {\overline {\mathsf {f}}}^{-1}(X)={\frac {I^{-1}{\underline {\mathsf {f}}}(IX)}{\det {\mathsf {f}}}}=[{\underline {\mathsf {f}}}(I)]^{-1}{\underline {\mathsf {f}}}(IX).}"></span></dd></dl> <p>The concepts of <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues and eigenvectors</a> may be generalized to outermorphisms. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> be a <i>real</i> number and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> be a (nonzero) blade of grade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>. We say that a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is an <b>eigenblade</b> of the function with eigenvalue <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> if<sup id="cite_ref-FOOTNOTEHestenesSobczyk198776_6-0" class="reference"><a href="#cite_note-FOOTNOTEHestenesSobczyk198776-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(B)=\lambda B.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>λ<!-- λ --></mi> <mi>B</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(B)=\lambda B.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3eb6f539b9917092054d4aab2ab0ccfb9a44ff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:11.599ex; height:3.343ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(B)=\lambda B.}"></span></dd></dl> <p>It may seem strange to consider only real eigenvalues, since in linear algebra the eigenvalues of a matrix with all real entries can have complex eigenvalues. In geometric algebra, however, the blades of different grades can exhibit a complex structure. Since both vectors and pseudovectors can act as eigenblades, they may each have a set of eigenvalues matching the degrees of freedom of the complex eigenvalues that would be found in ordinary linear algebra. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Simple maps</dt> <dd></dd></dl> <p>The <a href="/wiki/Identity_function" title="Identity function">identity map</a> and the scalar projection operator are outermorphisms. </p> <dl><dt>Versors</dt> <dd></dd></dl> <p>A rotation of a vector by a <a href="/wiki/Rotor_(mathematics)" title="Rotor (mathematics)">rotor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=RxR^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mi>x</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=RxR^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/113d7f95b9c9837860acd1e4860aa84860275feb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.707ex; height:3.176ex;" alt="{\displaystyle f(x)=RxR^{-1}}"></span></dd></dl> <p>with outermorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathsf {f}}}(X)=RXR^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mi>X</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathsf {f}}}(X)=RXR^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce6ad3f8dd47740903a590585c06285451c43c87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.583ex; margin-left: -0.061ex; margin-bottom: -0.755ex; width:16.537ex; height:3.676ex;" alt="{\displaystyle {\underline {\mathsf {f}}}(X)=RXR^{-1}.}"></span></dd></dl> <p>We check that this is the correct form of the outermorphism. Since rotations are built from the geometric product, which has the distributive property, they must be linear. To see that rotations are also outermorphisms, we recall that rotations preserve angles between vectors:<sup id="cite_ref-FOOTNOTEPerwass2008_7-0" class="reference"><a href="#cite_note-FOOTNOTEPerwass2008-7"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot y=(RxR^{-1})\cdot (RyR^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>x</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>y</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot y=(RxR^{-1})\cdot (RyR^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e929dc0bc37994718e1d3a9ca309e51e98521a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.767ex; height:3.176ex;" alt="{\displaystyle x\cdot y=(RxR^{-1})\cdot (RyR^{-1})}"></span></dd></dl> <p>Next, we try inputting a higher grade element and check that it is consistent with the original rotation for vectors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\underline {\mathsf {f}}}(x\wedge y)&=R(x\wedge y)R^{-1}\\&=R(xy-x\cdot y)R^{-1}\\&=RxyR^{-1}-R(x\cdot y)R^{-1}\\&=RxR^{-1}RyR^{-1}-x\cdot y\\&=(RxR^{-1})\wedge (RyR^{-1})+(RxR^{-1})\cdot (RyR^{-1})-x\cdot y\\&=(RxR^{-1})\wedge (RyR^{-1})+x\cdot y-x\cdot y\\&=f(x)\wedge f(y)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">f</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>R</mi> <mi>x</mi> <mi>y</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>R</mi> <mi>x</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>R</mi> <mi>y</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>x</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>y</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>x</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>y</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>x</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mi>y</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\underline {\mathsf {f}}}(x\wedge y)&=R(x\wedge y)R^{-1}\\&=R(xy-x\cdot y)R^{-1}\\&=RxyR^{-1}-R(x\cdot y)R^{-1}\\&=RxR^{-1}RyR^{-1}-x\cdot y\\&=(RxR^{-1})\wedge (RyR^{-1})+(RxR^{-1})\cdot (RyR^{-1})-x\cdot y\\&=(RxR^{-1})\wedge (RyR^{-1})+x\cdot y-x\cdot y\\&=f(x)\wedge f(y)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a626f2de9bd9ed39b1f671b35a29fc47db6f72e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.59ex; margin-bottom: -0.248ex; width:61.585ex; height:22.843ex;" alt="{\displaystyle {\begin{aligned}{\underline {\mathsf {f}}}(x\wedge y)&=R(x\wedge y)R^{-1}\\&=R(xy-x\cdot y)R^{-1}\\&=RxyR^{-1}-R(x\cdot y)R^{-1}\\&=RxR^{-1}RyR^{-1}-x\cdot y\\&=(RxR^{-1})\wedge (RyR^{-1})+(RxR^{-1})\cdot (RyR^{-1})-x\cdot y\\&=(RxR^{-1})\wedge (RyR^{-1})+x\cdot y-x\cdot y\\&=f(x)\wedge f(y)\end{aligned}}}"></span></dd></dl> <dl><dt>Orthogonal projection operators</dt> <dd></dd></dl> <p>The orthogonal projection operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ce7863a549773a04ce5d5155bfe8707d08db68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.097ex; height:2.509ex;" alt="{\displaystyle {\mathcal {P}}_{B}}"></span> onto a blade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is an outermorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}_{B}(x\wedge y)={\mathcal {P}}_{B}(x)\wedge {\mathcal {P}}_{B}(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}_{B}(x\wedge y)={\mathcal {P}}_{B}(x)\wedge {\mathcal {P}}_{B}(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f2e596ba7ff1418502a8fff712aa4c2f08ec847" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.601ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}_{B}(x\wedge y)={\mathcal {P}}_{B}(x)\wedge {\mathcal {P}}_{B}(y).}"></span></dd></dl> <dl><dt>Nonexample – orthogonal rejection operator</dt> <dd></dd></dl> <p>In contrast to the orthogonal projection operator, the orthogonal rejection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}_{B}^{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}_{B}^{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b2e839271d7e3f6b286fad065c039ec74c3c59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.24ex; height:3.176ex;" alt="{\displaystyle {\mathcal {P}}_{B}^{\perp }}"></span> by a blade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is linear but is <i>not</i> an outermorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}_{B}^{\perp }(1)=1-{\mathcal {P}}_{B}(1)=0\neq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>≠<!-- ≠ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}_{B}^{\perp }(1)=1-{\mathcal {P}}_{B}(1)=0\neq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6790a6db8bfb4b815e111bc82e7471f1b0f2aef4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.551ex; height:3.176ex;" alt="{\displaystyle {\mathcal {P}}_{B}^{\perp }(1)=1-{\mathcal {P}}_{B}(1)=0\neq 1.}"></span></dd></dl> <dl><dt>Nonexample – <a href="/wiki/Grade_projection" class="mw-redirect" title="Grade projection">grade projection</a> operator</dt> <dd></dd></dl> <p>An example of a multivector-valued function of multivectors that is linear but is <i>not</i> an outermorphism is grade projection where the grade is nonzero, for example projection onto grade 1: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x\wedge y\rangle _{1}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x\wedge y\rangle _{1}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b8b02f848595479f0ea7a019cfba18bb6f237ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.192ex; height:2.843ex;" alt="{\displaystyle \langle x\wedge y\rangle _{1}=0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x\rangle _{1}\wedge \langle y\rangle _{1}=x\wedge y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>y</mi> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x\rangle _{1}\wedge \langle y\rangle _{1}=x\wedge y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9854e449882d59916a64c2a442c824264e7f778f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.961ex; height:2.843ex;" alt="{\displaystyle \langle x\rangle _{1}\wedge \langle y\rangle _{1}=x\wedge y}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=5" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">See particularly <a href="/wiki/Exterior_algebra#Functoriality" title="Exterior algebra">Exterior algebra § Functoriality</a>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Except for the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is the <a href="/wiki/Zero_map" class="mw-redirect" title="Zero map">zero map</a>, when it is required by axiom.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=6" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-FOOTNOTEDorstDoranLasenby2001-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDorstDoranLasenby2001_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDorstDoranLasenby2001">Dorst, Doran & Lasenby 2001</a>.