CINXE.COM
Dall and Ross null tests
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Dall and Ross null tests</title> <meta name="keywords" content="Dall null test, Ross null test"> <meta name="description" content="Principles and application of Dall null test and Ross null test for testing optical surfaces."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span><p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> <a href="hindle_sphere_test.htm">4.8.5. Hindle sphere test</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="offner_null_test.htm">4.8.7. Offner null test</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> <h1 align="center" style="text-indent: 0"> <font face="Trebuchet MS" color="#336699" size="3"> 4.8.6.<span style="font-weight: 400"> </span>DALL AND ROSS NULL TESTS</font></h1> <p align="justify" style="text-indent: 22px; line-height:150%"> Dall null test uses single lens placed between light source and mirror on test, with the mirror tilted as needed to clear the lens from the path of the converging beam (<b>FIG. 57</b>). The lens induces nearly identical amount of spherical aberration of opposite sign to that of a mirror of specified conic, making possible to quickly assess the accuracy of mirror surface by observing how well it "nulls"; that is, whether or not the resulting focus is tight enough to produce darkening evenly spread across the surface when the light is intercepted at the focus point (the lens can also be placed in the converging cone, with very similar results; the advantage of such a setup is that it ensures that the entire mirror surface is tested).<div style="padding-left: 3px; padding-right: 3px; background-color: #F9FBFA"> <p align="center" style="text-indent: 0"> <font face="Tahoma"> <img border="0" src="images/Dall.PNG" width="488" height="244" align="left" vspace="4"><div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 0"> <b>FIGURE 57</b>: Usually done in combination with Foucault test apparatus, Dall null test has the lens tailored to fit a mirror imaging point at the center of curvature. Thus the lens and light source are positioned so that the refracted rays projected backwards focus at the mirror's center of curvature. In other words. the null lens produces diverging cone nearly coinciding with that of the mirror focusing at the center of curvature, thus producing near-identical aberration at the mirror. On its part, the lens induces nearly identical aberration of opposite sign, which results in a formation of near-perfect focus that will make possible to null accurately made surface. </font></div> </div> <p align="justify" style="text-indent: 22px; line-height:150%"> For given lens separation from the mirror center of curvature <b>L</b><font size="1" face="Terminal"><span style="vertical-align: sub">C</span></font>, this setup requires <b><font color="#000080">lens-to-source separation</font></b><p align="center" style="text-indent: 0"> <b> <img border="0" src="images/eq217n.PNG" width="78" height="44"> </b> <p align="justify" style="text-indent: 0; line-height:150%"> with <b> <font face="Verdana" size="2">f</font></b> being the lens focal length, given by <font face="Verdana" size="2">f</font><font face="Trebuchet MS"><i>=</i></font>R/(n-1) for plano-convex, and <font face="Verdana" size="2">f</font><font face="Trebuchet MS"><i>=</i></font>R/2(n-1) for equi-convex lens, where <b>R</b> is the surface radius of curvature, and <b>n</b> the index of refraction. This initial location not necessarily results in the aberration offset, and usually requires minor adjustment (the figure is usually more accurate when measured from the center of the lens, due to lens thickness being a factor not accounted for in the Gaussian lens formula that the relation is obtained from). Since lens' spherical aberration changes with <b>R</b><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font>, relatively small variations lead to the desired aberration level, with the change in effective lens diameter due to needed axial adjustments having relatively small effect on the aberration.<p align="justify" style="text-indent: 22px; line-height:150%"> Main limitation of the Dall null test results from the need to bypass correcting lens with the converging cone. It requires tilting the mirror (it can also be thought of as placing light source off the mirror optical axis), which inevitably induces <b><font color="#000080">astigmatism</font></b>. For mirror with the stop at surface, it is independent of object distance, thus as given by <a href="newtonian_off_axis_aberrations.htm#-_primary_astigmatism,">Eq. 72</a>. In terms of the maximum allowable RMS error of astigmatism <b>ω</b>, the corresponding tilt angle <font face="Georgia"><b>τ</b> </font>is given by: </font> <p align="center" style="text-indent: 22px"> <b> <font face="Georgia">τ </font></b><font face="Comic