CINXE.COM

Search results for: delay management

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: delay management</title> <meta name="description" content="Search results for: delay management"> <meta name="keywords" content="delay management"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="delay management" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="delay management"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10332</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: delay management</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10332</span> Major Causes of Delay in Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Gholipour">Y. Gholipour</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Rezazadeh"> E. Rezazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delay is one of the most serious and common problems of construction project that can affect project delivery unfavorably. This research presents the most important causes of delay in large dam projects based on a survey on some executed dam construction in Iran. In this survey a randomly selected samples of owners, consultants and contractors have been involved. The outcome of this survey revealed that scheduled payments, site management, shop drawing review process, unforeseen ground conditions and contractor experience as the most important factors affecting on delay in dam construction projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay" title="delay">delay</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20construction" title=" dam construction"> dam construction</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20management" title=" project management"> project management</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/17026/major-causes-of-delay-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10331</span> Delay Studies in Construction: Synthesis, Critical Evaluation, and the Way Forward</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alsehaimi">Abdullah Alsehaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over decades, there have been many studies of delay in construction, and this type of study continues to be popular in construction management research. A synthesis and critical evaluation of delay studies in developing countries reveals that poor project management is cited as one of the main causes of delay. However, despite such consensus, most of the previous studies fall short in providing clear recommendations demonstrating how project management practice could be improved. Moreover, the majority of recommendations are general and not devoted to solving the difficulties associated with particular delay causes. This paper aims to demonstrate that the root cause of this state of affairs is that typical research into delay tends to be descriptive and explanatory, making it inadequate for solving persistent managerial problems in construction. It is contended that many problems in construction could be mitigated via alternative research approaches, i.e. action and constructive research. Such prescriptive research methods can assist in the development and implementation of innovative tools tackling managerial problems of construction, including that of delay. In so doing, those methods will better connect research and practice, and thus strengthen the relevance of academic construction management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20delay" title="construction delay">construction delay</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20research" title=" action research"> action research</a>, <a href="https://publications.waset.org/abstracts/search?q=constructive%20research" title=" constructive research"> constructive research</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a> </p> <a href="https://publications.waset.org/abstracts/1588/delay-studies-in-construction-synthesis-critical-evaluation-and-the-way-forward" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10330</span> A Low-Power Comparator Structure with Arbitrary Pre-Amplification Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ata%20Khorami">Ata Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sharifkhani"> Mohammad Sharifkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the dynamic comparators, the pre-amplifier amplifies the input differential voltage and when the output Vcm of the pre-amplifier becomes larger than Vth of the latch input transistors, the latch is activated and finalizes the comparison. As a result, the pre-amplification delay is fixed to a value and cannot be set at the minimum required delay, thus, significant power and delay are imposed. In this paper, a novel structure is proposed through which the pre-amplification delay can be set at any low value saving power and time. Simulations show that using the proposed structure, by setting the pre-amplification delay at the minimum required value the power and comparison delay can be reduced by 55% and 100ps respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20comparator" title="dynamic comparator">dynamic comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20comparator" title=" low power comparator"> low power comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20to%20digital%20converter" title=" analog to digital converter"> analog to digital converter</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-amplification%20delay" title=" pre-amplification delay"> pre-amplification delay</a> </p> <a href="https://publications.waset.org/abstracts/105939/a-low-power-comparator-structure-with-arbitrary-pre-amplification-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10329</span> Project Time and Quality Management during Construction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahed%20Al-Hajeri">Nahed Al-Hajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time and cost is an integral part of every construction plan and can affect each party’s contractual obligations. The performance of both time and cost are usually important to the client and contractor during the project. Almost all construction projects are experiencing time overrun. These time overruns always contributed as expensive to both client and contractor. Construction of any project inside the gathering centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. It also involves