CINXE.COM
{"title":"Biosensor Design through Molecular Dynamics Simulation","authors":"Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang","volume":109,"journal":"International Journal of Biotechnology and Bioengineering","pagesStart":10,"pagesEnd":15,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10003335","abstract":"<p>The beginning of 21st century has witnessed new<br \/>\r\nadvancements in the design and use of new materials for biosensing<br \/>\r\napplications, from nano to macro, protein to tissue. Traditional<br \/>\r\nanalytical methods lack a complete toolset to describe the<br \/>\r\ncomplexities introduced by living systems, pathological relations,<br \/>\r\ndiscrete hierarchical materials, cross-phase interactions, and<br \/>\r\nstructure-property dependencies. Materiomics – via systematic<br \/>\r\nmolecular dynamics (MD) simulation – can provide structureprocess-<br \/>\r\nproperty relations by using a materials science approach<br \/>\r\nlinking mechanisms across scales and enables oriented biosensor<br \/>\r\ndesign. With this approach, DNA biosensors can be utilized to detect<br \/>\r\ndisease biomarkers present in individuals’ breath such as acetone for<br \/>\r\ndiabetes. Our wireless sensor array based on single-stranded DNA<br \/>\r\n(ssDNA)-decorated single-walled carbon nanotubes (SWNT) has<br \/>\r\nsuccessfully detected trace amount of various chemicals in vapor<br \/>\r\ndifferentiated by pattern recognition. Here, we present how MD<br \/>\r\nsimulation can revolutionize the way of design and screening of DNA<br \/>\r\naptamers for targeting biomarkers related to oral diseases and oral<br \/>\r\nhealth monitoring. It demonstrates great potential to be utilized to<br \/>\r\nbuild a library of DNDA sequences for reliable detection of several<br \/>\r\nbiomarkers of one specific disease, and as well provides a new<br \/>\r\nmethodology of creating, designing, and applying of biosensors.<\/p>\r\n","references":"[1] Hannig, G., Makrides, S. C., \"Strategies for optimizing heterologous\r\nprotein expression in Escherichia coli\", Trends Biotechnol. vol. 16, no.\r\n2, pp. 54-60, 1998.\r\n[2] Sorensen, H. P., Mortensen, K. K., \"Advanced genetic strategies for\r\nrecombinant protein expression in Escherichia coli\", J Biotechnol. vol.\r\n115, no. 2, pp. 113-128, 2005.\r\n[3] Langer, R., Tirrell, D. A., \"Designing materials for biology and\r\nmedicine\", Nature. vol. 428, no. 6982, pp. 487-492, 2004.\r\n[4] Burg, K. J. L., Porter, S., Kellam, J. F., \"Biomaterial developments for\r\nbone tissue engineering\", Biomaterials. vol. 21, no. 23, pp. 2347-2359,\r\n2000.\r\n[5] Ma, P. X., \"Biomimetic materials for tissue engineering\", Adv Drug\r\nDeliver Rev. vol. 60, no. 2, pp. 184-198, 2008.\r\n[6] Shin, H., Jo, S., Mikos, A. G., \"Biomimetic materials for tissue\r\nengineering\", Biomaterials. vol. 24, no. 24, pp. 4353-4364, 2003.\r\n[7] Langer, R., Vacanti, J. P., \"Tissue Engineering\", Science. vol. 260, no.