CINXE.COM

Search results for: tests and simulation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tests and simulation</title> <meta name="description" content="Search results for: tests and simulation"> <meta name="keywords" content="tests and simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tests and simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tests and simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9197</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tests and simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9167</span> Simulation of Bird Strike on Airplane Wings by Using SPH Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9F%C3%A7e%20Kiper%20Elibol">Tuğçe Kiper Elibol</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0brahim%20Uslan"> İbrahim Uslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20Guler"> Mehmet Ali Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Buyuk"> Murat Buyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=U%C4%9Fur%20Yolum"> Uğur Yolum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20impact" title="bird impact">bird impact</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20strike" title=" bird strike"> bird strike</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothed%20particle%20hydrodynamics" title=" smoothed particle hydrodynamics"> smoothed particle hydrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/55315/simulation-of-bird-strike-on-airplane-wings-by-using-sph-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9166</span> An Analysis of Non-Elliptic Curve Based Primality Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Wong">William Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Alomari"> Zakaria Alomari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon%20Ching%20Lai"> Hon Ching Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhida%20Li"> Zhida Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=primality%20tests" title="primality tests">primality tests</a>, <a href="https://publications.waset.org/abstracts/search?q=Fermat%E2%80%99s%20primality%20test" title=" Fermat’s primality test"> Fermat’s primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller-Rabin%20primality%20test" title=" Miller-Rabin primality test"> Miller-Rabin primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=Baillie-PSW%20primality%20test" title=" Baillie-PSW primality test"> Baillie-PSW primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=AKS%20primality%20test" title=" AKS primality test"> AKS primality test</a> </p> <a href="https://publications.waset.org/abstracts/173827/an-analysis-of-non-elliptic-curve-based-primality-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9165</span> Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Magryta">Pawel Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko"> Mateusz Paszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation%20propulsion" title="aviation propulsion">aviation propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20structure" title=" 3d structure"> 3d structure</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20drag" title=" aerodynamic drag"> aerodynamic drag</a> </p> <a href="https://publications.waset.org/abstracts/50076/simulation-research-of-the-aerodynamic-drag-of-3d-structures-for-individual-transport-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9164</span> Experimental Simulation of Soil Boundary Condition for Dynamic Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Qaftan">Omar S. Qaftan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Sabbagh"> T. T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/74384/experimental-simulation-of-soil-boundary-condition-for-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9163</span> Order Fulfilment Strategy in E-Commerce Warehouse Based on Simulation: Business Customers Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aurelija%20Burinskiene">Aurelija Burinskiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the study for an e-commerce warehouse. The study is aiming to improve order fulfillment activity by identifying the strategy presenting the best performance. A simulation model was proposed to reach the target of this research. This model enables various scenario tests in an e-commerce warehouse, allowing them to find out for the best order fulfillment strategy. By using simulation, model authors investigated customers’ orders representing on-line purchases for one month. Experiments were designed to evaluate various order picking methods applicable to the fulfillment of customers’ orders. The research uses cost components analysis and helps to identify the best possible order picking method improving the overall performance of e-commerce warehouse and fulfillment service to the customers. The results presented show that the application of order batching strategy is the most applicable because it brings distance savings of around 6.7 percentage. This result could be improved by taking an assortment clustering action until 8.34 percentage. So, the recommendations were given to apply the method for future e-commerce warehouse operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title="e-commerce">e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=order" title=" order"> order</a>, <a href="https://publications.waset.org/abstracts/search?q=fulfilment" title=" fulfilment"> fulfilment</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/113572/order-fulfilment-strategy-in-e-commerce-warehouse-based-on-simulation-business-customers-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9162</span> Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20viscous%20damper" title=" spring viscous damper"> spring viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/97455/shaking-table-test-and-seismic-performance-evaluation-of-spring-viscous-damper-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9161</span> Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Yahiaoui">Maamar Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelrrahmene%20Kechich"> Abdelrrahmene