CINXE.COM

Search results for: displacements spectrum

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: displacements spectrum</title> <meta name="description" content="Search results for: displacements spectrum"> <meta name="keywords" content="displacements spectrum"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="displacements spectrum" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="displacements spectrum"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1656</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: displacements spectrum</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1656</span> Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Sadegh%20Naseralavi">Seyed Sadegh Naseralavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Khatibinia"> Mohsen Khatibinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20modal%20displacements" title="basic modal displacements">basic modal displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a> </p> <a href="https://publications.waset.org/abstracts/29240/basic-modal-displacements-bmd-for-optimizing-the-buildings-subjected-to-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1655</span> Displacement Based Design of a Dual Structural System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romel%20Cordova%20Shedan">Romel Cordova Shedan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional seismic design is the methodology of Forced Based Design (FBD). The Displacement Based Design (DBD) is a seismic design that considers structural damage to achieve a failure mechanism of the structure before the collapse. It is easier to quantify damage of a structure with displacements rather than forces. Therefore, a structure to achieve an inelastic displacement design with good ductility, it is necessary to be damaged. The first part of this investigation is about differences between the methodologies of DBD and FBD with some DBD advantages. In the second part, there is a study case about a dual building 5-story, which is regular in plan and elevation. The building is located in a seismic zone, which acceleration in firm soil is 45% of the acceleration of gravity. Then it is applied both methodologies into the study case to compare its displacements, shear forces and overturning moments. In the third part, the Dynamic Time History Analysis (DTHA) is done, to compare displacements with DBD and FBD methodologies. Three accelerograms were used and the magnitude of the acceleration scaled to be spectrum compatible with design spectrum. Then, using ASCE 41-13 guidelines, the hinge plastics were assigned to structure. Finally, both methodologies results about study case are compared. It is important to take into account that the seismic performance level of the building for DBD is greater than FBD method. This is due to drifts of DBD are in the order of 2.0% and 2.5% comparing with FBD drifts of 0.7%. Therefore, displacements of DBD is greater than the FBD method. Shear forces of DBD result greater than FBD methodology. These strengths of DBD method ensures that structure achieves design inelastic displacements, because those strengths were obtained due to a displacement spectrum reduction factor which depends on damping and ductility of the dual system. Also, the displacements for the study case for DBD results to be greater than FBD and DTHA. In that way, it proves that the seismic performance level of the building for DBD is greater than FBD method. Due to drifts of DBD which are in the order of 2.0% and 2.5% compared with little FBD drifts of 0.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement-based%20design" title="displacement-based design">displacement-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20spectrum%20reduction%20factor" title=" displacement spectrum reduction factor"> displacement spectrum reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20time%20history%20analysis" title=" dynamic time history analysis"> dynamic time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20based%20design" title=" forced based design"> forced based design</a> </p> <a href="https://publications.waset.org/abstracts/95510/displacement-based-design-of-a-dual-structural-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1654</span> Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saida%20Dorbani">Saida Dorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M%27hammed%20Badaoui"> M&#039;hammed Badaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Djilali%20Benouar"> Djilali Benouar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the effect of the building design and epicentral distance on the storey lateral displacement, for several reinforced concrete buildings (6, 9 and 12 stories), with three floor plans: symmetric, mono symmetric, and unsymmetrical. These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw=6.5). The objective of this study is to highlight the impact of the fundamental period and epicentral distance on storey displacements for a given earthquake. The seismic lateral displacement is carried out in both longitudinal and transverse direction by the response spectrum method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20period" title="natural period">natural period</a>, <a href="https://publications.waset.org/abstracts/search?q=epicenter%20distance" title=" epicenter distance"> epicenter distance</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20buildings" title=" reinforced concrete buildings"> reinforced concrete buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=storey%20displacement" title=" storey displacement"> storey displacement</a> </p> <a href="https://publications.waset.org/abstracts/28064/impact-of-natural-period-and-epicentral-distance-on-storey-lateral-displacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1653</span> The