</span> </li> <li id="cite_note-FOOTNOTEHestenesSobczyk198768-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHestenesSobczyk198768_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHestenesSobczyk1987">Hestenes & Sobczyk 1987</a>, p. 68. (<i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=dScR5zwrheYC&pg=PA68&dq=%22an+outermorphism+is+grade-preserving%22">here</a></i> at <a href="/wiki/Google_Books" title="Google Books">Google Books</a>)</span> </li> <li id="cite_note-FOOTNOTEHestenesSobczyk198770-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHestenesSobczyk198770_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHestenesSobczyk1987">Hestenes & Sobczyk 1987</a>, p. 70. (<i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=dScR5zwrheYC&pg=PA70&dq=%22The+determinant+of+f%22">here</a></i> at <a href="/wiki/Google_Books" title="Google Books">Google Books</a>)</span> </li> <li id="cite_note-FOOTNOTEHestenesSobczyk198776-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHestenesSobczyk198776_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHestenesSobczyk1987">Hestenes & Sobczyk 1987</a>, p. 76. (<i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=dScR5zwrheYC&pg=PA76&dq=%22generalization+of+the+notion+of+eigenvector%22">here</a></i> at <a href="/wiki/Google_Books" title="Google Books">Google Books</a>)</span> </li> <li id="cite_note-FOOTNOTEPerwass2008-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPerwass2008_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPerwass2008">Perwass 2008</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Outermorphism&action=edit&section=7" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHestenesSobczyk1987" class="citation cs2">Hestenes, D.; Sobczyk, G. (1987), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dScR5zwrheYC"><i>Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics</i></a>, Fundamental Theories of Physics, vol. 5, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/90-277-2561-6" title="Special:BookSources/90-277-2561-6"><bdi>90-277-2561-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Clifford+Algebra+to+Geometric+Calculus%3A+A+Unified+Language+for+Mathematics+and+Physics&rft.series=Fundamental+Theories+of+Physics&rft.pub=Springer&rft.date=1987&rft.isbn=90-277-2561-6&rft.aulast=Hestenes&rft.aufirst=D.&rft.au=Sobczyk%2C+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdScR5zwrheYC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrumeyrolleAblamowiczLounesto1995" class="citation cs2">Crumeyrolle, A.; Ablamowicz, R.; Lounesto, P. (1995), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DnyUDg483kEC&pg=PA105"><i>Clifford Algebras and Spinor Structures: A Special Volume Dedicated to the Memory of Albert Crumeyrolle (1919–1992)</i></a>, Mathematics and Its Applications, vol. 321, Springer, p. 105, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7923-3366-7" title="Special:BookSources/0-7923-3366-7"><bdi>0-7923-3366-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Clifford+Algebras+and+Spinor+Structures%3A+A+Special+Volume+Dedicated+to+the+Memory+of+Albert+Crumeyrolle+%281919%E2%80%931992%29&rft.series=Mathematics+and+Its+Applications&rft.pages=105&rft.pub=Springer&rft.date=1995&rft.isbn=0-7923-3366-7&rft.aulast=Crumeyrolle&rft.aufirst=A.&rft.au=Ablamowicz%2C+R.&rft.au=Lounesto%2C+P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDnyUDg483kEC%26pg%3DPA105&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaylis1996" class="citation cs2">Baylis, W.E. (1996), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0Nji78YQKfQC&pg=PA71"><i>Clifford (Geometric) Algebras: With Applications in Physics, Mathematics, and Engineering</i></a>, Springer, p. 71, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8176-3868-7" title="Special:BookSources/0-8176-3868-7"><bdi>0-8176-3868-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Clifford+%28Geometric%29+Algebras%3A+With+Applications+in+Physics%2C+Mathematics%2C+and+Engineering&rft.pages=71&rft.pub=Springer&rft.date=1996&rft.isbn=0-8176-3868-7&rft.aulast=Baylis&rft.aufirst=W.E.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0Nji78YQKfQC%26pg%3DPA71&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDorstDoranLasenby2001" class="citation cs2">Dorst, L.; Doran, C.J.L.; <a href="/wiki/Joan_Lasenby" title="Joan Lasenby">Lasenby, J.</a> (2001), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NpJRkQfgtwUC&pg=PA61"><i>Applications of geometric algebra in computer science and engineering</i></a>, Springer, p. 61, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8176-4267-6" title="Special:BookSources/0-8176-4267-6"><bdi>0-8176-4267-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applications+of+geometric+algebra+in+computer+science+and+engineering&rft.pages=61&rft.pub=Springer&rft.date=2001&rft.isbn=0-8176-4267-6&rft.aulast=Dorst&rft.aufirst=L.&rft.au=Doran%2C+C.J.L.