CINXE.COM
Search results for: soil biomass
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: soil biomass</title> <meta name="description" content="Search results for: soil biomass"> <meta name="keywords" content="soil biomass"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="soil biomass" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="soil biomass"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3829</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: soil biomass</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3829</span> Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20Vishwakarma">Kanchan Vishwakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivesh%20Sharma"> Shivesh Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Kumar"> Nitin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latitude%20gradient" title="latitude gradient">latitude gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20biomass" title=" microbial biomass"> microbial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20carbon" title=" organic carbon"> organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/44489/impact-of-climatic-parameters-on-soils-nutritional-and-enzymatic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3828</span> Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Zhao">Qingqing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Bai"> Junhong Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20content%20and%20stock" title="carbon content and stock">carbon content and stock</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20content%20and%20stock" title=" nitrogen content and stock"> nitrogen content and stock</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20wetland" title=" coastal wetland"> coastal wetland</a> </p> <a href="https://publications.waset.org/abstracts/39880/dynamics-of-soil-carbon-and-nitrogen-contents-and-stocks-along-a-salinity-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3827</span> Carbon Sequestration under Hazelnut (Corylus avellana) Agroforestry and Adjacent Land Uses in the Vicinity of Black Sea, Trabzon, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abaoli%20Abafogi">Mohammed Abaoli Abafogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinem%20Satiroglu"> Sinem Satiroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Misir"> M. Misir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study has addressed the effect of Hazelnut (Corylus avellana) agroforestry on carbon sequestration. Eight sample plots were collected from Hazelnut (Corylus avellana) agroforestry using random sampling method. The diameter of all trees in each plot with ≥ 2cm at 1.3m DBH was measured by using a calliper. Average diameter, aboveground biomass, and carbon stock were calculated for each plot. Comparative data for natural forestland was used for C was taken from KTU, and the soil C was converted from the biomass conversion equation. Biomass carbon was significantly higher in the Natural forest (68.02Mgha⁻¹) than in the Hazelnut agroforestry (16.89Mgha⁻¹). SOC in Hazelnut agroforestry, Natural forest, and arable agricultural land were 7.70, 385.85, and 0.00 Mgha⁻¹ respectively. Biomass C, on average accounts for only 0.00% of the total C in arable agriculture, and 11.02% for the Hazelnut agroforestry while 88.05% for Natural forest. The result shows that the conversion of arable crop field to Hazelnut agroforestry can sequester a large amount of C in the soil as well as in the biomass than Arable agricultural lands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arable%20agriculture" title="arable agriculture">arable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20carbon" title=" biomass carbon"> biomass carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hazelnut%20%28Corylus%20avellana%29%20agroforestry" title=" hazelnut (Corylus avellana) agroforestry"> hazelnut (Corylus avellana) agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/82600/carbon-sequestration-under-hazelnut-corylus-avellana-agroforestry-and-adjacent-land-uses-in-the-vicinity-of-black-sea-trabzon-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3826</span> Environmental Potential of Biochar from Wood Biomass Thermochemical Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cora%20Bulm%C4%83u">Cora Bulmău</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil polluted with hydrocarbons spills is a major global concern today. As a response to this issue, our experimental study tries to put in evidence the option to choose for one environmentally friendly method: use of the biochar, despite to a classical procedure; incineration of contaminated soil. Biochar represents the solid product obtained through the pyrolysis of biomass, its additional use being as an additive intended to improve the quality of the soil. The positive effect of biochar addition to soil is represented by its capacity to adsorb and contain petroleum products within its pores. Taking into consideration the capacity of the biochar to interact with organic contaminants, the purpose of the present study was to experimentally establish the effects of the addition of wooden biomass-derived biochar on a soil contaminated with oil. So, the contaminated soil was amended with biochar (10%) produced by pyrolysis in different operational conditions of the thermochemical process. After 25 days, the concentration of petroleum hydrocarbons from soil treated with biochar was measured. An analytical method as Soxhlet extraction was adopted to estimate the concentrations of total petroleum products (TPH) in the soil samples: This technique was applied to contaminated soil, also to soils remediated by incineration/adding biochar. The treatment of soil using biochar obtained from pyrolysis of the Birchwood led to a considerable decrease in the concentrations of petroleum products. The incineration treatments conducted under experimental stage to clean up the same soil, contaminated with petroleum products, involved specific parameters: temperature of about 600°C, 800°C and 1000°C and treatment time 30 and 60 minutes. The experimental results revealed that the method using biochar has registered values of