Management of Radio Spectrum Resources in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pongsawee%20Supanonth">Pongsawee Supanonth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is the study of Spectrum Management and the increase in efficiency of Spectrum Utilization. It also proves that Cognitive Radio is a newer technology that will change the face of e-communications network today. This study used qualitative research methods by using in-depth interviews to collect data from a sample specific to those who work in Radio channel from 6 key informant and literature review from the related documents in online database. The result is the technique of Dynamic Spectrum Allocation that is the most suitable for Thailand. We conduct in-depth research for future purposes. Moreover, we can also develop a model that can be used in regulating and managing spectrum that is most suitable for Thailand. And also develop an important tool which can be of importance to allocation of spectrum as a natural resource appropriately. It will also guarantee quality and high benefit in a substantial way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20of%20radio%20spectrum" title=" management of radio spectrum"> management of radio spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20management" title=" spectrum management"> spectrum management</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20scarcity" title=" spectrum scarcity"> spectrum scarcity</a> </p> <a href="https://publications.waset.org/abstracts/43989/the-management-of-radio-spectrum-resources-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1652</span> Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Abd-Elhamed">Ayman Abd-Elhamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mahmoud"> Sayed Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shaking. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20infill" title="masonry infill">masonry infill</a>, <a href="https://publications.waset.org/abstracts/search?q=bare%20frame" title=" bare frame"> bare frame</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum" title=" response spectrum"> response spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response "> seismic response </a> </p> <a href="https://publications.waset.org/abstracts/23577/effect-of-infill-walls-on-response-of-multi-storey-reinforced-concrete-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1651</span> A Cloud-Based Spectrum Database Approach for Licensed Shared Spectrum Access</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Abd%20El%20Megeed">Hazem Abd El Megeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Refaay"> Mohamed El-Refaay</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhan%20Magdi%20Osman"> Norhan Magdi Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum scarcity is a challenging obstacle in wireless communications systems. It hinders the introduction of innovative wireless services and technologies that require larger bandwidth comparing to legacy technologies. In addition, the current worldwide allocation of radio spectrum bands is already congested and can not afford additional squeezing or optimization to accommodate new wireless technologies. This challenge is a result of accumulative contributions from different factors that will be discussed later in this paper. One of these factors is the radio spectrum allocation policy governed by national regulatory authorities nowadays. The framework for this policy allocates specified portion of radio spectrum to a particular wireless service provider on exclusive utilization basis. This allocation is executed according to technical specification determined by the standard bodies of each Radio Access Technology (RAT). Dynamic access of spectrum is a framework for flexible utilization of radio spectrum resources. In this framework there is no exclusive allocation of radio spectrum and even the public safety agencies can share their spectrum bands according to a governing policy and service level agreements. In this paper, we explore different methods for accessing the spectrum dynamically and its associated implementation challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=licensed%20shared%20access" title="licensed shared access">licensed shared access</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title=" cognitive radio"> cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sharing" title=" spectrum sharing"> spectrum sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20congestion" title=" spectrum congestion"> spectrum congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20spectrum%20access" title=" dynamic spectrum access"> dynamic spectrum access</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20database" title=" spectrum database"> spectrum database</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20trading" title=" spectrum trading"> spectrum trading</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20radio%20systems" title=" reconfigurable radio systems"> reconfigurable radio systems</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20spectrum%20allocation%20%28OSA%29" title=" opportunistic spectrum allocation (OSA)"> opportunistic spectrum allocation (OSA)</a> </p> <a href="https://publications.waset.org/abstracts/5572/a-cloud-based-spectrum-database-approach-for-licensed-shared-spectrum-access" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1650</span> An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening%20behavior" title=" hardening behavior"> hardening behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20exponential%20model" title=" nonlinear exponential model"> nonlinear exponential model</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolators" title=" seismic