Sans MS">= (F</font><b>ω</b><font face="Comic Sans MS">/D)<span style="vertical-align: super"><font size="1">1/2</font></span>/6.8</font><font size="2"> <p align="justify" style="text-indent: 0; line-height:150%"> in radians. Taking ω=0.03 waves RMS of astigmatism as the maximum acceptable level (comparable to 1/10 wave P-V of spherical aberration), gives the maximum acceptable tilt angle <font face="Georgia">τ</font>=<b><font size="2" face="Verdana">√</font></b><span style="text-decoration: overline">F/D</span>/39, with <b>F</b> being the mirror infinity F-number, and <b>D</b> the aperture diameter in mm. It, in turn, determines the width of converging cone at the point where it splits off the diverging cone, at R/(4F<font face="Georgia">τ</font>+1) from the mirror, as D'=F<font face="Georgia">τ</font>D/(F<font face="Georgia">τ</font>+0.25). This is the approximate upper limit for the lens diameter, with the actual lens being somewhat closer to the focus, to prevent the converging cone from passing close to its edges (it is recommendable to use less than 2/3 of lens radius, to avoid its often less accurate outer zone). <p align="justify" style="text-indent: 22px; line-height:150%"> For an average 300mm<font face="Tahoma" size="2"> f</font>/5 mirror, maximum acceptable tilt angle is <font face="Georgia">τ</font>=0.0033 (0.19°), with near-maximum lens diameter D'<font size="1" face="Terminal"><span style="vertical-align: sub">max</span></font>~20mm. The point of cone separation is, therefore, about 190mm from mirror's center of curvature, but the actual lens shouldn't be farther than 140mm from it. Needed lens-to-source separation <b>L</b><font size="1" face="Terminal"><span style="vertical-align: sub">O</span></font> is dependent on the lens focal length <b> <font face="Verdana" size="2">f</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font> and lens-to-c.o.c. separation <b>L</b><font size="1" face="Terminal"><span style="vertical-align: sub">C</span></font> (which is the image distance for the lens, and object distance for the mirror). As given above, L<font size="1" face="Terminal"><span style="vertical-align: sub">O</span></font>=L<font size="1" face="Terminal"><span style="vertical-align: sub">C</span></font><font face="Verdana" size="2">f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>/(L<font size="1" face="Terminal"><span style="vertical-align: sub">C</span></font>+<font face="Verdana" size="2">f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>).<b> </b> <p align="justify" style="text-indent: 22px; line-height:150%"> The <b> <font face="Verdana" size="2">f</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">L </span></font> value is chosen so that the peak aberration coefficient for Seidel spherical aberration s<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>d<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font> of the lens is nearly equal to the <b><font color="#000080">mirror peak aberration coefficient</font></b>, S<font size="1" face="Terminal"><span style="vertical-align: sub">M</span></font>=KD<font size="1" face="Terminal"><span style="vertical-align: sub">M</span></font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font>/64R<font size="1" face="Terminal"><span style="vertical-align: sub">M</span></font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font> (peak aberration coefficient for spherical aberration equals the P-V wavefront error at paraxial focus), and of opposite sign. Taking equi-convex lens with shape factor q=0, to simplify <a href="lower_order_spherical.htm#In_order">Eq. 8</a>, the <font color="#000080"><b>lens aberration coefficient</b></font> becomes: <p align="center" style="text-indent: 0"> <b> <img border="0" src="images/eq41n.PNG" width="180" height="48"> </b> <p align="justify" style="text-indent: 22px; line-height:150%"> Substituting for n~1.52 for BK7 glass further simplifies the relation to s<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>=(3.5+1.8p<font face="Verdana" size="1"><span style="vertical-align: super">2</span></font>)/13.2<font face="Verdana" size="2">f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font>. Taking L=-140mm as the farthest lens-to-center-of-curvature separation that allows to leave out the outer lens area (distance from lens to the center of curvature is numerically negative since to the left of the surface), <font face="Verdana" size="2"> <a href="secondary_spectrum_spherochromatism.htm#height">position factor</a></font> <b>p</b> becomes <font face="Verdana" size="2"> p=1+f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font><font face="Verdana" size="2">/70</font>. <p align="justify" style="text-indent: 22px; line-height:150%"> Since there is no simple way to extract <b> <font face="Verdana" size="2">f</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font> at this point, the