CINXE.COM

{"title":"Adaptive Path Planning for Mobile Robot Obstacle Avoidance","authors":"Rong-Jong Wai, Chia-Ming Liu","volume":54,"journal":"International Journal of Electrical and Computer Engineering","pagesStart":769,"pagesEnd":776,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/4784","abstract":"Generally speaking, the mobile robot is capable of\r\nsensing its surrounding environment, interpreting the sensed\r\ninformation to obtain the knowledge of its location and the\r\nenvironment, planning a real-time trajectory to reach the object. In\r\nthis process, the issue of obstacle avoidance is a fundamental topic to\r\nbe challenged. Thus, an adaptive path-planning control scheme is\r\ndesigned without detailed environmental information, large memory\r\nsize and heavy computation burden in this study for the obstacle\r\navoidance of a mobile robot. In this scheme, the robot can gradually\r\napproach its object according to the motion tracking mode, obstacle\r\navoidance mode, self-rotation mode, and robot state selection. The\r\neffectiveness of the proposed adaptive path-planning control scheme\r\nis verified by numerical simulations of a differential-driving mobile\r\nrobot under the possible occurrence of obstacle shapes.","references":"[1] T. C. Lee, C. Y. Tsai, and K. T. Song, \u00b6\u00c7\u00c7\u00fcFast parking control of mobile\r\nrobots: a motion planning approach with experimental validation,\u00b6\u00c7\u00c7\u00e9 IEEE\r\nTrans. Contr. Syst. Technol., vol. 12, no. 5, pp. 661\u00b6\u00c7\u00c7\u00fc676, 2004.\r\n[2] T.-H. S. Li, S. J. Chang, and Y. X. Chen, \u00b6\u00c7\u00c7\u00fcImplementation of human-like\r\ndriving skills by autonomous fuzzy behavior control on an FPGA-based\r\ncar-like mobile robot,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Ind. Electron., vol. 50, no. 5, pp.\r\n867\u00b6\u00c7\u00c7\u00fc880, 2003.\r\n[3] H. Seraji and A. Howard, \u00b6\u00c7\u00c7\u00fc Behavior-based robot navigation on\r\nchallenging terrain: a fuzzy logic approach, \u00b6\u00c7\u00c7\u00e9 IEEE Trans. Robot.\r\nAutomat., vol. 18, no. 3, pp. 308\u00b6\u00c7\u00c7\u00fc321, 2002.\r\n[4] C. L. Hwang, L. J. Chang, and Y. S. Yu, \u00b6\u00c7\u00c7\u00fcNetwork-based fuzzy\r\ndecentralized sliding-mode control for car-like mobile robots,\u00b6\u00c7\u00c7\u00e9 IEEE\r\nTrans. Ind. Electron., vol. 54, no. 1, pp. 574\u00b6\u00c7\u00c7\u00fc585, 2007.\r\n[5] W. Tsui, M. S. Masmoudi, F. Karray, I. Song, and M. Masmoudi,\r\n\u00b6\u00c7\u00c7\u00fc Soft-computing-based embedded design of an intelligent\r\nwall\/lane-following vehicle,\u00b6\u00c7\u00c7\u00e9 IEEE\/ASME Trans. Mechatronics, vol. 13,\r\nno. 1, pp. 125\u00b6\u00c7\u00c7\u00fc135, 2008.\r\n[6] C. Ye, H. C. Yung, and D. Wang, \u00b6\u00c7\u00c7\u00fcA fuzzy controller with supervised\r\nlearning assisted reinforcement learning algorithm for obstacle\r\navoidance,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Syst. Man, Cybern. B, vol. 33, no. 1, pp. 17\u00b6\u00c7\u00c7\u00fc27,\r\n2003.\r\n[7] J. H. Lilly, \u00b6\u00c7\u00c7\u00fcEvolution of a negative-rule fuzzy obstacle avoidance\r\ncontroller for an autonomous vehicle,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Fuzzy Syst., vol. 15,\r\nno. 4, pp. 718\u00b6\u00c7\u00c7\u00fc728, 2007.\r\n[8] Q. Li, W. Zhang, Y. Yin, Z. Wang, and G. Liu, \u00b6\u00c7\u00c7\u00fcAn improved genetic\r\nalgorithm of optimum path planning for mobile robots,\u00b6\u00c7\u00c7\u00e9 Int. Conf.