many agencies interdependent on each other like the vendors, structural and functional designers including various types of specialized engineers and it includes support of contractors and specialized contractors. This paper mainly highlights the types of construction delays due to which project suffer time and cost overrun. This paper also speaks about the delay causes and factors that contribute to the construction sequence delay for the oil and gas projects. Construction delay is supposed to be one of the repeated problems in the construction projects and it has an opposing effect on project success in terms of time, cost and quality. Some effective methods are identified to minimize delays in construction projects such as: 1. Site management and supervision, 2. Effective strategic planning, 3. Clear information and communication channel. Our research paper studies the types of delay with some real examples with statistic results and suggests solutions to overcome this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-compensable%20delay" title="non-compensable delay">non-compensable delay</a>, <a href="https://publications.waset.org/abstracts/search?q=delays%20caused%20by%20force%20majeure" title=" delays caused by force majeure"> delays caused by force majeure</a>, <a href="https://publications.waset.org/abstracts/search?q=compensable%20delay" title=" compensable delay"> compensable delay</a>, <a href="https://publications.waset.org/abstracts/search?q=delays%20caused%20by%20the%20owner%20or%20the%20owner%E2%80%99s%20representative" title=" delays caused by the owner or the owner’s representative"> delays caused by the owner or the owner’s representative</a>, <a href="https://publications.waset.org/abstracts/search?q=non-excusable%20delay" title=" non-excusable delay"> non-excusable delay</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20caused%20by%20the%20contractor%20or%20the%20contractor%E2%80%99s%20representative" title=" delay caused by the contractor or the contractor’s representative"> delay caused by the contractor or the contractor’s representative</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrent%20delay" title=" concurrent delay"> concurrent delay</a>, <a href="https://publications.waset.org/abstracts/search?q=delays%20resulting%20from%20two%20separate%20causes%20at%20the%20same%20time" title=" delays resulting from two separate causes at the same time"> delays resulting from two separate causes at the same time</a> </p> <a href="https://publications.waset.org/abstracts/36981/project-time-and-quality-management-during-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10328</span> Analysis of Delay Causes in Construction Projects in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Mahamid">Ibrahim Mahamid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Ghonamy"> A. Al-Ghonamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aichouni"> M. Aichouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at identifying the risk matrix for delay causes in construction projects in Saudi Arabia from consultants’ viewpoint. A questionnaire survey was undertaken of 51 consultants working on construction projects in the Northern Province of Saudi Arabia. 35 delay causes were identified through a literature review. The study concluded that the top delay causes in construction projects in Saudi Arabia from consultants’ perspective are: bid award for lowest price, changes in material types and specifications during construction, contract management, duration of contract period, fluctuation of prices of materials, frequent changes in design, improper planning, inflationary pressure, lack of adequate manpower, long period of design and time of implementation, payments delay, poor labor productivity, and rework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delays" title="delays">delays</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=consultants" title=" consultants"> consultants</a>, <a href="https://publications.waset.org/abstracts/search?q=contributors" title=" contributors"> contributors</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20map" title=" risk map"> risk map</a> </p> <a href="https://publications.waset.org/abstracts/22364/analysis-of-delay-causes-in-construction-projects-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10327</span> Causes and Effects of Delays in Construction Projects in Akure, Ondo State, South-West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.T%20Alade">K.T Alade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.F%20Lawal"> A.F Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.A%20Omonori"> A.A Omonori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction is an everlasting activity across the globe. Likewise, the problem of delay in the construction industry is a global phenomenon. Although there are several reasons that may be responsible for delay during construction, this may vary from place to place and can be reduced to the minimum when identified. This study considered the major causes and effects of delay in the execution of construction projects in Akure, Ondo State, Nigeria. Using literatures, a total number of 30 causes of construction delays were identified. The convenient sampling technique was used to select sixty respondents for a survey. The respondents comprise twenty-two (22) clients, eighteen consultants (18) and twenty (20) contractors. The analyses of the primary data revealed that the three most important causes of delay in construction projects in Akure, Ondo State Nigeria are poor site management and supervision, inadequate contractors experience and client’s financial difficulties. Based on the findings of this study, recommendations were given on how the causes and effects of delay in construction can be mitigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akure" title="Akure">Akure</a>, <a href="https://publications.waset.org/abstracts/search?q=causes" title=" causes"> causes</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20projects" title=" construction projects"> construction projects</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=effects" title=" effects "> effects </a> </p> <a href="https://publications.waset.org/abstracts/27894/causes-and-effects-of-delays-in-construction-projects-in-akure-ondo-state-south-west-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10326</span> A