\r\n5110, pp. 920-926, 1993.\r\n[8] Eisen, M. B., Brown, P. O., \"DNA arrays for analysis of gene\r\nexpression\", Cdna Preparation and Characterization. vol. 303, no., pp.\r\n179-205, 1999.\r\n[9] Zhu, H., Snyder, M., \"Protein chip technology\", Curr Opin Chem Biol.\r\nvol. 7, no. 1, pp. 55-63, 2003.\r\n[10] Ratner, B. D., Bryant, S. J., \"Biomaterials: Where we have been and\r\nwhere we are going\", Annu Rev Biomed Eng. vol. 6, no., pp. 41-75,\r\n2004.\r\n[11] Stangel, K., et al., \"A programmable intraocular CMOS pressure sensor\r\nsystem implant\", Ieee J Solid-St Circ. vol. 36, no. 7, pp. 1094-1100,\r\n2001.\r\n[12] Chin, C. D., Linder, V., Sia, S. K., \"Commercialization of microfluidic\r\npoint-of-care diagnostic devices\", Lab Chip. vol. 12, no. 12, pp. 2118-\r\n2134, 2012.\r\n[13] Zhang, W., Du, Y., Wang, M. L., \"On-chip highly sensitive saliva\r\nglucose sensing using multilayer films composed of single-walled\r\ncarbon nanotubes, gold nanoparticles, and glucose oxidase\", Sensing and\r\nBio-Sensing Research. vol. 4, no. 0, pp. 96-102, 2015.\r\n[14] Zhang, W., Du, Y., Wang, M. L., \"Noninvasive glucose monitoring\r\nusing saliva nano-biosensor\", Sensing and Bio-Sensing Research. vol. 4,\r\nno. 0, pp. 23-29, 2015.\r\n[15] Zhang, W. J., Wang, M. L., \"DNA-functionalized single-walled carbon\r\nnanotube-based sensor array for breath analysis\", International Journal\r\nof Electronics and Electronical Engineering. vol. 4, no. 2, pp. 177-180,\r\n2016.\r\n[16] Herr, A. E., et al., \"Microfluidic immunoassays as rapid saliva-based\r\nclinical diagnostics\", Proceedings of the National Academy of Sciences\r\nof the United States of America. vol. 104, no. 13, pp. 5268-5273, 2007.\r\n[17] Santini, J. T., Cima, M. J., Langer, R., \"A controlled-release microchip\",\r\nNature. vol. 397, no. 6717, pp. 335-338, 1999.\r\n[18] Yoshida, R., et al., \"Maskless microfabrication of thermosensitive gels\r\nusing a microscope and application to a controlled release microchip\",\r\nLab Chip. vol. 6, no. 10, pp. 1384-1386, 2006.\r\n[19] Grayson, A. C. R., et al., \"Multi-pulse drug delivery from a resorbable\r\npolymeric microchip device\", Nature Materials. vol. 2, no. 11, pp. 767-\r\n772, 2003.\r\n[20] Service, R. F., \"Microchip arrays put DNA on the spot\", Science. vol.\r\n282, no. 5388, pp. 396-+, 1998.\r\n[21] Figeys, D., Pinto, D., \"Lab-on-a-chip: A revolution in biological and\r\nmedical sciences.\", Analytical Chemistry. vol. 72, no. 9, pp. 330a-335a,\r\n2000.\r\n[22] ODonnellMaloney, M. J., Little, D. P., \"Microfabrication and array\r\ntechnologies for DNA sequencing and diagnostics\", Genet Anal-Biomol\r\nE. vol. 13, no. 6, pp. 151-157, 1996.\r\n[23] Sanders, G. H. W., Manz, A., \"Chip-based microsystems for genomic\r\nand proteomic analysis\", Trac-Trend Anal Chem. vol. 19, no. 6, pp. 364-\r\n378, 2000.\r\n[24] Weigl, B. H., Bardell, R. L., Cabrera, C. R., \"Lab-on-a-chip for drug\r\ndevelopment\", Adv Drug Deliver Rev. vol. 55, no. 3, pp. 349-377, 2003.