&rft.au=Lasenby%2C+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNpJRkQfgtwUC%26pg%3DPA61&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD'OrangevilleAnthonyLasenby2003" class="citation cs2">D'Orangeville, C.; Anthony, A.; Lasenby, N. (2003), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VW4yt0WHdjoC&pg=PA343"><i>Geometric Algebra For Physicists</i></a>, Cambridge University Press, p. 343, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-48022-1" title="Special:BookSources/0-521-48022-1"><bdi>0-521-48022-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometric+Algebra+For+Physicists&rft.pages=343&rft.pub=Cambridge+University+Press&rft.date=2003&rft.isbn=0-521-48022-1&rft.aulast=D%27Orangeville&rft.aufirst=C.&rft.au=Anthony%2C+A.&rft.au=Lasenby%2C+N.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVW4yt0WHdjoC%26pg%3DPA343&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerwass2008" class="citation cs2">Perwass, C. (2008), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8IOypFqEkPMC&pg=PA23"><i>Geometric Algebra with Applications in Engineering</i></a>, Geometry and Computing, vol. 4, Springer, p. 23, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-89067-X" title="Special:BookSources/3-540-89067-X"><bdi>3-540-89067-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometric+Algebra+with+Applications+in+Engineering&rft.series=Geometry+and+Computing&rft.pages=23&rft.pub=Springer&rft.date=2008&rft.isbn=3-540-89067-X&rft.aulast=Perwass&rft.aufirst=C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8IOypFqEkPMC%26pg%3DPA23&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoot2014" class="citation cs2">Joot, P. (2014), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QPtiyvRk7QcC&pg=PA157"><i>Exploring physics with Geometric Algebra</i></a>, p. 157</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Exploring+physics+with+Geometric+Algebra&rft.pages=157&rft.date=2014&rft.aulast=Joot&rft.aufirst=P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQPtiyvRk7QcC%26pg%3DPA157&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOutermorphism" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Linear_algebra379" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Linear_algebra" title="Template:Linear algebra"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Linear_algebra" title="Template talk:Linear algebra"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Linear_algebra" title="Special:EditPage/Template:Linear algebra"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Linear_algebra379" style="font-size:114%;margin:0 4em"><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Outline_of_linear_algebra" title="Outline of linear algebra">Outline</a></li> <li><a href="/wiki/Glossary_of_linear_algebra" title="Glossary of linear algebra">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">Scalar</a></li> <li><a href="/wiki/Euclidean_vector" title="Euclidean vector">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li> <li><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></li> <li><a href="/wiki/Vector_projection" title="Vector projection">Vector projection</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Linear projection</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Linear_combination" title="Linear combination">Linear combination</a></li> <li><a href="/wiki/Multilinear_map" title="Multilinear map">Multilinear map</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Change_of_basis" title="Change of basis">Change of basis</a></li> <li><a href="/wiki/Row_and_column_vectors" title="Row and column vectors">Row and column vectors</a></li> <li><a href="/wiki/Row_and_column_spaces" title="Row and column spaces">Row and column spaces</a></li> <li><a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">Kernel</a></li> <li><a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a></li> <li><a href="/wiki/System_of_linear_equations" title="System of linear equations">Linear equations</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Euclidean_space" title="Euclidean space"><img alt="Three dimensional Euclidean space" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrices</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Decomposition</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">Minor</a></li> <li><a href="/wiki/Matrix_multiplication" title="Matrix multiplication">Multiplication</a></li> <li><a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">Rank</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li> <li><a href="/wiki/Cramer%27s_rule" title="Cramer's rule">Cramer's rule</a></li> <li><a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a></li> <li><a href="/wiki/Productive_matrix" title="Productive matrix">Productive matrix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bilinear_map" title="Bilinear map">Bilinear</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Orthogonality" title="Orthogonality">Orthogonality</a></li> <li><a href="/wiki/Dot_product" title="Dot product">Dot product</a></li> <li><a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></li> <li><a href="/wiki/Outer_product" title="Outer product">Outer product</a></li> <li><a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a></li> <li><a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Determinant" title="Determinant">Determinant</a></li> <li><a