Survey of Dynamic QoS Methods in Sofware Defined Networking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Kalekar">Vikram Kalekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QoS" title="QoS">QoS</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=congestion" title=" congestion"> congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20management" title=" flow management"> flow management</a>, <a href="https://publications.waset.org/abstracts/search?q=latency" title=" latency"> latency</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20index%20terms-SDN" title=" delay index terms-SDN"> delay index terms-SDN</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a> </p> <a href="https://publications.waset.org/abstracts/140717/a-survey-of-dynamic-qos-methods-in-sofware-defined-networking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10325</span> Contention Window Adjustment in IEEE 802.11-based Industrial Wireless Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Maadani">Mohsen Maadani</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ahmad%20Motamedi"> Seyed Ahmad Motamedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. An adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20delay" title="average delay">average delay</a>, <a href="https://publications.waset.org/abstracts/search?q=contention%20window" title=" contention window"> contention window</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20coordination%20function%20%28DCF%29" title=" distributed coordination function (DCF)"> distributed coordination function (DCF)</a>, <a href="https://publications.waset.org/abstracts/search?q=jitter" title=" jitter"> jitter</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wireless%20network%20%28IWN%29" title=" industrial wireless network (IWN)"> industrial wireless network (IWN)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20delay" title=" maximum delay"> maximum delay</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=retry%20limit" title=" retry limit"> retry limit</a> </p> <a href="https://publications.waset.org/abstracts/36488/contention-window-adjustment-in-ieee-80211-based-industrial-wireless-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10324</span> Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Saha">Arpita Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Ghosh"> Indrajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20estimation%20technique" title="delay estimation technique">delay estimation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20delay" title=" field delay"> field delay</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20traffic" title=" heterogeneous traffic"> heterogeneous traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=signalised%20intersection" title=" signalised intersection"> signalised intersection</a> </p> <a href="https://publications.waset.org/abstracts/62348/estimation-and-comparison-of-delay-at-signalized-intersections-based-on-existing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10323</span> Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Verma">Sunil Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=autoignition" title=" autoignition"> autoignition</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay" title=" ignition delay"> ignition delay</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20compression%20machine" title=" rapid compression machine"> rapid compression machine</a> </p> <a href="https://publications.waset.org/abstracts/12722/autoignition-delay-characterstic-of-hydrocarbon-n-pentane-from-lean-to-rich-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10322</span> Modification of Fick’s First Law by Introducing the Time Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fick%27s%20first%20law" title="Fick&#039;s first law">Fick&#039;s first law</a>, <a href="https://publications.waset.org/abstracts/search?q=flux" title=" flux"> flux</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay" title=" time delay"> time delay</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Fick%E2%80%99s%20first%20law" title=" modified Fick’s first law"> modified Fick’s first law</a> </p> <a href="https://publications.waset.org/abstracts/19767/modification-of-ficks-first-law-by-introducing-the-time-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10321</span> Building Information Modelling for Construction Delay Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essa%20Alenazi">Essa Alenazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfikar%20Adamu"> Zulfikar Adamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country&rsquo;s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays.&nbsp; It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management.&nbsp; A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM&rsquo;s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modelling%20%28BIM%29" title="building information modelling (BIM)">building information modelling (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=clients%20perspective" title=" clients perspective"> clients perspective</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20management" title=" delay management"> delay management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimism%20bias" title=" optimism bias"> optimism bias</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20sector%20projects" title=" public sector projects"> public sector projects</a> </p> <a href="https://publications.waset.org/abstracts/74092/building-information-modelling-for-construction-delay-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10320</span> An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shao-Ku%20Kao">Shao-Ku Kao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 &Omega; ~ 1500 &Omega; for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title="wireless power transfer">wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20diode" title=" active diode"> active diode</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20compensation" title=" delay compensation"> delay compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20voltage%20converter" title=" time to voltage converter"> time to voltage converter</a>, <a href="https://publications.waset.org/abstracts/search?q=PCE" title=" PCE"> PCE</a> </p> <a