CINXE.COM

Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis | Journal of Data Science and Intelligent Systems

<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis | Journal of Data Science and Intelligent Systems </title> <link rel="icon" href="https://ojs.bonviewpress.com/public/journals/7/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.4.0.7"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Journal of Data Science and Intelligent Systems"/> <meta name="citation_journal_abbrev" content="JDSIS"/> <meta name="citation_issn" content="2972-3841"/> <meta name="citation_author" content="Israa Lewaaelhamd"/> <meta name="citation_author_institution" content="Department of Business Administration, The British University in Egypt, Egypt"/> <meta name="citation_title" content="Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024"/> <meta name="citation_volume" content="2"/> <meta name="citation_issue" content="1"/> <meta name="citation_firstpage" content="29"/> <meta name="citation_lastpage" content="36"/> <meta name="citation_doi" content="10.47852/bonviewJDSIS32021293"/> <meta name="citation_abstract_html_url" content="https://ojs.bonviewpress.com/index.php/jdsis/article/view/1293"/> <meta name="citation_abstract" xml:lang="en" content="Machine learning (ML) encompasses a diverse array of both supervised and unsupervised techniques that facilitate prediction, classification, and anomaly detection. Among the many fields of application for such techniques, customer churn prediction is a prominent one. In order to forecast customer switching, data scientists employ a variety of demographic, social, transactional, and behavioral variables and attributes. Unfortunately, many businesses in the United Kingdom still lack the comprehensive and adaptable consumer data required to perform accurate analyses. As a result, they often rely heavily on data produced by enterprise resource planning systems, which is primarily transactional in nature. Consequently, businesses are often limited to modeling and forecasting on transactional data alone and are unlikely to invest significantly in marketing research or other customer-related sources. Businesses are often limited to performing modeling and forecasting on transactional data that are most often not based on advanced techniques like recency, frequency and monetary (RFM) and ML. So, the major objective of the current work is to provide a mix of ML and RFM analysis techniques for churn prediction using mostly transactional data. The dataset was taken from the dataset search website containing online retail datasets. Every customer&#039;s RFM scores are computed based on the available data. A churn metric that indicates whether or not the customer has made a transaction in a limited time. Through this paper, different techniques are compared. We used K-means and DBSCAN clustering. By the end of this paper, it may be inferred that the act of dividing customers into six distinct clusters is a more practical and straightforward approach. 聽 Received: 29 June 2023 | Revised: 21 August 2023 | Accepted: 6 September 2023 聽 Conflicts of Interest The author declares that she has no conflicts of interest to this work. 聽 Data Availability Statement The data that support the findings of this study are openly available in [Google Drive] at https://drive.google.com/file/d/1qme8WeYkmXWfWkLa87jG37owWPCsNY65/view?usp=drive_web"/> <meta name="citation_keywords" xml:lang="en" content="RFM analysis"/> <meta name="citation_keywords" xml:lang="en" content="statistical approaches"/> <meta name="citation_keywords" xml:lang="en" content="data analysis"/> <meta name="citation_keywords" xml:lang="en" content="machine learning models"/> <meta name="citation_keywords" xml:lang="en" content="artificial intelligence"/> <meta name="citation_pdf_url" content="https://ojs.bonviewpress.com/index.php/jdsis/article/download/1293/622"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Israa Lewaaelhamd"/> <meta name="DC.Date.created" scheme="ISO8601" content="2023-09-08"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2023-06-29"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-01-18"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-11-07"/> <meta name="DC.Description" xml:lang="en" content="Machine learning (ML) encompasses a diverse array of both supervised and unsupervised techniques that facilitate prediction, classification, and anomaly detection. Among the many fields of application for such techniques, customer churn prediction is a prominent one. In order to forecast customer switching, data scientists employ a variety of demographic, social, transactional, and behavioral variables and attributes. Unfortunately, many businesses in the United Kingdom still lack the comprehensive and adaptable consumer data required to perform accurate analyses. As a result, they often rely heavily on data produced by enterprise resource planning systems, which is primarily transactional in nature. Consequently, businesses are often limited to modeling and forecasting on transactional data alone