efficiency up to those of all incineration processes applied for the shortest time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=remediaton" title=" remediaton"> remediaton</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a> </p> <a href="https://publications.waset.org/abstracts/76274/environmental-potential-of-biochar-from-wood-biomass-thermochemical-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3825</span> Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansong%20Richard%20Omari">Ansong Richard Omari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosei%20Oikawa"> Yosei Oikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Fujii"> Yoshiharu Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorothea%20Sonoko%20Bellingrath-Kimura"> Dorothea Sonoko Bellingrath-Kimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration%20index" title="deterioration index">deterioration index</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilization%20scheme" title=" fertilization scheme"> fertilization scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20biomass" title=" microbial biomass"> microbial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20agroecological%20zone" title=" tropical agroecological zone"> tropical agroecological zone</a> </p> <a href="https://publications.waset.org/abstracts/61689/evaluation-of-different-fertilization-practices-and-their-impacts-on-soil-chemical-and-microbial-properties-in-two-agroecological-zones-of-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3824</span> Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title="forest soil">forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20sugaras" title=" neutral sugaras"> neutral sugaras</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20matter" title=" soil organic matter"> soil organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Waksman%E2%80%99s%20approximation%20analysis" title=" Waksman’s approximation analysis"> Waksman’s approximation analysis</a> </p> <a href="https://publications.waset.org/abstracts/41490/neutral-sugar-contents-of-laurel-leaved-and-cryptomeria-japonica-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3823</span> Agroforestry Practices on Soil Microbial Biomass Carbon and Organic Carbon in Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebiyou%20Masebo">Nebiyou Masebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid conversion of an old aged agroforestry (AF) based agricultural system to monocropping farming system in southern Ethiopia is increasing. The consequence of this, combined with climate change, has been impaired biodiversity, soil microbial biomass carbon (MBC), and soil organic carbon (SOC). The AF system could curb such problems due it is an ecologically and economically sustainable strategies. This study was aimed to investigate different agroforestry practices (AFPs) on MBC and SOC in southern Ethiopia. Soil samples were collected from homegarden based agroforestry practice (HAFP), crop land based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP), and trees on soil and water conservation based agroforestry practice (TSWAFP) using two depth layer (0-30 & 30-60 cm) by systematic sampling. Moreover, woody species inventorywas also collected. The chloroform fumigation extraction method was employed to determine MBC from different AFP types. In this study, the value of MBC and SOC decreased significantly with soil depth (p< 0.05). Besides, AFP type, soil depth, woody species diversity, and key soil properties also strongly influenced MBC and SOC (p< 0.05). In this study, the MBC was the highest (786 mg kg⁻¹ soil) in HAFP, followed by WlAFP (592 mg kg⁻¹ soil), TSWAFP (421 mg kg⁻¹ soil), and ClAFP (357 mg kg⁻¹ soil). The highest mean value of SOC (43.5Mg C ha⁻¹) was recorded in HAFP, followed by WlAFP (35.1Mg C ha⁻¹), TSWAFP (22.3 Mg C ha⁻¹), while the lowest (21.8 Mg C ha⁻¹) was recorded in ClAFP. The HAFP had high woody species diversity, and the lowest was recorded in ClAFP. The finding indicated that SOC and MBC were significantly affected by land management practices, and HAFP has the potential to improve MBC and SOC through good management practices of AFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry%20practices" title="agroforestry practices">agroforestry practices</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20biomass%20carbon" title=" microbial biomass carbon"> microbial biomass carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon" title=" soil carbon"> soil carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20conversion" title=" rapid conversion"> rapid conversion</a> </p> <a href="https://publications.waset.org/abstracts/151750/agroforestry-practices-on-soil-microbial-biomass-carbon-and-organic-carbon-in-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3822</span> Carbon Stock Estimation of Urban Forests in Selected Public Parks in Addis Ababa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meseret%20Habtamu">Meseret Habtamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekuria%20Argaw"> Mekuria Argaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban forests can help to improve the microclimate and air quality. Urban forests in Addis Ababa are important sinks for GHGs as the number of vehicles and the traffic constrain is steadily increasing. The objective of this study was to characterize the vegetation types in selected public parks and to estimate the carbon stock potential of urban forests by assessing carbon in the above, below ground biomass, in the litter and soil. Species which vegetation samples were taken using a systematic transect sampling within value DBH ≥ 5cm were recorded to measure the above, the below ground biomass and the amount of C stored. Allometric models (Y= 34.4703 - 8.0671(DBH) + 0.6589(DBH2) were used to calculate the above ground and Below ground biomass (BGB) = AGB × 0.2 and sampling of soil and litter was based on quadrates. There were 5038 trees recorded from the selected study sites with DBH ≥ 5cm. Most of the Parks had large number of indigenous species, but the numbers of exotic trees are much larger than the indigenous trees. The mean above ground and below