href="/wiki/Cross_product" title="Cross product">Cross product</a></li> <li><a href="/wiki/Triple_product" title="Triple product">Triple product</a></li> <li><a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">Seven-dimensional cross product</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Bivector" title="Bivector">Bivector</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a class="mw-selflink selflink">Outermorphism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_space" title="Vector space">Vector space</a> constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_space" title="Dual space">Dual</a></li> <li><a href="/wiki/Direct_sum_of_modules#Construction_for_two_vector_spaces" title="Direct sum of modules">Direct sum</a></li> <li><a href="/wiki/Function_space#In_linear_algebra" title="Function space">Function space</a></li> <li><a href="/wiki/Quotient_space_(linear_algebra)" title="Quotient space (linear algebra)">Quotient</a></li> <li><a href="/wiki/Linear_subspace" title="Linear subspace">Subspace</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">Numerical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">Floating-point</a></li> <li><a href="/wiki/Numerical_stability" title="Numerical stability">Numerical stability</a></li> <li><a href="/wiki/Basic_Linear_Algebra_Subprograms" title="Basic Linear Algebra Subprograms">Basic Linear Algebra Subprograms</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse matrix</a></li> <li><a href="/wiki/Comparison_of_linear_algebra_libraries" title="Comparison of linear algebra libraries">Comparison of linear algebra libraries</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐58bb4f8ccf‐4k7r6 Cached time: 20250214073942 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.326 seconds Real time usage: 0.510 seconds Preprocessor visited node count: 1527/1000000 Post‐expand include size: 31142/2097152 bytes Template argument size: 1655/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 32140/5000000 bytes Lua time usage: 0.199/10.000 seconds Lua memory usage: 6199477/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 346.662 1 -total 27.28% 94.586 7 Template:Citation 25.97% 90.026 1 Template:Linear_algebra 24.81% 85.994 1 Template:Navbox 19.64% 68.101 1 Template:Short_description 12.82% 44.447 2 Template:Pagetype 11.66% 40.426 5 Template:Sfn 7.28% 25.239 1 Template:About 4.11% 14.238 2 Template:Reflist 4.05% 14.042 10 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:39487937:|#|:idhash:canonical and timestamp 20250214073942 and revision id 1270494067. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Outermorphism&oldid=1270494067">https://en.wikipedia.org/w/index.php?title=Outermorphism&oldid=1270494067</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Geometric_algebra" title="Category:Geometric algebra">Geometric algebra</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 January 2025, at 20:27<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Outermorphism&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Outermorphism</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>Add languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-srz4n","wgBackendResponseTime":117,"wgPageParseReport":{"limitreport":{"cputime":"0.326","walltime":"0.510","ppvisitednodes":{"value":1527,"limit":1000000},"postexpandincludesize":{"value":31142,"limit":2097152},"templateargumentsize":{"value":1655,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":32140,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 346.662 1 -total"," 27.28% 94.586 7 Template:Citation"," 25.97% 90.026 1 Template:Linear_algebra"," 24.81% 85.994 1 Template:Navbox"," 19.64% 68.101 1 Template:Short_description"," 12.82% 44.447 2 Template:Pagetype"," 11.66% 40.426 5 Template:Sfn"," 7.28% 25.239 1 Template:About"," 4.11% 14.238 2 Template:Reflist"," 4.05% 14.042 10 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.199","limit":"10.000"},"limitreport-memusage":{"value":6199477,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBaylis1996\"] = 1,\n [\"CITEREFCrumeyrolleAblamowiczLounesto1995\"] = 1,\n [\"CITEREFD\u0026#039;OrangevilleAnthonyLasenby2003\"] = 1,\n [\"CITEREFDorstDoranLasenby2001\"] = 1,\n [\"CITEREFHestenesSobczyk1987\"] = 1,\n [\"CITEREFJoot2014\"] = 1,\n [\"CITEREFPerwass2008\"] = 1,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Citation\"] = 7,\n [\"Efn\"] = 2,\n [\"Google books\"] = 3,\n [\"Linear algebra\"] = 1,\n [\"Notelist\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 5,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.eqiad.main-58bb4f8ccf-4k7r6","timestamp":"20250214073942","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Outermorphism","url":"https:\/\/en.wikipedia.org\/wiki\/Outermorphism","sameAs":"http:\/\/www.wikidata.org\/entity\/Q17097714","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q17097714","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2013-05-26T01:31:32Z","dateModified":"2025-01-19T20:27:08Z","headline":"unital algebra homomorphism of exterior algebras"}</script> </body> </html>