and are unlikely to invest significantly in marketing research or other customer-related sources. Businesses are often limited to performing modeling and forecasting on transactional data that are most often not based on advanced techniques like recency, frequency and monetary (RFM) and ML. So, the major objective of the current work is to provide a mix of ML and RFM analysis techniques for churn prediction using mostly transactional data. The dataset was taken from the dataset search website containing online retail datasets. Every customer&#039;s RFM scores are computed based on the available data. A churn metric that indicates whether or not the customer has made a transaction in a limited time. Through this paper, different techniques are compared. We used K-means and DBSCAN clustering. By the end of this paper, it may be inferred that the act of dividing customers into six distinct clusters is a more practical and straightforward approach. 聽 Received: 29 June 2023 | Revised: 21 August 2023 | Accepted: 6 September 2023 聽 Conflicts of Interest The author declares that she has no conflicts of interest to this work. 聽 Data Availability Statement The data that support the findings of this study are openly available in [Google Drive] at https://drive.google.com/file/d/1qme8WeYkmXWfWkLa87jG37owWPCsNY65/view?usp=drive_web"/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="1293"/> <meta name="DC.Identifier.pageNumber" content="29-36"/> <meta name="DC.Identifier.DOI" content="10.47852/bonviewJDSIS32021293"/> <meta name="DC.Identifier.URI" content="https://ojs.bonviewpress.com/index.php/jdsis/article/view/1293"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2023 Author"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0/"/> <meta name="DC.Source" content="Journal of Data Science and Intelligent Systems"/> <meta name="DC.Source.ISSN" content="2972-3841"/> <meta name="DC.Source.Issue" content="1"/> <meta name="DC.Source.Volume" content="2"/> <meta name="DC.Source.URI" content="https://ojs.bonviewpress.com/index.php/jdsis"/> <meta name="DC.Subject" xml:lang="en" content="RFM analysis"/> <meta name="DC.Subject" xml:lang="en" content="statistical approaches"/> <meta name="DC.Subject" xml:lang="en" content="data analysis"/> <meta name="DC.Subject" xml:lang="en" content="machine learning models"/> <meta name="DC.Subject" xml:lang="en" content="artificial intelligence"/> <meta name="DC.Title" content="Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research Articles"/> <link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/jdsis/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/jdsis/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.7" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://ojs.bonviewpress.com/public/journals/7/homepageImage_en_US.png");}</style><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/public/journals/7/styleSheet.css?d=2023-01-16+16%3A41%3A36" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.7" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.bonviewpress.com/index.php/jdsis/index " class="is_text">Journal of Data Science and Intelligent Systems</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="http://ojs.bonviewpress.com/index.php/jdsis/index"> HOME </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/about"> ABOUT </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/aims_and_scope"> Aims and Scope </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/JM"> Journal Metrics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/indexing"> Indexing & Abstracting </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/contact"> Contact </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/browse"> BROWSE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/issue/view/onlinefirst"> Online First </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/issue/current"> Current Issue </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/issue/archive"> All Issues </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/contribute"> CONTRIBUTE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/about/submissions"> Author Guidelines </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/oa"> Open Access </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/peer_review_process"> Peer Review Process </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/pe"> Publishing Ethics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/for_reviewers"> For Reviewers </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/edb"> EDITORIAL BOARD </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/special_issues"> SPECIAL ISSUES </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/jdsis/submittingproposal"> Submitting a Proposal </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.bonviewpress.com/index.php/index/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/browse"> BROWSE </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.bonviewpress.com/index.php/jdsis/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/jdsis/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/jdsis/issue/view/68"> Vol. 