href="https://publications.waset.org/abstracts/99488/an-active-rectifier-with-time-domain-delay-compensation-to-enhance-the-power-conversion-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10319</span> Quality-Of-Service-Aware Green Bandwidth Allocation in Ethernet Passive Optical Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Yang%20Lin">Tzu-Yang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Ching%20Sue"> Chuan-Ching Sue </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sleep mechanisms are commonly used to ensure the energy efficiency of each optical network unit (ONU) that concerns a single class delay constraint in the Ethernet Passive Optical Network (EPON). How long the ONUs can sleep without violating the delay constraint has become a research problem. Particularly, we can derive an analytical model to determine the optimal sleep time of ONUs in every cycle without violating the maximum class delay constraint. The bandwidth allocation considering such optimal sleep time is called Green Bandwidth Allocation (GBA). Although the GBA mechanism guarantees that the different class delay constraints do not violate the maximum class delay constraint, packets with a more relaxed delay constraint will be treated as those with the most stringent delay constraint and may be sent early. This means that the ONU will waste energy in active mode to send packets in advance which did not need to be sent at the current time. Accordingly, we proposed a QoS-aware GBA using a novel intra-ONU scheduling to control the packets to be sent according to their respective delay constraints, thereby enhancing energy efficiency without deteriorating delay performance. If packets are not explicitly classified but with different packet delay constraints, we can modify the intra-ONU scheduling to classify packets according to their packet delay constraints rather than their classes. Moreover, we propose the switchable ONU architecture in which the ONU can switch the architecture according to the sleep time length, thus improving energy efficiency in the QoS-aware GBA. The simulation results show that the QoS-aware GBA ensures that packets in different classes or with different delay constraints do not violate their respective delay constraints and consume less power than the original GBA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Passive%20Optical%20Networks" title="Passive Optical Networks">Passive Optical Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=PONs" title=" PONs"> PONs</a>, <a href="https://publications.waset.org/abstracts/search?q=Optical%20Network%20Unit" title=" Optical Network Unit"> Optical Network Unit</a>, <a href="https://publications.waset.org/abstracts/search?q=ONU" title=" ONU"> ONU</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20constraint" title=" delay constraint"> delay constraint</a> </p> <a href="https://publications.waset.org/abstracts/94624/quality-of-service-aware-green-bandwidth-allocation-in-ethernet-passive-optical-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10318</span> Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyai%20Davies">Iyai Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20L.%20C.%20Haas"> Olivier L. C. Haas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infinite%20delays" title="infinite delays">infinite delays</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20method" title=" Lyapunov method"> Lyapunov method</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality" title=" linear matrix inequality"> linear matrix inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20systems" title=" neutral systems"> neutral systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/36298/delay-independent-closed-loop-stabilization-of-neutral-system-with-infinite-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10317</span> Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Yunus">Sulaiman Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20moment" title="delay moment">delay moment</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20disaster" title=" fire disaster"> fire disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reflex%20sequence" title=" reflex sequence"> reflex sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20delay%20moment" title=" response delay moment"> response delay moment</a> </p> <a href="https://publications.waset.org/abstracts/111201/response-delay-model-bridging-the-gap-in-urban-fire-disaster-response-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10316</span> Benefits of Construction Management Implications and Processes by Projects Managers on Project Completion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamoon%20Mousa%20Atout">Mamoon Mousa Atout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Projects managers in construction industry usually face a difficult organizational environment especially if the project is unique. The organization lacks the processes to practice construction management correctly, and the executive’s technical managers who have lack of experience in playing their role and responsibilities correctly. Project managers need to adopt best practices that allow them to do things effectively to make sure that the project can be delivered without any delay even though the executive’s technical managers should follow a certain process to avoid any factor might cause any delay during the project life cycle. The purpose of the paper is to examine the awareness level of projects managers about construction management processes, tools, techniques and implications to complete projects on time. The outcome and the results of the study are prepared based on the designed questionnaires and interviews conducted with many project managers. The method used in this paper is a quantitative study. A survey with a sample of 100 respondents was prepared and distributed in a construction company in Dubai, which includes nine questions to examine the level of their awareness. This research will also identify the necessary benefits of processes of construction management that has to be adopted by projects managers to mitigate the maximum potential problems which might cause any delay to the project life cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title="construction management">construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20objectives" title=" project