isolators"> seismic isolators</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20behavior" title=" softening behavior"> softening behavior</a> </p> <a href="https://publications.waset.org/abstracts/59055/an-advanced-exponential-model-for-seismic-isolators-having-hardening-or-softening-behavior-at-large-displacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1649</span> Capex Planning with and without Additional Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koirala%20Abarodh">Koirala Abarodh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghaiya%20Ujjwal"> Maghaiya Ujjwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Guragain%20Phani%20Raj"> Guragain Phani Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This analysis focuses on defining the spectrum evaluation model for telecom operators in terms of total cost of ownership (TCO). A quantitative approach for specific case analysis research methodology was used for identifying the results. Specific input parameters like target User experience, year on year traffic growth, capacity site limit per year, target additional spectrum type, bandwidth, spectrum efficiency, UE penetration have been used for the spectrum evaluation process and desired outputs in terms of the number of sites, capex in USD and required spectrum bandwidth have been calculated. Furthermore, this study gives a comparison of capex investment for target growth with and without addition spectrum. As a result, the combination of additional spectrum bands of 700 and 2600 MHz has a better evaluation in terms of TCO and performance. It is our recommendation to use these bands for expansion rather than expansion in the current 1800 and 2100 bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum" title="spectrum">spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=capex%20planning" title=" capex planning"> capex planning</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study%20methodology" title=" case study methodology"> case study methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=TCO" title=" TCO"> TCO</a> </p> <a href="https://publications.waset.org/abstracts/184503/capex-planning-with-and-without-additional-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1648</span> Spectrum Assignment Algorithms in Optical Networks with Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qusay%20Alghazali">Qusay Alghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Cinkler"> Tibor Cinkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulhalim%20Fayad"> Abdulhalim Fayad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern optical networks, the flex grid spectrum usage is most widespread, where higher bit rate streams get larger spectrum slices while lower bit rate traffic streams get smaller spectrum slices. To our practice, under the ITU-T recommendation, G.694.1, spectrum slices of 50, 75, and 100 GHz are being used with central frequency at 193.1 THz. However, when these spectrum slices are not sufficient, multiple spectrum slices can use either one next to another or anywhere in the optical wavelength. In this paper, we propose the analysis of the wavelength assignment problem. We compare different algorithms for this spectrum assignment with and without protection. As a reference for comparisons, we concluded that the Integer Linear Programming (ILP) provides the global optimum for all cases. The most scalable algorithm is the greedy one, which yields results in subsequent ranges even for more significant network instances. The algorithms’ benchmark implemented using the LEMON C++ optimization library and simulation runs based on a minimum number of spectrum slices assigned to lightpaths and their execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum%20assignment" title="spectrum assignment">spectrum assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20linear%20programming" title=" integer linear programming"> integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20algorithm" title=" greedy algorithm"> greedy algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20telecommunication%20union" title=" international telecommunication union"> international telecommunication union</a>, <a href="https://publications.waset.org/abstracts/search?q=library%20for%20efficient%20modeling%20and%20optimization%20in%20networks" title=" library for efficient modeling and optimization in networks"> library for efficient modeling and optimization in networks</a> </p> <a href="https://publications.waset.org/abstracts/136766/spectrum-assignment-algorithms-in-optical-networks-with-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1647</span> Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Alsarhan">Ayoub Alsarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Otoom"> Ahmed Otoom</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Kilani"> Yousef Kilani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel-Rahman%20al-GHuwairi"> Abdel-Rahman al-GHuwairi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20spectrum%20access" title=" dynamic spectrum access"> dynamic spectrum access</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20management" title=" spectrum management"> spectrum management</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sharing" title=" spectrum sharing"> spectrum sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title=" wireless mesh networks"> wireless mesh networks</a> </p> <a href="https://publications.waset.org/abstracts/12925/spectrum-allocation-using-cognitive-radio-in-wireless-mesh-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1646</span> Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariacristina%20Spizzuoco"> Mariacristina Spizzuoco</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20hysteresis%20loops" title=" experimental hysteresis