ground biomass is 305.7 ± 168.3 and 61.1± 33.7 respectively and the mean carbon in the above ground and below ground biomass is 143.3±74.2 and 28.1 ± 14.4 respectively. The mean CO2 in the above ground and below ground biomass is 525.9 ± 272.2 and 103.1 ± 52.9 respectively. The mean carbon in dead litter and soil carbon were 10.5 ± 2.4 and 69.2t ha-1 respectively. Urban trees reduce atmospheric carbon dioxide (CO2) through sequestration which is important for climate change mitigation, they are also important for recreational, medicinal value and aesthetic and biodiversity conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20forests" title=" urban forests"> urban forests</a> </p> <a href="https://publications.waset.org/abstracts/81454/carbon-stock-estimation-of-urban-forests-in-selected-public-parks-in-addis-ababa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3821</span> Phytoextraction of Copper and Zinc by Willow Varieties in a Pot Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin">Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md%20Abdus%20Salam"> Mir Md Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil and water contamination by heavy metals is a major challenging issue for the environment. Phytoextraction is an emerging, environmentally friendly and cost-efficient technology in which plants are used to eliminate pollutants from the soil and water. We aimed to assess the copper (Cu) and zinc (Zn) removal efficiency by two willow varieties such as Klara (S. viminalis x S. schwerinii x S. dasyclados) and Karin ((S.schwerinii x S. viminalis) x (S. viminalis x S.burjatica)) under different soil treatments (control/unpolluted, polluted, lime with polluted, wood ash with polluted). In 180 days of pot experiment, these willow varieties were grown in a highly polluted soil collected from Pyhasalmi mining area in Finland. The lime and wood ash were added to the polluted soil to improve the soil pH and observe their effects on metals accumulation in plant biomass. The Inductively Coupled Plasma Optical Emission Spectrometer (ELAN 6000 ICP-EOS, Perkin-Elmer Corporation) was used in this study to assess the heavy metals concentration in the plant biomass. The result shows that both varieties of willow have the capability to accumulate the considerable amount of Cu and Zn varying from 36.95 to 314.80 mg kg⁻¹ and 260.66 to 858.70 mg kg⁻¹, respectively. The application of lime and wood ash substantially affected the stimulation of the plant height, dry biomass and deposition of Cu and Zn into total plant biomass. Besides, the lime application appeared to upsurge Cu and Zn concentrations in the shoots and leaves in both willow varieties when planted in polluted soil. However, wood ash application was found more efficient to mobilize the metals in the roots of both varieties. The study recommends willow plantations to rehabilitate the Cu and Zn polluted soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20ash" title=" wood ash"> wood ash</a>, <a href="https://publications.waset.org/abstracts/search?q=willow" title=" willow"> willow</a> </p> <a href="https://publications.waset.org/abstracts/91392/phytoextraction-of-copper-and-zinc-by-willow-varieties-in-a-pot-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3820</span> Influence of Moss Cover and Seasonality on Soil Microbial Biomass and Enzymatic Activity in Different Central Himalayan Temperate Forest Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshu%20Siwach">Anshu Siwach</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianlai%20Zhuang"> Qianlai Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratul%20Baishya"> Ratul Baishya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This study focuses on the influence of moss cover and seasonality on soil microbial biomass and enzymatic activity in different Central Himalayan temperate forest types. Soil microbial biomass and enzymes are key indicators of microbial communities in soil and provide information on soil properties, microbial status, and organic matter dynamics. The activity of microorganisms in the soil varies depending on the vegetation type and environmental conditions. Therefore, this study aims to assess the effects of moss cover, seasons, and different forest types on soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzymatic activity in the Central Himalayas, Uttarakhand, India. Research Aim: The aim of this study is to evaluate the levels of SMBC, SMBN, and soil enzymatic activity in different temperate forest types under the influence of two ground covers (soil with and without moss cover) during the rainy and winter seasons. Question Addressed: This study addresses the following questions: 1. How does the presence of moss cover and seasonality affect soil microbial biomass and enzymatic activity? 2. What is the influence of different forest types on SMBC, SMBN, and enzymatic activity? Methodology: Soil samples were collected from different forest types during the rainy and winter seasons. The study utilizes the chloroform-fumigation extraction method to determine SMBC and SMBN. Standard methodologies are followed to measure enzymatic activities, including dehydrogenase, acid phosphatase, aryl sulfatase, β-glucosidase, phenol oxidase, and urease. Findings: The study reveals significant variations in SMBC, SMBN, and enzymatic activity under different ground covers, within the rainy and winter seasons, and among the forest types. Moss cover positively influences SMBC and enzymatic activity during the rainy season, while soil without moss cover shows higher values during the winter season. Quercus-dominated forests, as well as Cupressus torulosa forests, exhibit higher levels of SMBC and enzymatic activity, while Pinus roxburghii forests show lower levels. Theoretical Importance: The findings highlight the importance of considering mosses in forest management plans to improve soil microbial diversity, enzymatic activity, soil quality, and health. Additionally, this research contributes to understanding the role of lower plants, such as mosses, in influencing ecosystem dynamics. Conclusion: The study concludes that moss cover during the rainy season significantly influences