Kechich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Elkhallile%20Bousserhene"> Ismail Elkhallile Bousserhene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title="mathematical model">mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=PMLSM" title=" PMLSM"> PMLSM</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=linearization" title=" linearization"> linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=estimator" title=" estimator"> estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=force" title=" force"> force</a>, <a href="https://publications.waset.org/abstracts/search?q=load" title=" load"> load</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current "> current </a> </p> <a href="https://publications.waset.org/abstracts/11469/non-linear-control-in-positioning-of-pmlsm-by-estimates-of-the-load-force-by-mras-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9160</span> Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kacejko">P. Kacejko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wendeker"> M. Wendeker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Australian%20Driving%20Cycle" title="Australian Driving Cycle">Australian Driving Cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=city%20bus" title=" city bus"> city bus</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/106701/simulation-research-of-city-bus-fuel-consumption-during-the-cuedc-australian-driving-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9159</span> Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bendarma">A. Bendarma</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Jankowiak"> T. Jankowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rusinek"> A. Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lodygowski"> T. Lodygowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kl%C3%B3sak"> M. Klósak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouslikhane"> S. Bouslikhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20behavior" title=" ballistic behavior"> ballistic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20criterion" title=" failure criterion"> failure criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/60677/perforation-analysis-of-the-aluminum-alloy-sheets-subjected-to-high-rate-of-loading-and-heated-using-thermal-chamber-experimental-and-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9158</span> A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawei%20Liang">Yawei Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=naval%20resource%20management" title=" naval resource management"> naval resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=weapon-target%20allocation%2Fassignment" title=" weapon-target allocation/assignment"> weapon-target allocation/assignment</a> </p> <a href="https://publications.waset.org/abstracts/159439/a-saturation-attack-simulation-on-a-navy-warship-based-on-discrete-event-simulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9157</span> Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Taher">Mohammed T. Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ghani"> Usman Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Khan"> Ahmed S. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students&rsquo; learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students&rsquo; learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation-based%20teaching" title="simulation-based teaching">simulation-based teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hands-on%20learning" title=" hands-on learning"> hands-on learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback-based%20learning" title=" feedback-based learning"> feedback-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolding" title=" scaffolding"> scaffolding</a> </p> <a href="https://publications.waset.org/abstracts/41173/simulation-versus-hands-on-learning-methodologies-a-comparative-study-for-engineering-and-technology-curricula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9156</span> Turbine Engine Performance Experimental Tests of Subscale UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Altay">Haluk Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Y%C3%BCcel"> Bilal Yücel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berkcan%20Ulcay"> Berkcan Ulcay</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%C3%BCcel%20Ayd%C4%B1n"> Yücel Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20engine" title="jet engine">jet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=loadcell" title=" loadcell"> loadcell</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/168678/turbine-engine-performance-experimental-tests-of-subscale-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9155</span> Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene&ndash;propane distillation processes. The modeling and simulation instrument is the Unisim<sup>&reg;</sup> Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim<sup>&reg;</sup> Design simulation diagrams, the input&ndash;output system structure and the numerical results. Future studies will consider modeling and simulation of the propene&ndash;propane distillation process with heat pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unisim%20design" title=" unisim design"> unisim design</a> </p> <a href="https://publications.waset.org/abstracts/42425/modelling-and-simulation-of-the-freezing-systems-and-heat-pumps-using-unisim-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9154</span> A Study on the Establishment of Performance Evaluation Criteria for MR-Based Simulation Device to Train K-9 Self-Propelled Artillery Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonggyu%20Lee">Yonggyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungkyu%20Jung"> Byungkyu Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Bom%20Yoon"> Bom Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongil%20Yoon"> Jongil Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MR-based