objectives"> project objectives</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20planing%20and%20scheduling" title=" resource planing and scheduling"> resource planing and scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20completion" title=" project completion"> project completion</a> </p> <a href="https://publications.waset.org/abstracts/37488/benefits-of-construction-management-implications-and-processes-by-projects-managers-on-project-completion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10315</span> Transient Performance Analysis of Gate Inside Junctionless Transistor (GI-JLT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Singh">Sangeeta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar"> Pankaj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Kondekar"> P. N. Kondekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the transient device performance analysis of n-type Gate Inside Junctionless Transistor (GIJLT)has been evaluated. 3-D Bohm Quantum Potential (BQP)transport device simulation has been used to evaluate the delay and power dissipation performance. GI-JLT has a number of desirable device parameters such as reduced propagation delay, dynamic power dissipation, power and delay product, intrinsic gate delay and energy delay product as compared to Gate-all-around transistors GAA-JLT. In addition to this, various other device performance parameters namely, on/off current ratio, short channel effects (SCE), transconductance Generation Factor(TGF) and unity gain cut-off frequency (fT) and subthreshold slope (SS) of the GI-JLT and Gate-all-around junctionless transistor(GAA-JLT) have been analyzed and compared. GI-JLT shows better device performance characteristics than GAA-JLT for low power and high frequency applications, because of its larger gate electrostatic control on the device operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate-inside%20junctionless%20transistor%20GI-JLT" title="gate-inside junctionless transistor GI-JLT">gate-inside junctionless transistor GI-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-all-around%20junctionless%20transistor%20GAA-JLT" title=" gate-all-around junctionless transistor GAA-JLT"> gate-all-around junctionless transistor GAA-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20delay%20product" title=" power delay product"> power delay product</a> </p> <a href="https://publications.waset.org/abstracts/9662/transient-performance-analysis-of-gate-inside-junctionless-transistor-gi-jlt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10314</span> Design of Wide-Range Variable Fractional-Delay FIR Digital Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Jy%20Shyu">Jong-Jy Shyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo-Chang%20Pei"> Soo-Chang Pei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Da%20Huang"> Yun-Da Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design of wide-range variable fractional-delay (WR-VFD) finite impulse response (FIR) digital filters is proposed. With respect to the conventional VFD filter which is designed such that its delay is adjustable within one unit, the proposed VFD FIR filter is designed such that its delay can be tunable within a wider range. By the traces of coefficients of the fractional-delay FIR filter, it is found that the conventional method of polynomial substitution for filter coefficients no longer satisfies the design demand, and the circuits perform the sinc function (sinc converter) are added to overcome this problem. In this paper, least-squares method is adopted to design WR-VFD FIR filter. Throughout this paper, several examples will be proposed to demonstrate the effectiveness of the presented methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20filter" title="digital filter">digital filter</a>, <a href="https://publications.waset.org/abstracts/search?q=FIR%20filter" title=" FIR filter"> FIR filter</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20fractional-delay%20%28VFD%29%20filter" title=" variable fractional-delay (VFD) filter"> variable fractional-delay (VFD) filter</a>, <a href="https://publications.waset.org/abstracts/search?q=least-squares%20approximation" title=" least-squares approximation"> least-squares approximation</a> </p> <a href="https://publications.waset.org/abstracts/8390/design-of-wide-range-variable-fractional-delay-fir-digital-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10313</span> Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purva%20Joshi">Purva Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Thanki"> Rohit Thanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hanif"> Omar Hanif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi%20UAV%20network" title="multi UAV network">multi UAV network</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20distance" title=" optimal distance"> optimal distance</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=K%20-%20nearest%20neighbor" title=" K - nearest neighbor"> K - nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesmen%20problem" title=" traveling salesmen problem"> traveling salesmen problem</a> </p> <a href="https://publications.waset.org/abstracts/150423/minimization-of-propagation-delay-in-multi-unmanned-aerial-vehicle-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10312</span> Final Account Closing in Construction Project: The Use of Supply Chain Management to Reduce the Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarabizan%20Zakaria">Zarabizan Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Syuhaida%20Ismail"> Syuhaida Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminah%20Md.%20Yusof"> Aminah Md. Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). This process is not easy to implement efficiently and effectively. The issue of delays in construction is a major problem for construction projects. These delays have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demands that are constantly changing and influencing, either directly or indirectly, the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the problem and issues in the final account closing in construction projects, and it establishes the need to embrace Supply Chain Management (SCM) and then elucidates the need and strategies for the development of a delay reduction framework. At the same time, this paper provides effective measures to avoid or at least reduce the delay to the optimum level. Allowing problems in the closure declaration to occur without proper monitoring and control can leave negative impact on the cost and time of delivery to the end user. Besides, it can also affect the reputation or image of the agency/department that manages the implementation of a contract and consequently may reduce customer's trust towards the agencies/departments. It is anticipated that the findings reported in this paper could address root delay contributors and apply SCM tools for their mitigation for the better development of construction project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=final%20account%20closing" title="final account closing">final account closing</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20project" title=" construction project"> construction project</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20delay" title=" construction delay"> construction delay</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/5198/final-account-closing-in-construction-project-the-use-of-supply-chain-management-to-reduce-the-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10311</span> Investigation of Ignition Delay for Low Molecular Hydrocarbon Fuel and Oxygen Mixture behind the Reflected Shock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Guna">K. R. Guna</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldin%20Justin%20Sundararaj"> Aldin Justin Sundararaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Pillai"> B. C. Pillai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Subash"> A. N. Subash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A systematic study has been made for ignition delay times measurement behind a reflected shock wave for the low molecular weight hydrocarbon fuel in argon simulated gas mixtures. The low molecular hydrocarbon fuel–oxygen was diluted with argon for desired concentration is taken for the study. The suitability of the shock tube for measuring the ignition delay time is demonstrated by measuring the ignition delay for the liquefied petroleum gas for equivalence ratios (ф=0.5 & 1) in the temperature range 1150-1650 K. The pressure range was fixed from 5-15 bar. The ignition delay was measured by recording the ignition-induced pressure jump and emission from CH radical simultaneously. From conducting experiments, it was found that the ignition delay time for liquefied petroleum gas reduces with increase in temperature. The shock tube was calibrated for ethane-oxygen gas mixture and the results obtained from this study is compared with the earlier reported values and found to be comparably well suited for the measurement of ignition delay times. The above work was carried out using the shock tube facility at propulsion and high enthalpy laboratory, Karunya University. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay" title="ignition delay">ignition delay</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG" title=" LPG"> LPG</a>, <a href="https://publications.waset.org/abstracts/search?q=reflected%20shock" title=" reflected shock"> reflected shock</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/58522/investigation-of-ignition-delay-for-low-molecular-hydrocarbon-fuel-and-oxygen-mixture-behind-the-reflected-shock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10310</span> Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Aleinik">Sergei Aleinik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Stolbov"> Mikhail Stolbov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-correlation" title="cross-correlation">cross-correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20estimation" title=" delay estimation"> delay estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20envelope" title=" signal envelope"> signal envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/2280/time-delay-estimation-using-signal-envelopes-for-synchronisation-of-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10309</span> Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Saha">Arpita Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Apoorv%20Jain"> Apoorv Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Ghosh"> Indrajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay" title="delay">delay</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20flow" title=" saturation flow"> saturation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=signalised%20intersection" title=" signalised intersection"> signalised intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20composition" title=" vehicle composition"> vehicle composition</a> </p> <a href="https://publications.waset.org/abstracts/62341/effect-of-traffic-composition-on-delay-and-saturation-flow-at-signal-controlled-intersections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10308</span> PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20Ecer">Berk Ecer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Akcapinar%20Sezer"> Ebru Akcapinar Sezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AIM%20project" title="AIM project">AIM project</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20intersection%20management" title=" autonomous intersection management"> autonomous intersection management</a>, <a href="https://publications.waset.org/abstracts/search?q=lane%20organization" title=" lane organization"> lane organization</a>, <a href="https://publications.waset.org/abstracts/search?q=potential-based%20approach" title=" potential-based approach"> potential-based approach</a> </p> <a href="https://publications.waset.org/abstracts/133634/plo-aim-potential-based-lane-organization-in-autonomous-intersection-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10307</span> Application on Metastable Measurement with Wide Range High Resolution VDL Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Hui%20Yang">Po-Hui Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Min%20Chen"> Jing-Min Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Yu%20Kuo"> Po-Yu Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chun%20Wu"> Chia-Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vernier%20delay%20line" title="vernier delay line">vernier delay line</a>, <a href="https://publications.waset.org/abstracts/search?q=D-type%20flip-flop" title=" D-type