soil microbial biomass and enzymatic activity. Quercus and Cupressus torulosa dominated forests demonstrate higher levels of SMBC and enzymatic activity, indicating the importance of these forest types in sustaining soil microbial diversity and soil health. Including mosses in forest management plans can improve soil quality and overall ecosystem dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moss%20cover" title="moss cover">moss cover</a>, <a href="https://publications.waset.org/abstracts/search?q=seasons" title=" seasons"> seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzymes" title=" soil enzymes"> soil enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20biomass" title=" soil microbial biomass"> soil microbial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=temperate%20forest%20types" title=" temperate forest types"> temperate forest types</a> </p> <a href="https://publications.waset.org/abstracts/175360/influence-of-moss-cover-and-seasonality-on-soil-microbial-biomass-and-enzymatic-activity-in-different-central-himalayan-temperate-forest-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3819</span> Influence of Agroforestry Trees Leafy Biomass and Nitrogen Fertilizer on Crop Growth Rate and Relative Growth Rate of Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Alarape">A. B. Alarape</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20D.%20Aba"> O. D. Aba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of legume tree pruning as mulch in agroforestry system is a common practice to maintain soil organic matter and improve soil fertility in the tropics. The study was conducted to determine the influence of agroforestry trees leafy biomass and nitrogen fertilizer on crop growth rate and relative growth rate of maize. The experiments were laid out as 3 x 4 x 2 factorial in a split-split plot design with three replicates. Control, biomass species (Parkia biglobosa and Albizia lebbeck) as main plots were considered, rates of nitrogen considered include (0, 40, 80, 120 kg N ha⁻¹) as sub-plots, and maize varieties (DMR-ESR-7 and 2009 EVAT) were used as sub-sub plots. Data were analyzed using descriptive and inferential statistics (ANOVA) at α = 0.05. Incorporation of leafy biomass was significant in 2015 on Relative Growth Rate (RGR), while nitrogen application was significant on Crop Growth Rate (CGR). 2009 EVAT had higher CGR in 2015 at 4-6 and 6-8 WAP. Incorporation of Albizia leaves enhanced the growth of maize than Parkia leaves. Farmers are, therefore, encouraged to use Albizia leaves as mulch to enrich their soil for maize production and most especially, in case of availability of inorganic fertilizers. Though, production of maize with biomass and application of 120 kg N ha⁻¹ will bring better growth of maize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry%20trees" title="agroforestry trees">agroforestry trees</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=incorporation" title=" incorporation"> incorporation</a>, <a href="https://publications.waset.org/abstracts/search?q=leafy%20biomass" title=" leafy biomass "> leafy biomass </a> </p> <a href="https://publications.waset.org/abstracts/94859/influence-of-agroforestry-trees-leafy-biomass-and-nitrogen-fertilizer-on-crop-growth-rate-and-relative-growth-rate-of-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3818</span> Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Bouderhem">Amel Bouderhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminata%20Ould%20El%20Hadj%20Khelil"> Aminata Ould El Hadj Khelil</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20N.%20Djrarbaoui"> Amina N. Djrarbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Aroussi%20Aroussi"> Aroussi Aroussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/ml <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20hydrocarbonoclastes" title=" bacteria hydrocarbonoclastes"> bacteria hydrocarbonoclastes</a>, <a href="https://publications.waset.org/abstracts/search?q=ground" title=" ground"> ground</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/24509/effects-of-the-type-of-soil-on-the-efficiency-of-a-bioremediation-dispositive-by-using-bacterium-hydrocarbonoclastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3817</span> Efficient Utilization of Biomass for Bioenergy in Environmental Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subir%20Kundu">Subir Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhendra%20Singh"> Sukhendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumedha%20Ojha"> Sumedha Ojha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Kundu"> Kanika Kundu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title="bioenergy">bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20conversion" title=" biomass conversion"> biomass conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefining" title=" biorefining"> biorefining</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20utilisation%20of%20night%20soil" title=" efficient utilisation of night soil"> efficient utilisation of night soil</a> </p> <a href="https://publications.waset.org/abstracts/20527/efficient-utilization-of-biomass-for-bioenergy-in-environmental-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3816</span> Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek">Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl"> Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Kov%C3%A1csov%C3%A1"> Silvia Kovácsová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20production" title=" biomass production"> biomass production</a>, <a href="https://publications.waset.org/abstracts/search?q=lysimeter" title=" lysimeter "> lysimeter </a> </p> <a href="https://publications.waset.org/abstracts/7531/mineral-nitrogen-retention-nitrogen-availability-and-plant-growth-in-the-soil-influenced-by-addition-of-organic-and-mineral-fertilizers-lysimetric-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3815</span> Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiushi%20Ning">Qiushi Ning</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidification%20and%20C%20limitation" title="acidification and C limitation">acidification and C limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20deposition" title=" N deposition"> N deposition</a> </p> <a href="https://publications.waset.org/abstracts/54487/microbial-activity-and-greenhouse-gas-ghg-emissions-in-recovery-process-in-a-grassland-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3814</span> Neutral Sugars in Two-Step Hydrolysis of Laurel-Leaved and Cryptomeria japonica Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest, which is a World Heritage Site in Nara, Japan consisting of lowland laurel-leaved forest where natural conditions have been preserved for more than 1,000 years, were examined using the two-step hydrolysis to clarify the source of the neutral sugar and relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil (L, F, H and A horizons) surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and PW) trees for analysis. The neutral sugars were one factor of increasing the fungal and bacterial biomass in the laurel-leaved forest soil (BB-1). The more neutral sugar contents in the Cryptomeria japonica forest soil (PW) contributed to the growth of the bacteria and fungi than those of in the Cryptomeria japonica forest soil (BB-2). The neutral sugars had higher correlation with the numbers of bacteria and fungi counted by the dilution plate count method than by the direct microscopic count method. The numbers of fungi had higher correlation with those of bacteria by the dilution plate method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title="forest soil">forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20sugars" title=" neutral sugars"> neutral sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20matter" title=" soil organic matter"> soil organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=two-step%20hydrolysis" title=" two-step hydrolysis"> two-step hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/61994/neutral-sugars-in-two-step-hydrolysis-of-laurel-leaved-and-cryptomeria-japonica-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3813</span> Phytoremediation Potential of Hibiscus Cannabinus L. Grown on Different Soil Cadmium Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Arbaoui">Sarra Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Bettaieb"> Taoufik Bettaieb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contaminated soils and problems related to them have increasingly become a matter of concern. The most common the contaminants generated by industrial urban emissions and agricultural practices are trace metals). Remediation of trace metals which pollute soils can be carried out using physico-chemical processes. Nevertheless, these techniques damage the soil’s biological activity and require expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains pollutants. The potential of kenaf for phytoremediation on Cd-contaminated soil was investigated. kenaf plants have been grown in pots containing different concentrations of cadmium. The observations made were for biomass production and cadmium content in different organs determinate by atomic emission spectrometry. Cadmium transfer from a contaminated soil to plants and into plant tissues are discussed in terms of the Bioconcentration Factor (BCF) and the Transfer Factor (TF). Results showed that Cd was found in kenaf plants at different levels. Tolerance and accumulation potential and biomass productivity indicated that kenaf could be used in phytoremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kenaf" title="kenaf">kenaf</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soil" title=" contaminated soil"> contaminated soil</a> </p> <a href="https://publications.waset.org/abstracts/17031/phytoremediation-potential-of-hibiscus-cannabinus-l-grown-on-different-soil-cadmium-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3812</span> Ecosystem Carbon Stocks Vary in Reference to the Models Used, Socioecological Factors and Agroforestry Practices in Central Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gadisa%20Demie">Gadisa Demie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesele%20Negash"> Mesele Negash</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerihun%20Asrat"> Zerihun Asrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lojka%20Bohdan"> Lojka Bohdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deforestation and forest degradation in the tropics have led to significant carbon (C) emissions. Agroforestry (AF) is a suitable land-use option for tackling such declines in ecosystem services, including climate change mitigation. However, it is unclear how biomass models, AF practices, and socio-ecological factors determine these roles, which hinders the implementation of climate change mitigation initiatives. This study aimed to estimate the ecosystem C stocks of the studied AF practices in relation to socio-ecological variables in central Ethiopia. Out of 243 AF farms inventoried, 108 were chosen at random from three AF practices to estimate their biomass and soil organic carbon. A total of 432 soil samples were collected from 0–30 and 30–60 cm soil depths; 216 samples were taken for each soil organic carbon fraction (%C) and bulk density computation. The study found that the currently developed allometric equations were the most accurate to estimate biomass C for trees growing in the landscape when compared to previous models. The study found higher overall biomass C in woodlots (165.62 Mg ha-¹) than in homegardens (134.07 Mg ha-¹) and parklands (19.98 Mg ha-¹). Conversely, overall, SOC was higher for homegardens (143.88 Mg ha-¹), but lower for parklands (53.42 Mg ha-¹). The ecosystem C stock was comparable between homegardens (277.95 Mg ha-¹) and woodlots (275.44 Mg ha-¹). The study found that elevation, wealthy levels, AF farm age, and size have a positive and significant (P < 0.05) effect on overall biomass and ecosystem C stocks but non-significant with slope (P > 0.05). Similarly, SOC increased with increasing elevation, AF farm age, and wealthy status but decreased with slope and non-significant with AF farm size. The study also showed that species diversity had a positive (P <0.05) effect on overall biomass C stocks in homegardens. The overall study highlights that AF practices have a great potential to lock up more carbon in biomass and soils; however, these potentials were determined by socioecological variables. Thus, these factors should be considered in management strategies that preserve trees in agricultural landscapes in order to mitigate climate change and support the livelihoods of farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20landscape" title="agricultural landscape">agricultural landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/182337/ecosystem-carbon-stocks-vary-in-reference-to-the-models-used-socioecological-factors-and-agroforestry-practices-in-central-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3811</span> Evaluation of Biomass Introduction Methods in Coal Co-Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruwaida%20Abdul%20Rasid">Ruwaida Abdul Rasid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20J.