2 No. 1 (2024) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research Articles </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Israa Lewaaelhamd </span> <span class="affiliation"> Department of Business Administration, The British University in Egypt, Egypt </span> <span class="orcid"> <svg class="orcid_icon" viewBox="0 0 256 256" aria-hidden="true"> <style type="text/css"> .st0{fill:#A6CE39;} .st1{fill:#FFFFFF;} </style> <path class="st0" d="M256,128c0,70.7-57.3,128-128,128C57.3,256,0,198.7,0,128C0,57.3,57.3,0,128,0C198.7,0,256,57.3,256,128z"/> <g> <path class="st1" d="M86.3,186.2H70.9V79.1h15.4v48.4V186.2z"/> <path class="st1" d="M108.9,79.1h41.6c39.6,0,57,28.3,57,53.6c0,27.5-21.5,53.6-56.8,53.6h-41.8V79.1z M124.3,172.4h24.5 c34.9,0,42.9-26.5,42.9-39.7c0-21.5-13.7-39.7-43.7-39.7h-23.7V172.4z"/> <path class="st1" d="M88.7,56.8c0,5.5-4.5,10.1-10.1,10.1c-5.6,0-10.1-4.6-10.1-10.1c0-5.6,4.5-10.1,10.1-10.1 C84.2,46.7,88.7,51.3,88.7,56.8z"/> </g> </svg> <a href="https://orcid.org/0000-0002-3471-9609" target="_blank"> https://orcid.org/0000-0002-3471-9609 </a> </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.47852/bonviewJDSIS32021293"> https://doi.org/10.47852/bonviewJDSIS32021293 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> RFM analysis, statistical approaches, data analysis, machine learning models, artificial intelligence </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>Machine learning (ML) encompasses a diverse array of both supervised and unsupervised techniques that facilitate prediction, classification, and anomaly detection. Among the many fields of application for such techniques, customer churn prediction is a prominent one. In order to forecast customer switching, data scientists employ a variety of demographic, social, transactional, and behavioral variables and attributes. Unfortunately, many businesses in the United Kingdom still lack the comprehensive and adaptable consumer data required to perform accurate analyses. As a result, they often rely heavily on data produced by enterprise resource planning systems, which is primarily transactional in nature. Consequently, businesses are often limited to modeling and forecasting on transactional data alone and are unlikely to invest significantly in marketing research or other customer-related sources. Businesses are often limited to performing modeling and forecasting on transactional data that are most often not based on advanced techniques like recency, frequency and monetary (RFM) and ML. So, the major objective of the current work is to provide a mix of ML and RFM analysis techniques for churn prediction using mostly transactional data. The dataset was taken from the dataset search website containing online retail datasets. Every customer's RFM scores are computed based on the available data. A churn metric that indicates whether or not the customer has made a transaction in a limited time. Through this paper, different techniques are compared. We used K-means and DBSCAN clustering. By the end of this paper, it may be inferred that the act of dividing customers into six distinct clusters is a more practical and straightforward approach.</p> <p>聽</p> <p><strong>Received: </strong>29 June 2023 <strong>| Revised: </strong>21 August 2023 <strong>| Accepted:</strong> 6 September 2023</p> <p>聽</p> <p><strong>Conflicts of Interest</strong></p> <p>The author declares that she has no conflicts of interest to this work.</p> <p>聽</p> <p><strong>Data Availability Statement</strong></p> <p>The data that support the findings of this study are openly available in [Google Drive] at <a href="https://drive.google.com/file/d/1qme8WeYkmXWfWkLa87jG37owWPCsNY65/view?usp=drive_web">https://drive.google.com/file/d/1qme8WeYkmXWfWkLa87jG37owWPCsNY65/view?usp=drive_web</a></p> </section> <br /><div class="separator"></div><div class="item abstract" id="trendmd-suggestions"></div><script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"website_id":"89269", "element":"#trendmd-suggestions"}'></script> </div><!-- .main_entry --> <div class="entry_details"> <div class="item cover_image"> <div class="sub_item"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/issue/view/68"> <img src="https://ojs.bonviewpress.com/public/journals/7/cover_issue_68_en_US.png" alt=""> </a> </div> </div> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.bonviewpress.com/index.php/jdsis/article/view/1293/622"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2023-09-08</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.bonviewpress.com/index.php/jdsis/issue/view/68"> Vol. 2 No. 1 (2024) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research Articles </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2023 Author</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Lewaaelhamd, I. (2023). Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis. <i>Journal of Data Science and Intelligent Systems</i>, <i>2</i>(1), 29-36. <a href="https://doi.org/10.47852/bonviewJDSIS32021293">https://doi.org/10.47852/bonviewJDSIS32021293</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/acm-sig-proceedings?