flip-flop"> D-type flip-flop</a>, <a href="https://publications.waset.org/abstracts/search?q=DFF" title=" DFF"> DFF</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20phenomenon" title=" metastable phenomenon"> metastable phenomenon</a> </p> <a href="https://publications.waset.org/abstracts/25622/application-on-metastable-measurement-with-wide-range-high-resolution-vdl-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10306</span> Design and Realization of Double-Delay Line Canceller (DDLC) Using Fpga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20El-Henawey">A. E. El-Henawey</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20El-Kouny"> A. A. El-Kouny</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Abd%20%E2%80%93El-Halim"> M. M. Abd –El-Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moving target indication (MTI) which is an anti-clutter technique that limits the display of clutter echoes. It uses the radar received information primarily to display moving targets only. The purpose of MTI is to discriminate moving targets from a background of clutter or slowly-moving chaff particles as shown in this paper. Processing system in these radars is so massive and complex; since it is supposed to perform a great amount of processing in very short time, in most radar applications the response of a single canceler is not acceptable since it does not have a wide notch in the stop-band. A double-delay canceler is an MTI delay-line canceler employing the two-delay-line configuration to improve the performance by widening the clutter-rejection notches, as compared with single-delay cancelers. This canceler is also called a double canceler, dual-delay canceler, or three-pulse canceler. In this paper, a double delay line canceler is chosen for study due to its simplicity in both concept and implementation. Discussing the implementation of a simple digital moving target indicator (DMTI) using FPGA which has distinct advantages compared to other application specific integrated circuit (ASIC) for the purposes of this work. The FPGA provides flexibility and stability which are important factors in the radar application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FPGA" title="FPGA">FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=MTI" title=" MTI"> MTI</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20delay%20line%20canceler" title=" double delay line canceler"> double delay line canceler</a>, <a href="https://publications.waset.org/abstracts/search?q=Doppler%20Shift" title=" Doppler Shift "> Doppler Shift </a> </p> <a href="https://publications.waset.org/abstracts/2245/design-and-realization-of-double-delay-line-canceller-ddlc-using-fpga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">647</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10305</span> A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanefi%20Cinar">Hanefi Cinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Cibuk"> Musa Cibuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Erturk"> Ismail Erturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Fikri%20Aggun"> Fikri Aggun</a>, <a href="https://publications.waset.org/abstracts/search?q=Munip%20Geylani"> Munip Geylani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MWSN" title="MWSN">MWSN</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20MAC" title=" hybrid MAC"> hybrid MAC</a>, <a href="https://publications.waset.org/abstracts/search?q=TDMA" title=" TDMA"> TDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM" title=" FDM"> FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title=" OFDMA"> OFDMA</a> </p> <a href="https://publications.waset.org/abstracts/37147/a-hybrid-mac-protocol-for-delay-constrained-mobile-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10304</span> Identifying Project Delay Factors in the Australian Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Sohaib%20Bin%20Hasib">Syed Sohaib Bin Hasib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiyam%20Al-Kilidar"> Hiyam Al-Kilidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meeting project deadlines is a major challenge for most construction projects. In this study, perceptions of contractors, clients, and consultants are compared relative to a list of factors derived from the review of the extant literature on project delay. 59 causes (categorized into 8 groups) of project delays were identified from the literature. A survey was devised to get insights and ranking of these factors from clients, consultants &amp; contractors in the Australian construction industry. Findings showed that project delays in the Australian construction industry are mainly the result of skill shortages, interference in execution, and poor coordination and communication between the project stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20factors" title=" delay factors"> delay factors</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay" title=" time delay"> time delay</a>, <a href="https://publications.waset.org/abstracts/search?q=australian%20construction%20industry" title=" australian construction industry"> australian construction industry</a> </p> <a href="https://publications.waset.org/abstracts/129978/identifying-project-delay-factors-in-the-australian-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10303</span> An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Vicente%20E.%20Mujica">V. Vicente E. Mujica</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Gonzalez"> Gustavo Gonzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrestrial-satellite%20networks" title="terrestrial-satellite networks">terrestrial-satellite networks</a>, <a href="https://publications.waset.org/abstracts/search?q=latency" title=" latency"> latency</a>, <a href="https://publications.waset.org/abstracts/search?q=on-orbit%20satellite%20payload" title=" on-orbit satellite payload"> on-orbit satellite payload</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/72448/an-agent-based-modelling-simulation-approach-to-calculate-processing-delay-of-geo-satellite-payload" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=344">344</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=345">345</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=delay%20management&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10