simulation devices have been recently used in various fields such as entertainment, medicine, manufacturing, and education. Different simulation devices are also being developed for military equipment training. This is to address the concerns regarding safety accidents as well as cost issues associated with training with expensive equipment. An important aspect of developing simulation devices to replicate military training is that trainees experience the same effect as training with real devices. In this study, the criteria for performance evaluation are established to compare the training effect of an MR-based simulation device to that of an actual device. K-9 Self-propelled artillery (SPA) operators are selected as training subjects. First, MR-based software is developed to simulate the training ground and training scenarios currently used for training SPA operators in South Korea. Hardware that replicates the interior of SPA is designed, and a simulation device that is linked to the software is developed. Second, criteria are established to evaluate the simulation device based on real-life training scenarios. A total of nine performance evaluation criteria were selected based on the actual SPA operation training scenarios. Evaluation items were selected to evaluate whether the simulation device was designed such that trainees would experience the same effect as training in the field with a real SPA. To eval-uate the level of replication by the simulation device of the actual training environments (driving and passing through trenches, pools, protrusions, vertical obstacles, and slopes) and driving conditions (rapid steering, rapid accelerating, and rapid braking) as per the training scenarios, tests were performed under the actual training conditions and in the simulation device, followed by the comparison of the results. In addition, the level of noise felt by operators during training was also selected as an evaluation criterion. Due to the nature of the simulation device, there may be data latency between HW and SW. If the la-tency in data transmission is significant, the VR image information delivered to trainees as they maneuver HW might not be consistent. This latency in data transmission was also selected as an evaluation criterion to improve the effectiveness of the training. Through this study, the key evaluation metrics were selected to achieve the same training effect as training with real equipment in a training ground during the develop-ment of the simulation device for military equipment training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-9%20self-propelled%20artillery" title="K-9 self-propelled artillery">K-9 self-propelled artillery</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20reality" title=" mixed reality"> mixed reality</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20device" title=" simulation device"> simulation device</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/181405/a-study-on-the-establishment-of-performance-evaluation-criteria-for-mr-based-simulation-device-to-train-k-9-self-propelled-artillery-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9153</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9152</span> Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruiyang%20Bi">Ruiyang Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20joints" title="rock joints">rock joints</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20compression" title=" uniaxial compression"> uniaxial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20extension" title=" crack extension"> crack extension</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20simulation" title=" discrete element simulation"> discrete element simulation</a> </p> <a href="https://publications.waset.org/abstracts/183137/mechanical-properties-and-crack-extension-mechanism-of-rock-contained-blocks-under-uniaxial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9151</span> Simulation on Fuel Metering Unit Used for TurboShaft Engine Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wang">Bin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hengyu%20Ji"> Hengyu Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhifeng%20Ye"> Zhifeng Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20metering%20unit" title="fuel metering unit">fuel metering unit</a>, <a href="https://publications.waset.org/abstracts/search?q=stepping%20motor" title=" stepping motor"> stepping motor</a>, <a href="https://publications.waset.org/abstracts/search?q=AMESim%2FMatlab" title=" AMESim/Matlab"> AMESim/Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20digital%20simulation" title=" full digital simulation"> full digital simulation</a> </p> <a href="https://publications.waset.org/abstracts/98790/simulation-on-fuel-metering-unit-used-for-turboshaft-engine-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9150</span> The Study on Life of Valves Evaluation Based on Tests Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binjuan%20Xu">Binjuan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhao"> Qian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Jiang"> Ping Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Guo"> Bo Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Cheng"> Zhijun Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyue%20Wu"> Xiaoyue Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=censored%20data" title="censored data">censored data</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20tests" title=" temperature tests"> temperature tests</a>, <a href="https://publications.waset.org/abstracts/search?q=valves" title=" valves"> valves</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20tests" title=" vibration tests"> vibration tests</a> </p> <a href="https://publications.waset.org/abstracts/84900/the-study-on-life-of-valves-evaluation-based-on-tests-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9149</span> Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhixiang%20Li">Zhixiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguang%20Yao"> Shuguang Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Ma"> Wen Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20buffer" title="rubber