\r\n[25] Andersson, H., van den Berg, A., \"Microtechnologies and\r\nnanotechnologies for single-cell analysis\", Curr Opin Biotech. vol. 15,\r\nno. 1, pp. 44-49, 2004.\r\n[26] Watson, J. D., Crick, F. H. C., \"Molecular Structure of Nucleic Acids: A\r\nStructure for Deoxyribose Nucleic Acid\", Nature. vol. 171, no. 4356, pp.\r\n737-738, 1953. [27] Vanness, J., et al., \"A Versatile Solid Support System for\r\nOligodeoxynucleotide Probe-Based Hybridization Assays\", Nucleic\r\nAcids Res. vol. 19, no. 12, pp. 3345-3350, 1991.\r\n[28] Hvastkovs, E. G., Buttry, D. A., \"Recent advances in electrochemical\r\nDNA hybridization sensors\", Analyst. vol. 135, no. 8, pp. 1817-1829,\r\n2010.\r\n[29] Rogers, K. R., Apostol, A., Madsen, S. J., Spencer, C. W., \"Fiber optic\r\nbiosensor for detection of DNA damage\", Anal Chim Acta. vol. 444, no.\r\n1, pp. 51-60, 2001.\r\n[30] Wang, J., et al., \"Indicator-free electrochemical DNA hybridization\r\nbiosensor\", Anal Chim Acta. vol. 375, no. 3, pp. 197-203, 1998.\r\n[31] Ban, C. G., Chung, S. M., Park, D. S., Shim, Y. B., \"Detection of\r\nprotein-DNA interaction with a DNA probe: distinction between singlestrand\r\nand double-strand DNA-protein interaction\", Nucleic Acids Res.\r\nvol. 32, no. 13, pp., 2004.\r\n[32] Leung, C. H., et al., \"Luminescent detection of DNA-binding proteins\",\r\nNucleic Acids Res. vol. 40, no. 3, pp. 941-955, 2012.\r\n[33] Li, J., Lu, Y., \"A highly sensitive and selective catalytic DNA biosensor\r\nfor lead ions\", Journal of the American Chemical Society. vol. 122, no.\r\n42, pp. 10466-10467, 2000.\r\n[34] Zhang, Z., Hejesen, C., Kjelstrup, M. B., Birkedal, V., Gothelf, K. V.,\r\n\"A DNA-Mediated Homogeneous Binding Assay for Proteins and Small\r\nMolecules\", Journal of the American Chemical Society. vol. 136, no. 31,\r\npp. 11115-11120, 2014.\r\n[35] Vo-Dinh, T., Cullum, B. M., Stokes, D. L., \"Nanosensors and biochips:\r\nfrontiers in biomolecular diagnostics\", Sensors and Actuators BChemical.\r\nvol. 74, no. 1-3, pp. 2-11, 2001.\r\n[36] Chen, X. F., et al., \"Real-time detection of DNA interactions with longperiod\r\nfiber-grating-based biosensor\", Opt Lett. vol. 32, no. 17, pp.\r\n2541-2543, 2007.\r\n[37] Odenthal, K. J., Gooding, J. J., \"An introduction to electrochemical\r\nDNA biosensors\", Analyst. vol. 132, no. 7, pp. 603-610, 2007.\r\n[38] Wang, J., \"Electrochemical biosensors: Towards point-of-care cancer\r\ndiagnostics\", Biosens Bioelectron. vol. 21, no. 10, pp. 1887-1892, 2006.\r\n[39] Kinsella, J. M., Ivanisevic, A., \"Biosensing - Taking charge of\r\nbiomolecules\", Nature Nanotechnology. vol. 2, no. 10, pp. 596-597,\r\n2007.\r\n[40] Mannelli, F., et al., \"Direct immobilisation of DNA probes for the\r\ndevelopment of affinity biosensors\", Bioelectrochemistry. vol. 66, no. 1-\r\n2, pp. 129-138, 2005.\r\n[41] Garcia-Martinez, G., et al., \"Development of a Mass Sensitive Quartz\r\nCrystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz\r\nElectronic Oscillator Circuit\", Sensors. vol. 11, no. 8, pp. 7656-7664,\r\n2011.