CINXE.COM

{"title":"Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam","authors":"Juan C. Dom\u00ednguez, Bel\u00e9n Del Saz-Orozco, Mar\u00eda V. Alonso, Mercedes Oliet, Francisco Rodr\u00edguez","volume":101,"journal":"International Journal of Environmental and Ecological Engineering","pagesStart":563,"pagesEnd":568,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10001447","abstract":"In the present study, the kinetics of thermal\r\ndegradation of a phenolic and lignin reinforced phenolic foams, and\r\nthe lignin used as reinforcement were studied and the activation\r\nenergies of their degradation processes were obtained by a DAEM\r\nmodel. The average values for five heating rates of the mean\r\nactivation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for\r\nthe phenolic foam; 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin\r\nreinforcement; and 82.1, 106.9, and 124.4 kJ.mol-1 for the lignin\r\nreinforced phenolic foam. The standard deviation ranges calculated\r\nfor each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1\r\nfor the phenolic foam, lignin and the reinforced foam, respectively.\r\nThe DAEM model showed low mean square errors (<1x10-5),\r\nproving that is a suitable model to study the kinetics of thermal\r\ndegradation of the foams and the reinforcement.","references":"[1] J. C. Dominguez, M. Oliet, M. V. Alonso, M. A. Gilarranz, and F.\r\nRodriguez. \u201cThermal stability and pyrolysis kinetics of organosolv\r\nlignins obtained from Eucalyptus globulus,\u201d Ind. Crop. Prod., vol. 27,\r\nno. 2, pp.150-156, 2008.\r\n[2] G. J. Pitt, \u201cThe kinetics of the evolution of volatile products from coal.\u201d\r\nFuel, vol. 41, no. 3, pp. 267-274, 1962.\r\n[3] J. Cai, T. Li, and R. Liu, \u201cA critical study of the Miura\u2013Maki integral\r\nmethod for the estimation of the kinetic parameters of the distributed\r\nactivation energy model.\u201d Bioresour. Technol., vol. 102, no. 4, pp. 3894-\r\n3899, 2011.\r\n[4] J. Cai, W. Wu, and R. Liu, \u201cAn overview of distributed activation\r\nenergy model and its application in the pyrolysis of lignocellulosic\r\nbiomass.\u201d Renew. Sust. Energ. Rev., vol. 36, no. 1, pp. 236-246, 2014.\r\n[5] B. de Caprariis, P. De Filippis, C. Herce, and N. Verdone, \u201cDouble-\r\nGaussian distributed activation energy model for coal devolatilization.\u201d\r\nEnergy & Fuels, vol. 26, no. 10, pp. 6153-6159, 2012.\r\n[6] J. Zhang, T. Chen, J. Wu, and J. Wu, \u201cMulti-Gaussian-DAEM-reaction\r\nmodel for thermal decompositions of cellulose, hemicellulose and lignin:\r\nComparison of N2 and CO2 atmosphere.\u201d Bioresour. Technol., vol. 166,\r\nno. 1, pp. 87-95, 2014.\r\n[7] L. Ga\u0161parovi\u010d, J. Labovsk\u00fd, J. Marko\u0161, and L. Jelemensk\u00fd, \u201cCalculation\r\nof kinetic parameters of the thermal decomposition of wood by\r\ndistributed activation energy model (DAEM).\u201d Chem. Biochem. Eng. Q.,\r\nvol. 26, no. 1, pp. 45-53, 2012.\r\n[8] G. Jiang, D. J. Nowakowski, and A. V. Bridgwater, \u201cA systematic study\r\nof the kinetics of lignin pyrolysis.\u201d Thermochim. Acta, vol. 498, no. 1\u20132,\r\npp. 61-66, 2010.\r\n[9] T. Mani, P. Murugan, and N. Mahinpey, \u201cDetermination of distributed\r\nactivation energy model kinetic parameters using simulated annealing\r\noptimization method for nonisothermal pyrolysis of lignin.\u201d Ind. Eng.\r\nChem. Res., vol. 48, no. 3, pp. 1464-1467, 2008.\r\n[10] H. R. Azimi, M. Rezaei, and F. Abbasi, \u201cThermo-oxidative degradation\r\nof MMA\u2013St copolymer and EPS lost foams: Kinetics study.\u201d\r\nThermochim. Acta, vol. 488, no. 1\u20132, pp. 43-48, 2009.\r\n[11] P. Kannan, J. J. Biernacki, and D. P. Visco Jr, \u201cA review of physical and\r\nkinetic models of thermal degradation of expanded polystyrene foam\r\nand their application to the lost foam casting process.\u201d J. Anal. Appl.\r\nPyrolysis, vol. 78, no. 1, pp. 162-171, 2007.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 101, 2015"}