buffer">rubber buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=coupler" title=" coupler"> coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20tests" title=" impact tests"> impact tests</a> </p> <a href="https://publications.waset.org/abstracts/96059/energy-absorption-characteristic-of-a-coupler-rubber-buffer-used-in-rail-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9148</span> Optimizing Coal Yard Management Using Discrete Event Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Felani">Iqbal Felani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coal%20Yard%20Management" title="Coal Yard Management">Coal Yard Management</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20event%20simulation%20First%20In%20First%20Out" title=" Discrete event simulation First In First Out"> Discrete event simulation First In First Out</a>, <a href="https://publications.waset.org/abstracts/search?q=Last%20In%20First%20Out." title=" Last In First Out. "> Last In First Out. </a> </p> <a href="https://publications.waset.org/abstracts/20725/optimizing-coal-yard-management-using-discrete-event-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9147</span> Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Boumediene">K. Boumediene</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Belhenniche"> S. E. Belhenniche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propeller%20flow" title="propeller flow">propeller flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20performance" title=" hydrodynamic performance"> hydrodynamic performance</a> </p> <a href="https://publications.waset.org/abstracts/41112/numerical-analysis-of-the-turbulent-flow-around-dtmb-4119-marine-propeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9146</span> Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Hussain">Ghulam Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Herrington%20Lee"> Herrington Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Comfort%20Paul"> Comfort Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jones%20Richard"> Jones Richard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20FPPA" title="2D FPPA">2D FPPA</a>, <a href="https://publications.waset.org/abstracts/search?q=hop%20tests" title=" hop tests"> hop tests</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic%20testing" title=" isokinetic testing"> isokinetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=LSI" title=" LSI"> LSI</a> </p> <a href="https://publications.waset.org/abstracts/175293/symmetry-of-performance-across-lower-limb-tests-between-the-dominant-and-non-dominant-legs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9145</span> Architecture Design of the Robots Operability Assessment Simulation Testbed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Yeong%20Choi">Sang Yeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Sung%20Park"> Woo Sung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the architecture design of the robot operability assessment simulation testbed (called &quot;ROAST&quot;) for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20system" title="robotic system">robotic system</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation" title=" modeling and simulation"> modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20architecture" title=" simulation architecture"> simulation architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=operability%20assessment" title=" operability assessment"> operability assessment</a> </p> <a href="https://publications.waset.org/abstracts/54046/architecture-design-of-the-robots-operability-assessment-simulation-testbed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9144</span> Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Showkat%20Ahmad%20Lone">Showkat Ahmad Lone</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadur%20Rahman"> Ahmadur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariful%20Islam"> Ariful Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binomial%20distribution" title="binomial distribution">binomial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=d-optimality" title=" d-optimality"> d-optimality</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20censoring" title=" multiple censoring"> multiple censoring</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20accelerated%20life%20testing" title=" partially accelerated life testing"> partially accelerated life testing</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title=" simulation study"> simulation study</a> </p> <a href="https://publications.waset.org/abstracts/69460/optimal-design-of-step-stress-partially-life-test-using-multiply-censored-exponential-data-with-random-removals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9143</span> Role of Discrete Event Simulation in the Assessment and Selection of the Potential Reconfigurable Manufacturing Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Raza">Mohsin Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Arne%20Bilberg"> Arne Bilberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ditlev%20Brun%C3%B8"> Thomas Ditlev Brunø</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann-Louise%20Andersen"> Ann-Louise Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20SK%C3%A4rin"> Filip SKärin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shifting from a dedicated or flexible manufacturing system to a reconfigurable manufacturing system (RMS) requires a significant amount of time, money, and effort. Therefore, it is vital to verify beforehand that the potential reconfigurable solution will be able to achieve the organizational objectives. Discrete event simulation offers the opportunity of assessing several reconfigurable alternatives against the set objectives. This study signifies the importance