\r\n[42] Cooper, C. S., \"Applications of microarray technology in breast cancer\r\nresearch\", Breast Cancer Res. vol. 3, no. 3, pp. 158-175, 2001.\r\n[43] Triche, T. J., Schofield, D., Buckley, J., \"DNA microarrays in pediatric\r\ncancer\", Cancer J. vol. 7, no. 1, pp. 2-15, 2001.\r\n[44] Grouse, L. H., Munson, P. J., Nelson, P. S., \"Sequence databases and\r\nmicroarrays as tools for identifying prostate cancer biomarkers\",\r\nUrology. vol. 57, no. 4A, pp. 154-159, 2001.\r\n[45] Schena, M., \"Genome analysis with gene expression microarrays\",\r\nBioessays. vol. 18, no. 5, pp. 427-431, 1996.\r\n[46] Schena, M., et al., \"Microarrays: biotechnology's discovery platform for\r\nfunctional genomics\", Trends Biotechnol. vol. 16, no. 7, pp. 301-306,\r\n1998.\r\n[47] Service, R. F., \"Microchip Arrays Put DNA on the Spot\", Science. vol.\r\n282, no. 5388, pp. 396-399, 1998.\r\n[48] Barry CE, r., M, W., R, L., GK, S., \"DNA microarrays and\r\ncombinatorial chemical libraries: tools for the drug\", Int J Tuberc Lung\r\nDis. vol. 12, no. 2, pp. 189-93, 2000.\r\n[49] Staii, C., Johnson, A. T., \"DNA-decorated carbon nanotubes for\r\nchemical sensing\", Nano Lett. vol. 5, no. 9, pp. 1774-1778, 2005.\r\n[50] Kang, Z., et al., \"Single-Stranded DNA Functionalized Single-Walled\r\nCarbon Nanotubes for Microbiosensors via Layer-by-Layer Electrostatic\r\nSelf-Assembly\", Acs Appl Mater Inter. vol. 6, no. 6, pp. 3784-3789,\r\n2014.\r\n[51] Dwyer, C., et al., \"DNA-functionalized single-walled carbon\r\nnanotubes\", Nanotechnology. vol. 13, no. 5, pp. 601-604, 2002.\r\n[52] Pinheiro, A. V., Han, D., Shih, W. M., Yan, H., \"Challenges and\r\nopportunities for structural DNA nanotechnology\", Nat Nano. vol. 6, no.\r\n12, pp. 763-772, 2011.\r\n[53] Linko, V., Dietz, H., \"The enabled state of DNA nanotechnology\", Curr\r\nOpin Biotech. vol. 24, no. 4, pp. 555-561, 2013.\r\n[54] Noy, A., Artyukhin, A. B., Misra, N., \"Bionanoelectronics with 1D\r\nmaterials\", Mater Today. vol. 12, no. 9, pp. 22-31, 2009.\r\n[55] Zhang, W., Wang, M. L., Khalili, S., Cranford, S. W., \"Materiomics for\r\noral disease diagnostics and personal health monitoring:designer\r\nbiomaterials for the next generation biomarkers\", OMICS: A Journal of\r\nIntegrative Biology. vol. to be published, no. Oral Medicine Biomarkers:\r\nTowards One Health, pp., 2015.\r\n[56] Zhang, W. J., Wang, M. L., Cranford, S. W., \"Ranking of Molecular\r\nBiomarker Interaction with Targeted DNA Nucleobases via Full\r\nAtomistic Molecular Dynamics\", Sci Rep-Uk. vol. to be published, no.,\r\npp., 2015.\r\n[57] Aravind, S. S. J., Ramaprabhu, S., \"Noble metal dispersed multiwalled\r\ncarbon nanotubes immobilized ss-DNA for selective detection of\r\ndopamine\", Sensors and Actuators B-Chemical. vol. 155, no. 2, pp. 679-\r\n686, 2011.\r\n[58] Johnson, A. T. C., Khamis, S. M., Preti, G., Kwak, J., Gelperin, A.,\r\n\"DNA-Coated Nanosensors for Breath Analysis\", Ieee Sens J. vol. 10,\r\nno. 1, pp. 159-166, 2010.