%20Hughes"> Kevin J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Henggs"> Peter J. Henggs</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Pourkashanian"> Mohamed Pourkashanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (co-feeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modeled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20HYSYS" title="aspen HYSYS">aspen HYSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=co-gasification%20modelling" title=" co-gasification modelling"> co-gasification modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17080/evaluation-of-biomass-introduction-methods-in-coal-co-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3810</span> Indoor Air Pollution Control Using a Soil Biofilter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daisy%20B.%20Badilla">Daisy B. Badilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Gostomski"> Peter A. Gostomski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: Biofiltration may be used to control indoor air pollution. In biofiltration, microorganisms break down harmful contaminants in air or water, transforming them into non-toxic substances like carbon dioxide, water, and biomass. In this study, the CO₂ production and the elimination capacity (EC) of toluene at inlet concentrations between 20 and 80 ppm were investigated using three biofilters operated separately with soil as bed material. Results showed soil, with its rich microflora taken to full advantage without inoculants and additional nutrients, biodegraded toluene at removal rates comparable to those in other studies at higher concentrations. The amount of CO₂ generated corresponds to the amount of toluene removed, indicating efficient biodegradation and suggesting stable long-term performance at these low concentrations. Although the concentrations in this study differ from typical indoor toluene levels (ppb), the findings suggest that biofiltration could be effective for indoor air pollution control with appropriate design, taking into account biomass growth or biofilm structure, concentration, and gas flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofiltration" title="biofiltration">biofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution%20control" title=" air pollution control"> air pollution control</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a> </p> <a href="https://publications.waset.org/abstracts/181655/indoor-air-pollution-control-using-a-soil-biofilter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3809</span> Impact of Organic Farming on Soil Fertility and Microbial Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Menuka%20Maharjan">Menuka Maharjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=micobial%20biomas" title=" micobial biomas"> micobial biomas</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a> </p> <a href="https://publications.waset.org/abstracts/124928/impact-of-organic-farming-on-soil-fertility-and-microbial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3808</span> Biomass and Carbon Stock Estimates of Woodlands in the Southeastern Escarpment of Ethiopian Rift Valley: An Implication for Climate Change Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Haji%20Shube">Sultan Haji Shube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Woodland ecosystems of semiarid rift valley of Ethiopia play a significant role in climate change mitigation by sequestering and storing more carbon. This study was conducted in Gidabo river sub-basins southeastern rift-valley escarpment of Ethiopian. It aims to estimate biomass and carbon stocks of woodlands and its implications for climate change mitigation. A total of 44 sampling plots (900m²each) were systematically laid in the woodland for vegetation and environmental data collection. A composite soil sample was taken from five locations main plot. Both disturbed and undisturbed soil samples were taken at two depths using soil auger and core-ring sampler, respectively. Allometric equation was used to estimate aboveground biomass while root-to-shoot ratio method and Walkley-Black method were used for belowground biomass and SOC, respectively. Result revealed that the totals of the study site was 17.05t/ha, of which 14.21t/ha was belonging for AGB and 2.84t/ha was for BGB. Moreover, 2224.7t/ha total carbon stocks was accumulated with an equivalent carbon dioxide of 8164.65t/ha. This study also revealed that more carbon was accumulated in the soil than the biomass. Both aboveground and belowground carbon stocks were decreased with increase in altitude while SOC stocks were increased. The AGC and BGC stocks were higher in the lower slope classes. SOC stocks were higher in the higher slope classes than in the lower slopes. Higher carbon stock was obtained from woody plants that had a DBH measure of >16cm and situated at plots facing northwest. Overall, study results will add up information about carbon stock potential of the woodland that will serve as a base line scenario for further research, policy makers and land managers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allometric%20equation" title="allometric equation">allometric equation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20mitigation" title=" climate change mitigation"> climate change mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=woodland" title=" woodland"> woodland</a> </p> <a href="https://publications.waset.org/abstracts/166118/biomass-and-carbon-stock-estimates-of-woodlands-in-the-southeastern-escarpment-of-ethiopian-rift-valley-an-implication-for-climate-change-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3807</span> Carbon Storage in Natural Mangrove Biomass: Its Destruction and Potential Impact on Climate Change in the UAE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hedaya%20Ali%20Al%20Ameri">Hedaya Ali Al Ameri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alya%20A.