loops"> experimental hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20rope%20isolators" title=" wire rope isolators"> wire rope isolators</a> </p> <a href="https://publications.waset.org/abstracts/58217/influence-of-displacement-amplitude-and-vertical-load-on-the-horizontal-dynamic-and-static-behavior-of-helical-wire-rope-isolators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1645</span> Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ranjeeth">M. Ranjeeth</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anuradha"> S. Anuradha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title="spectrum sensing">spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detection" title=" energy detection"> energy detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fading%20channels" title=" fading channels"> fading channels</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20false%20alarm" title=" probability of false alarm"> probability of false alarm</a> </p> <a href="https://publications.waset.org/abstracts/15800/performance-of-nakagami-fading-channel-over-energy-detection-based-spectrum-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1644</span> A Self-Coexistence Strategy for Spectrum Allocation Using Selfish and Unselfish Game Models in Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noel%20Jeygar%20Robert">Noel Jeygar Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.Vidya"> V. K.Vidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive radio is a software-defined radio technology that allows cognitive users to operate on the vacant bands of spectrum allocated to licensed users. Cognitive radio plays a vital role in the efficient utilization of wireless radio spectrum available between cognitive users and licensed users without making any interference to licensed users. The spectrum allocation followed by spectrum sharing is done in a fashion where a cognitive user has to wait until spectrum holes are identified and allocated when the licensed user moves out of his own allocated spectrum. In this paper, we propose a self –coexistence strategy using bargaining and Cournot game model for achieving spectrum allocation in cognitive radio networks. The game-theoretic model analyses the behaviour of cognitive users in both cooperative and non-cooperative scenarios and provides an equilibrium level of spectrum allocation. Game-theoretic models such as bargaining game model and Cournot game model produce a balanced distribution of spectrum resources and energy consumption. Simulation results show that both game theories achieve better performance compared to other popular techniques <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=bargaining%20game" title=" bargaining game"> bargaining game</a>, <a href="https://publications.waset.org/abstracts/search?q=Cournot%20game" title=" Cournot game"> Cournot game</a> </p> <a href="https://publications.waset.org/abstracts/112222/a-self-coexistence-strategy-for-spectrum-allocation-using-selfish-and-unselfish-game-models-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1643</span> Alternative Method of Determining Seismic Loads on Buildings Without Response Spectrum Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razmik%20Atabekyan">Razmik Atabekyan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Atabekyan"> V. Atabekyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses a new alternative method for determination of seismic loads on buildings, based on resistance of structures to deformations of vibrations. The basic principles for determining seismic loads by spectral method were developed in 40… 50ies of the last century and further have been improved to pursuit true assessments of seismic effects. The base of the existing methods to determine seismic loads is response spectrum or dynamicity coefficient β (norms of RF), which are not definitively established. To this day there is no single, universal method for the determination of seismic loads and when trying to apply the norms of different countries, significant discrepancies between the results are obtained. On the other hand there is a contradiction of the results of macro seismic surveys of strong earthquakes with the principle of the calculation based on accelerations. It is well-known, on soft soils there is an increase of destructions (mainly due to large displacements), even though the accelerations decreases. Obviously, the seismic impacts are transmitted to the building through foundation, but paradoxically, the existing methods do not even include foundation data. Meanwhile acceleration of foundation of the building can differ several times from the acceleration of the ground. During earthquakes each building has its own peculiarities of behavior, depending on the interaction between the soil and the foundations, their dynamic characteristics and many other factors. In this paper we consider a new, alternative method of determining the seismic loads on buildings, without the use of response spectrum. The following main conclusions: 1) Seismic loads are revealed at the foundation level, which leads to redistribution and reduction of seismic loads on structures. 2) The proposed method is universal and allows determine the seismic loads without the use of response spectrum and any implicit coefficients. 3) The possibility of taking into account important factors such as the strength characteristics of the soils, the size of the foundation, the angle of incidence of the seismic ray and others. 