\r\n[59] Babkina, S. S., Ulakhovich, N. A., Zyavkina, Y. I., \"Amperometric\r\nDNA biosensor for the determination of auto-antibodies using DNA\r\ninteraction with Pt(II) complex\", Anal Chim Acta. vol. 502, no. 1, pp.\r\n23-30, 2004.\r\n[60] Evtugyn, G. A., Goldfarb, O. E., Budnikov, H. C., Ivanov, A. N., Vinter,\r\nV. G., \"Amperometric DNA-peroxidase sensor for the detection of\r\npharmaceutical preparations\", Sensors. vol. 5, no. 6-10, pp. 364-376,\r\n2005.\r\n[61] Drummond, T. G., Hill, M. G., Barton, J. K., \"Electrochemical DNA\r\nsensors\", Nat. Biotechnol. vol. 21, no. 10, pp. 1192-1199, 2003.\r\n[62] Liu, Y., et al. \"Single chip Nanotube sensors for chemical agent\r\nmonitoring\", 16th International Solid-State Sensors, Actuators and\r\nMicrosystems Conference (TRANSDUCERS), Beijing, China, 5-9 June\r\n2011; Beijing, China, 2011; pp. 795-798.\r\n[63] Greiter, M. B., et al., \"Differences in Exhaled Gas Profiles Between\r\nPatients with Type 2 Diabetes and Healthy Controls\", Diabetes Technol\r\nThe. vol. 12, no. 6, pp. 455-463, 2010.\r\n[64] Miekisch, W., Schubert, J. K., Noeldge-Schomburg, G. F. E.,\r\n\"Diagnostic potential of breath analysis - focus on volatile organic\r\ncompounds\", Clin Chim Acta. vol. 347, no. 1-2, pp. 25-39, 2004.\r\n[65] Minh, T. D. C., et al., \"Noninvasive measurement of plasma glucose\r\nfrom exhaled breath in healthy and type 1 diabetic subjects\", Am J\r\nPhysiol-Endoc M. vol. 300, no. 6, pp. E1166-E1175, 2011.\r\n[66] Mj, H., Ba, K., Ga, W. S., \"Acetone in the breath: a study of acetone\r\nexhalation in diabetic and nondiabetic human subjects\", Diabetes. vol. 1,\r\nno. 3, pp. 188-93, 1952.\r\n[67] Sulway, M. J., Malins, J. M., \"Acetone in Diabetic Ketoacidosis\", The\r\nLancet. vol. 296, no. 7676, pp. 736-740, 1970.\r\n[68] Plimpton, S., \"Fast Parallel Algorithms for Short-Range Molecular-\r\nDynamics\", J Comput Phys. vol. 117, no. 1, pp. 1-19, 1995.\r\n[69] Laboratories, S. N. LAMMPS Molecular Dynamics Simulator.\r\nhttp:\/\/lammps.sandia.gov\/.\r\n[70] Deuflhard, P., et al., Computational molecular dynamics : challenges,\r\nmethods, ideas : proceedings of the 2nd International Symposium on\r\nAlgorithms for Macromolecular Modelling, Berlin, May 21-24, 1997.\r\nSpringer Berlin Heidelberg: 1999.\r\n[71] Molnar, F., Ben-Nun, M., Martinez, T. J., Schulten, K.,\r\n\"Characterization of a conical intersection between the ground and first\r\nexcited state for a retinal analog\", J Mol Struc-Theochem. vol. 506, no.,\r\npp. 169-178, 2000.\r\n[72] Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K.,\r\n\"Molecular dynamics study of unbinding of the avidin-biotin complex\",\r\nBiophys J. vol. 72, no. 4, pp. 1568-1581, 1997.\r\n[73] Hornak, V., Dvorsky, R., Sturdik, E., \"Receptor-ligand interaction and\r\nmolecular modelling\", Gen Physiol Biophys. vol. 18, no. 3, pp. 231-248,\r\n1999.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 109, 2016"}