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/acm-sig-proceedings?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/acs-nano?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/acs-nano?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/apa?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/apa?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/chicago-author-date?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/chicago-author-date?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/harvard-cite-them-right?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/harvard-cite-them-right?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/ieee?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/ieee?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/modern-language-association?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/modern-language-association?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/vancouver?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/vancouver?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/ama?submissionId=1293&amp;publicationId=2468&amp;issueId=68" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/get/ama?submissionId=1293&amp;publicationId=2468&amp;issueId=68&amp;return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/download/ris?submissionId=1293&amp;publicationId=2468&amp;issueId=68"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/jdsis/citationstylelanguage/download/bibtex?submissionId=1293&amp;publicationId=2468&amp;issueId=68"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style "> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> <div id="articlesBySameAuthorList"> </div> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-journal-information"> <h2 class="title">Journal Information</h2> <div class="content"> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Editor-in-Chief:</strong> Shaojie Qiao, Chengdu University of Information Technology, China</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Frequency:&nbsp;</strong>Quarterly</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Submission to First Decision: </strong>29 days</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Submission to Acceptance: </strong>93 days</span></div> <div class="journalcard__metrics border"><strong><span class="sc-hwwEjo cdchLr">Accept to Publish:&nbsp;</span></strong><span class="sc-hwwEjo cdchLr">8 days</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Acceptance Rate: </strong>18%</span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>eISSN: </strong>2972-3841</span></span></span> <div class="journalcard__metrics border"> <p class="journalcard__metrics border">漏 2024&nbsp; Bon View Publishing Pte Ltd.</p> </div> </div> </div> </div> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://ojs.bonviewpress.com/index.php/jdsis/about/submissions"> Make a Submission </a> </div> </div> <style type="text/css"> .block_announcements_article:not(:last-child) { padding-bottom: 1.5em; border-bottom: 1px solid; } .block_announcements_article { text-align: left; } .block_announcements #show-all{ font-style: italic; } </style> <div class="pkp_block block_announcements"> <h2 class="title">Announcements</h2> <div class="content"> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/announcement/view/94"> JDSIS Has Been Officially Indexed in EBSCO </a> </h3> <time class="block_announcements_article_date" datetime="2024-11-07"> <strong>November 7, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are delighted to share with you that <em>Journal of Data Science and Intelligent Systems</em> 聽(eISSN: 2972-3841) has been officially indexed by EBSCO! The full text ingestion is still in progress and will be completed at January, 2025.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/announcement/view/72"> STM Membership Announcement </a> </h3> <time class="block_announcements_article_date" datetime="2024-04-24"> <strong>April 24, 2024</strong> </time> <div class="block_announcements_article_content"> <p>Bon View Publishing Pte. Ltd. proudly announces its membership in the esteemed聽<a href="https://www.stm-assoc.org/"><u>International Association of Scientific, Technical and Medical Publishers(STM)</u></a>, effective 2024. This collaboration marks a significant milestone in advancing global knowledge exchange and promoting cutting-edge research.</p> </div> </article> <a id="show-all" href="https://ojs.bonviewpress.com/index.php/jdsis/announcement">Show all announcements ...