%20Arabi"> Alya A. Arabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring the level of carbon storage in mangroves’ biomass has a potential impact in the climate change of UAE. Carbon dioxide is one of greenhouse gases. It is considered to be a main reason for global warming. Deforestation is a key source of the increase in carbon dioxide whereas forests such as mangroves assist in removing carbon dioxide from atmosphere by storing them in its biomass and soil. By using Kauffman and Donato methodology, above- and below-ground biomass and carbon stored in UAE’s natural mangroves were quantified. Carbon dioxide equivalent (CO2eq) released to the atmosphere was then estimated in case of mangroves deforestation in the UAE. The results show that the mean total biomass of mangroves in the UAE ranged from 15.75 Mg/ha to 3098.69 Mg/ha. The estimated CO2eq released upon deforestation in the UAE was found to have a minimal effect on the temperature increase and thus global warming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20stored%20in%20biomass" title="carbon stored in biomass">carbon stored in biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20deforestation" title=" mangrove deforestation"> mangrove deforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20change" title=" temperature change"> temperature change</a>, <a href="https://publications.waset.org/abstracts/search?q=United%20Arab%20Emirate" title=" United Arab Emirate"> United Arab Emirate</a> </p> <a href="https://publications.waset.org/abstracts/26138/carbon-storage-in-natural-mangrove-biomass-its-destruction-and-potential-impact-on-climate-change-in-the-uae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3806</span> Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Osieko%20Okach">Daniel Osieko Okach</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Otieno%20Ondier"> Joseph Otieno Ondier</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Rambold"> Gerhard Rambold</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Tenhunen"> John Tenhunen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Huwe"> Bernd Huwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Otieno"> Dennis Otieno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20fluxes" title="CO2 fluxes">CO2 fluxes</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20manipulation" title=" rainfall manipulation"> rainfall manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/103563/projected-uncertainties-in-herbaceous-production-result-from-unpredictable-rainfall-pattern-and-livestock-grazing-in-a-humid-tropical-savanna-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3805</span> Biomass Availability Matrix: Methodology to Define High Level Biomass Availability for Bioenergy Purposes, a Quebec Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Perez%20Lee">Camilo Perez Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Lefsrud"> Mark Lefsrud</a>, <a href="https://publications.waset.org/abstracts/search?q=Edris%20Madadian"> Edris Madadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Roy"> Yves Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass availability is one of the most important aspects to consider when determining the proper location of potential bioenergy plants. Since this aspect has a direct impact on biomass transportation and storage, biomass availability greatly influences the operational cost. Biomass availability is more than the quantity available on a specific region; other elements such as biomass accessibility and potential play an important role. Accessibility establishes if the biomass could be extracted and conveyed easily considering factors such as biomass availability, infrastructure condition and other operational issues. On the other hand, biomass potential is defined as the capacity of a specific region to scale the usage of biomass as an energy source, move from another energy source or to switch the type of biomass to increase their biomass availability in the future. This paper defines methodologies and parameters in order to determine the biomass availability within the administrative regions of the province of Quebec; firstly by defining the forestry, agricultural, municipal solid waste and energy crop biomass availability per administrative region, next its infrastructure accessibility and lastly defining the region potential. Thus, these data are processed to create a biomass availability matrix allowing to define the overall biomass availability per region and to determine the most optional candidates for bioenergy plant location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title=" bioenergy"> bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20potential" title=" biomass potential"> biomass potential</a> </p> <a href="https://publications.waset.org/abstracts/4941/biomass-availability-matrix-methodology-to-define-high-level-biomass-availability-for-bioenergy-purposes-a-quebec-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3804</span> Investigation of Clubroot Disease Occurrence under Chemical and Organic Soil Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakirul%20Islam">Zakirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugo%20Kumokawa"> Yugo Kumokawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Thinh%20Tran"> Quoc Thinh Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Motoki%20Kubo"> Motoki Kubo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clubroot is a disease of cruciferous plant caused by soil born pathogen Plasmodiophora brassicae