\r\nIntelligent Systems Design and Applications, vol. 2, pp. 637\u00b6\u00c7\u00c7\u00fc642, 2006.\r\n[9] J. Tu and S. Yang, \u00b6\u00c7\u00c7\u00fcGenetic algorithm based path planning for a mobile\r\nrobot,\u00b6\u00c7\u00c7\u00e9 IEEE Int. Conf. Robotics and Automation, pp. 1221\u00b6\u00c7\u00c7\u00fc1226, 2003.\r\n[10] Y. Hu and S. Yang, \u00b6\u00c7\u00c7\u00fcA knowledge based genetic algorithm for path\r\nplanning of a mobile robot,\u00b6\u00c7\u00c7\u00e9 IEEE Int. Conf. Robotics and Automation,\r\npp. 4350\u00b6\u00c7\u00c7\u00fc4355, 2004.\r\n[11] W. Wu and Q. Ruan, \u00b6\u00c7\u00c7\u00fcA gene-constrained genetic algorithm for solving\r\nshortest path problem,\u00b6\u00c7\u00c7\u00e9 Int. Conf. Signal Processing, pp. 2510\u00b6\u00c7\u00c7\u00fc2513,\r\n2004.\r\n[12] J. Borenstein and Y. Koren, \u00b6\u00c7\u00c7\u00fcThe vector field histogram-fast obstacle\r\navoidance for mobile robots,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Robot. Automat., vol. 7, no.\r\n3, pp. 278\u00b6\u00c7\u00c7\u00fc288, 1991.\r\n[13] A. Zhu and S. X. Yang, \u00b6\u00c7\u00c7\u00fcNeurofuzzy-based approach to mobile robot\r\nnavigation in unknown environments,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Syst. Man, Cybern.\r\nC, vol. 37, no. 4, pp. 610\u00b6\u00c7\u00c7\u00fc621, 2007.\r\n[14] F. Amigoni and S. Gasparini, \u00b6\u00c7\u00c7\u00fcBuilding segment-based maps without\r\npose information,\u00b6\u00c7\u00c7\u00e9 Proc. IEEE, vol. 94, no. 7, pp. 1340\u00b6\u00c7\u00c7\u00fc1359, 2006.\r\n[15] G. L. Mariottini, G. Oriolo, and D. Prattichizzo, \u00b6\u00c7\u00c7\u00fcImage-based visual\r\nservoing for nonholonomic mobile robots using epipolar genmetry,\u00b6\u00c7\u00c7\u00e9\r\nIEEE Trans. Robotics, vol. 23, no. 1, pp. 87\u00b6\u00c7\u00c7\u00fc100, 2007.\r\n[16] M. Wang and J. N. K. Liu, \u00b6\u00c7\u00c7\u00fc Fuzzy logic-based real-time robot\r\nnavigation in unknown environment with dead ends, \u00b6\u00c7\u00c7\u00e9 Robot.\r\nAutonomous Syst., vol. 56, no. 7, pp. 625\u00b6\u00c7\u00c7\u00fc643, 2008.\r\n[17] J. Velagic, B. Lacevic, and B. Perunicic, \u00b6\u00c7\u00c7\u00fcA 3-level autonomous mobile\r\nrobot navigation system designed by using reasoning\/search\r\napproaches,\u00b6\u00c7\u00c7\u00e9 Robot. Autonomous Syst., vol. 54, no. 12, pp. 989\u00b6\u00c7\u00c7\u00fc1004,\r\n2006.\r\n[18] K. M. Krishna and P. K. Kalra, \u00b6\u00c7\u00c7\u00fcPerception and remembrance of the\r\nenvironment during real-time navigation of a mobile robot,\u00b6\u00c7\u00c7\u00e9 Robot.\r\nAutonomous Syst., vol. 37, pp. 25\u00b6\u00c7\u00c7\u00fc51, 2001.\r\n[19] M. Wang and J. N. K. Liu, \u00b6\u00c7\u00c7\u00fcFuzzy logic based robot path planning in\r\nunknown environments,\u00b6\u00c7\u00c7\u00e9 Int. Conf. Machine Learning and Cybernetics,\r\nvol. 2, pp. 813\u00b6\u00c7\u00c7\u00fc818, 2005.\r\n[20] G. Antonelli, S. Chiaverini, and G. Fusco, \u00b6\u00c7\u00c7\u00fc A fuzzy-logic-based\r\napproach for mobile robot path tracking,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Fuzzy Syst., vol.\r\n15, no. 2, pp. 211\u00b6\u00c7\u00c7\u00fc221, 2007.\r\n[21] S. J. Yoo, Y. H. Choi, and J. B. Park, \u00b6\u00c7\u00c7\u00fcGeneralized predictive control\r\nbased on self-recurrent wavelet neural network for stable path tracking\r\nof mobile robots: adaptive learning rates approach,\u00b6\u00c7\u00c7\u00e9 IEEE Trans. Circuit\r\nSyst. I, vol. 53, no. 6, pp. 1381\u00b6\u00c7\u00c7\u00fc1394, 2006.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 54, 2011"}