</a> </div> </div> <div class="pkp_block block_developed_by"> <div class="content"> <span class="title">Most Read</span> <ul class="most_read"> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/jdsis/article/view/656">Applications of Quantum Computing in Health Sector</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 2021</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/jdsis/article/view/1078">Fuzzy Logic and Neural Network-based Risk Assessment Model for Import and Export Enterprises: A Review</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1928</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/jdsis/article/view/885">Analytic Network Process (ANP) Method: A Comprehensive Review of Applications, Advantages, and Limitations</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1414</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/jdsis/article/view/983">3D-STCNN: Spatiotemporal Convolutional Neural Network Based on EEG 3D Features for Detecting Driving Fatigue</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1233</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/jdsis/article/view/1293">Customer Segmentation Using Machine Learning Model: An Application of RFM Analysis</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1080</div> </li> </ul> </div> </div> <div class="pkp_block block_keyword_cloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var cores = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return cores[Math.floor(Math.random()*cores.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"financial inclusion","size":1},{"text":"digital wallets","size":1},{"text":"artificial intelligence","size":1},{"text":"machine learning","size":1},{"text":"caribbean sids","size":1},{"text":"sliding window","size":1},{"text":"human fall detection","size":1},{"text":"classification model","size":1},{"text":"tsfresh","size":1},{"text":"auto-sklearn","size":1},{"text":"nmr","size":1},{"text":"phase error correction","size":1},{"text":"nonlinear shrinkage","size":1},{"text":"optimization","size":1},{"text":"delta absolute net minimization (danm)","size":1},{"text":"reproducible research","size":1},{"text":"pseudo random numbers","size":1},{"text":"energy consumption","size":1},{"text":"regression tree","size":1},{"text":"anomaly detection","size":1},{"text":"outlier","size":1},{"text":"robust regression","size":1},{"text":" convolutional neural networks","size":1},{"text":"image recognition","size":1},{"text":"early stopping strategy","size":1},{"text":"defect identification","size":1},{"text":"blockchain technology","size":1},{"text":"continuous learning","size":1},{"text":"deep learning","size":1},{"text":"intrusion detection system","size":1},{"text":"neural networks","size":1},{"text":"deep analytics","size":1},{"text":"knowledge extraction","size":1},{"text":"student performance prediction","size":1},{"text":"data mining","size":1},{"text":"data normalization","size":1},{"text":"data visualization","size":1},{"text":"data indicators","size":1},{"text":"scrum","size":1},{"text":"software development","size":1},{"text":"technical debt","size":1},{"text":"project management","size":1},{"text":"gdpr compliance","size":1},{"text":"health data protection","size":1},{"text":"hospital management systems","size":1},{"text":"general data protection regulation","size":1},{"text":"indoor routing","size":1},{"text":"indoor navigation","size":1},{"text":"indoor positioning","size":1},{"text":"multimodal routing","size":1}]; var totalWeight = 0; var blockWidth = 300; var blockHeight = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([blockWidth, blockHeight]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + blockWidth + " " + blockHeight) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var width = layout.size()[0], height = layout.size()[1]; scaling = bounds ? Math.min( width / Math.abs(bounds[1].x - width / 2), width / Math.abs(bounds[0].x - width / 2), height / Math.abs(bounds[1].y - height / 2), height / Math.abs(bounds[0].y - height / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [width >> 1, height >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://ojs.bonviewpress.com/index.php/index/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img style="border-width: 0;" src="https://ojs.bonviewpress.com/public/site/images/admin/88x31.png" alt="Creative Commons License" width="88" height="31" /></a> 聽聽All site content, except where otherwise noted, is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">Creative Commons Attribution 4.0 International License</a>.</p> <p>eISSN: 2972-3841 | Published by <a href="http://www.bonviewpress.com/">Bon View Publishing Pte Ltd.</a></p> <p><strong>Member of</strong></p> <p><img style="width: 900px; height: 70px;" src="https://bonview.oss-ap-southeast-1.aliyuncs.com/resource/ojs-logo-quanji.png" />聽</p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.bonviewpress.com/index.php/jdsis/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.bonviewpress.com/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/main.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.7" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.4.0.7" type="text/javascript"></script><script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtag/js?id=' + i + dl; f.parentNode.insertBefore(j, f); function gtag(){dataLayer.push(arguments)}; gtag('js', new Date()); gtag('config', i); }) (window, document, 'script', 'dataLayer', 'UA-284252596-1'); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10