and can significantly limit the production through rapid spreading. The present study was designed to investigate the effect of cultivation practices (chemical and organic soils) on clubroot disease development in Brassica rapa. Disease index and root bacterial composition were investigated for both chemical and organic soils. The bacterial biomass and diversity in organic soil were higher than those in chemical soil. Disease severity was distinct for two different cultivation methods. The number of endophytic bacteria decreased in the infected root for both soils. The increased number of endophytic bacterial number led to reduce the proliferation of pathogen spore inside the root and thus reduced the disease severity in organic plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clubroot%20disease" title="clubroot disease">clubroot disease</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20biomass" title=" bacterial biomass"> bacterial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20infection" title=" root infection"> root infection</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20index" title=" disease index"> disease index</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20cultivation" title=" chemical cultivation"> chemical cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20cultivation" title=" organic cultivation"> organic cultivation</a> </p> <a href="https://publications.waset.org/abstracts/169607/investigation-of-clubroot-disease-occurrence-under-chemical-and-organic-soil-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3803</span> Consequences of Some Remediative Techniques Used in Sewaged Soil Bioremediation on Indigenous Microbial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Hoballah">E. M. Hoballah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saber"> M. Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Turky"> A. Turky</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Awad"> N. Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Zaghloul"> A. M. Zaghloul </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remediation of cultivated sewage soils in Egypt become an important aspect in last decade for having healthy crops and saving the human health. In this respect, a greenhouse experiment was conducted where contaminated sewage soil was treated with modified forms of 2% bentonite (T1), 2% kaolinite (T2), 1% bentonite+1% kaolinite (T3), 2% probentonite (T4), 2% prokaolinite (T5), 1% bentonite + 0.5% kaolinite + 0.5% rock phosphate (RP) (T6), 2% iron oxide (T7) and 1% iron oxide + 1% RP (T8). These materials were applied as remediative materials. Untreated soil was also used as a control. All soil samples were incubated for 2 months at 25°C at field capacity throughout the whole experiment. Carbon dioxide (CO2) efflux from both treated and untreated soils as a biomass indicator was measured through the incubation time and kinetic parameters of the best fitted models used to describe the phenomena were taken to evaluate the succession of sewaged soils remediation. The obtained results indicated that according to the kinetic parameters of used models, CO2 effluxes from remediated soils was significantly decreased compared to control treatment with variation in rate values according to type of remediation material applied. In addition, analyzed microbial biomass parameter showed that Ni and Zn were the most potential toxic elements (PTEs) that influenced the decreasing order of microbial activity in untreated soil. Meanwhile, Ni was the only influenced pollutant in treated soils. Although all applied materials significantly decreased the hazards of PTEs in treated soil, modified bentonite was the best treatment compared to other used materials. This work discussed different mechanisms taking place between applied materials and PTEs founded in the studied sewage soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remediation" title="remediation">remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20toxic%20elements" title=" potential toxic elements"> potential toxic elements</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20biomass" title=" soil biomass"> soil biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a> </p> <a href="https://publications.waset.org/abstracts/7693/consequences-of-some-remediative-techniques-used-in-sewaged-soil-bioremediation-on-indigenous-microbial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3802</span> Biomass For Energy In Improving Sustainable Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Muhammad">Dahiru Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danladi"> Muhammad Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yahaya"> Muhammad Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Garba"> Adamu Garba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains, in brief, the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a> </p> <a href="https://publications.waset.org/abstracts/160578/biomass-for-energy-in-improving-sustainable-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3801</span> Biomass Energy in Improving Sustainable Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Muhammad">Dahiru Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danladi"> Muhammad Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Garba"> Adamu Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yahaya"> Muhammad Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains in brief the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of a forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/160583/biomass-energy-in-improving-sustainable-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3800</span> Modelling and Simulation of Biomass Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Ahuja">P. Ahuja</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20S.%20Sai%20Krishna"> K. S. S. Sai Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidisation" title=" fluidisation"> fluidisation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/24385/modelling-and-simulation-of-biomass-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20biomass&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>