simplest way to get a sense of direction is to guess for <b> <font face="Verdana" size="2">f</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font> and see the result. Taking <font face="Verdana" size="2">f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>=70mm and substituting for p=2 gives s<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>=1/1.23f<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font>=1/420,000. With the effective aperture radius d<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>=7mm, the lens peak aberration coefficient is S<font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>=-7<font face="Verdana" size="1"><span style="vertical-align: super">4</span></font>/420,000=-0.0057. Comparison with the mirror peak aberration coefficient S<font size="1" face="Terminal"><span style="vertical-align: sub">M</span></font>=0.0047, shows that lens focal length needs to be relaxed by a <b> <font size="2" face="Verdana">√</font></b><span style="text-decoration: overline">(57/47)</span> factor, resulting in <font face="Verdana" size="2">f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>~75mm. This approximates needed lens-to-source separation as L<font size="1" face="Terminal"><span style="vertical-align: sub">O</span></font>~49mm. <p align="justify" style="text-indent: 22px; line-height:150%"> From this point on, it is best to refine a setup with ray trace. Final optimization for this particular setup in OSLO, including minimizing spherical aberration by balancing its higher- and lower-order components, resulted in the lens focal length <font face="Verdana" size="2">f</font><font size="1" face="Terminal"><span style="vertical-align: sub">L</span></font>=77mm (80mm lens surface radii), and lens-to-source separation L<font size="1" face="Terminal"><span style="vertical-align: sub">O</span></font>=47.6mm. The RMS wavefront error of this near-perfect setup is 0.038 (546nm unit), with the excess over 0.03 wave RMS of mirror tilt caused astigmatism coming from the minimized higher-order spherical aberration. It is barely passable, not only because it exceeds 0.03 wave RMS limit (0.038 wave RMS is comparable to 1/8 wave P-V of lower-order spherical), but also because it uses about 70% of the lens radius. More so considering that the error in an actual setup is all but certain to be larger, and that it will also increase in proportion with the aperture.<p align="justify" style="text-indent: 22px; line-height:150%"> The most sensitive to axial displacement is lens-to-source separation; in this particular setup, 1mm spacing error generated about 0.08 wave RMS of additional aberration, setting the tolerance at <font face="MS Sans Serif">±</font>0.2mm at most. Error in the lens-to-mirror spacing is much more forgiving, with 10mm larger separation raising the error to 0.04 wave RMS, and as much of reduced separation only to 0.036 wave.<p align="justify" style="text-indent: 22px; line-height:150%"> <img border="0" src="images/Ross.PNG" width="360" height="220" align="left" hspace="6">The above example suggests that the Dall null test is probably not recommendable for larger and/or faster mirrors than ~300mm <font face="Verdana" size="2">f</font>/5. This limits its usefulness, since it is with those larger and faster mirrors that null test comes particularly handy. For smaller and slower mirrors, the astigmatism and the overall error of the Dall null test can be kept negligibly low. For larger mirrors and relative apertures, <b><font color="#000080">Ross null test</font></b> is a better option. It also uses positive lens to cancel spherical aberration of a mirror, but both, lens and source are centered on mirror's axis, with the light passing through the lens twice before coming to a focus (obviously, similarly to double pass test, some type of beam splitter is necessary to separate the focus from the source). <p align="justify" style="text-indent: 22px; line-height:150%"> Same basic relations for lens and source locations used for Dall null test can be used for the Ross; the main difference is that the lens aberration coefficient in the Ross null is a sum of the coefficients for each light pass. Fortunately, there is no need to fiddle with numbers. An excellent <a target="_blank" href="http://www.ceravolo.com/Ross_Null2.html">Ross null test shareware program</a> written by Doug George, and rewritten in BASIC by James Lerch, gives all the information needed to conduct the <a name="test">test</a>.<br> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> <a href="hindle_sphere_test.htm">4.8.5. Hindle sphere test</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="offner_null_test.htm">4.8.7. Offner null test</a> </font> <font face="Arial" size="2" color="#336699">►</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><p> </font></td> </tr> </table> </div> </body> </html>