of using discrete-event simulation as a tool to verify several reconfiguration options. Two different industrial cases have been presented in the study to elaborate on the role of discrete event simulation in the implementation methodology of RMSs. The study concluded that discrete event simulation is one of the important tools to consider in the RMS implementation methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20manufacturing%20system" title="reconfigurable manufacturing system">reconfigurable manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title=" discrete event simulation"> discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tecnomatix%20plant%20simulation" title=" Tecnomatix plant simulation"> Tecnomatix plant simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=RMS" title=" RMS"> RMS</a> </p> <a href="https://publications.waset.org/abstracts/150254/role-of-discrete-event-simulation-in-the-assessment-and-selection-of-the-potential-reconfigurable-manufacturing-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9142</span> Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20M.%20Machado">Carla M. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20A.%20Silva"> André A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Bastos"> Armando Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=Telmo%20G.%20Santos"> Telmo G. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pamies%20Teixeira"> J. Pamies Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20strength%20steel" title="advanced high strength steel">advanced high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bauschinger%20effect" title=" Bauschinger effect"> Bauschinger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20forming" title=" sheet metal forming"> sheet metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a> </p> <a href="https://publications.waset.org/abstracts/65694/destructive-and-nondestructive-characterization-of-advanced-high-strength-steels-dp10001200" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9141</span> Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Qaftan">Omar Qaftan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure" title="structure">structure</a>, <a href="https://publications.waset.org/abstracts/search?q=raft" title=" raft"> raft</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/82343/simulation-of-scaled-model-of-tall-multistory-structure-raft-foundation-for-experimental-and-numerical-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9140</span> Study on Stability and Wear in a Total Hip Prostheses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virgil%20Florescu">Virgil Florescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Capitanu"> Lucian Capitanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies performed by the author and presented here focus mainly on the FE simulation of some relevant phenomena related to stability of orthopedic implants, especially those components of Total Hip Prostheses. The objectives are to study the mechanisms of achieving stability of acetabular prosthetic components and the influence of some characteristic parameters, to evaluate the effect of femoral stem fixation modality on the stability of prosthetic component and to predict long-term behavior, to analyze a critical phenomena which influence the loading transfer mechanism through artificial joints and could lead to aseptic loosening – the wear of joint frictional surfaces. After a theoretical background an application is made considering only three activities: normal walking, stair ascending and stair descending. For each activity, this function is maximized in a different locations: if for normal walking the maxima is in the superior-posterior part of the acetabular cup, for stair descending this maxim value could be located rather in the superior-anterior part, for stair ascending being even closer to the central area of the cup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=THA" title="THA">THA</a>, <a href="https://publications.waset.org/abstracts/search?q=acetabular%20stability" title=" acetabular stability"> acetabular stability</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20simulation" title=" FEM simulation"> FEM simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses%20and%20displacements" title=" stresses and displacements"> stresses and displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20tests" title=" wear tests"> wear tests</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20simulation" title=" wear simulation"> wear simulation</a> </p> <a href="https://publications.waset.org/abstracts/19240/study-on-stability-and-wear-in-a-total-hip-prostheses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9139</span> Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama">Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20Gatot%20Karohika"> I Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinori%20Sato"> Akinori Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Didik%20Nurhadiyanto"> Didik Nurhadiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/42429/development-of-25a-size-three-layer-metal-gasket-by-using-fem-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9138</span> Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaofeng%20Li">Zhaofeng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Kang%20Chow"> Jun Kang Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsing%20Wang"> Yu-Hsing Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain-volumetric%20response" title=" stress-strain-volumetric response"> stress-strain-volumetric response</a> </p> <a href="https://publications.waset.org/abstracts/59289/artificial-neural-network-in-predicting-the-soil-response-in-the-discrete-element-method-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=306">306</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=307">307</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tests%20and%20simulation&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10