4) Existing methods can adequately determine the seismic loads on buildings only for first form of vibrations, at an average soil conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20loads" title="seismic loads">seismic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum" title=" response spectrum"> response spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristics%20of%20buildings" title=" dynamic characteristics of buildings"> dynamic characteristics of buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum" title=" momentum"> momentum</a> </p> <a href="https://publications.waset.org/abstracts/22073/alternative-method-of-determining-seismic-loads-on-buildings-without-response-spectrum-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1642</span> Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoni%20Ivanov">Antoni Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Dandanov"> Nikolay Dandanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Christoff"> Nicole Christoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Poulkov"> Vladimir Poulkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20spectrum%20access" title=" dynamic spectrum access"> dynamic spectrum access</a>, <a href="https://publications.waset.org/abstracts/search?q=GNU%20Radio" title=" GNU Radio"> GNU Radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a> </p> <a href="https://publications.waset.org/abstracts/81419/modern-spectrum-sensing-techniques-for-cognitive-radio-networks-practical-implementation-and-performance-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1641</span> Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumei%20Cai">Sumei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20displacement" title="remote displacement">remote displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=BEM" title=" BEM"> BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20process" title=" reservoir process"> reservoir process</a> </p> <a href="https://publications.waset.org/abstracts/99769/study-on-inverse-solution-from-remote-displacements-to-reservoir-process-during-flow-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1640</span> UWB Open Spectrum Access for a Smart Software Radio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemalatha%20Rallapalli">Hemalatha Rallapalli</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Lal%20Kishore"> K. Lal Kishore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detection" title=" energy detection"> energy detection</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20radio" title=" software radio"> software radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a> </p> <a href="https://publications.waset.org/abstracts/6573/uwb-open-spectrum-access-for-a-smart-software-radio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1639</span> Autism Spectrum Disorder Interventions, Problems and Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammara%20Jabeen">Ammara Jabeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This survey report aims to find the interventions and their effectiveness that are being used globally as well as in Pakistan to treat autistic kids. ‘Autism spectrum disorder (ASD) is a state associated with brain development that shows ‘how a person perceives and socializes with others, causing problems in social interaction and communication’. Besides these problems, these children suffer from restricted and repetitive behaviors too. The term ‘Spectrum’ in Autism Spectrum Disorder refers to the wide range of symptoms and severity. The main cause of this Autism Spectrum Disorder is not known yet, but the research showed that genetics and environmental factors play important roles. In this survey report, after a literature review, some of the possible solutions are suggested based on the most common problems that these children are currently facing in their daily lives. Based on this report, we are able to overcome the lack of the resources (e.g. language, cost, training etc.) that mostly exist in Pakistani culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=interventions" title=" interventions"> interventions</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=disorder" title=" disorder"> disorder</a> </p> <a href="https://publications.waset.org/abstracts/192186/autism-spectrum-disorder-interventions-problems-and-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1638</span> The Miller Umwelt Assessment Scale: A Tool for Planning Interventions for Children on the Autism Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Mastrangelo">Sonia Mastrangelo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Miller Umwelt Assessment Scale is a useful tool for obtaining information about the developmental capacities of children on the autism spectrum. The assessment, made up of 19 tasks in the areas of: body organization, contact with surroundings, expressive and receptive communication, representation, and social-emotional development, has been used with much success over the past 40 years. While many assessments are difficult to administer to children on the autism spectrum, the simplicity of the MUAS reveals key strengths and challenges for both low and high functioning children on the spectrum. The results guide parents and clinicians in providing a curriculum and/or home program that moves children up the developmental ladder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20intervention" title=" reading intervention"> reading intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20method" title=" Miller method "> Miller method </a> </p> <a href="https://publications.waset.org/abstracts/17636/the-miller-umwelt-assessment-scale-a-tool-for-planning-interventions-for-children-on-the-autism-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1637</span> Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Omorogiuwa">O. S. Omorogiuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20Omozusi"> E. J. Omozusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that &lsquo;internet of things&rsquo; device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum" title="spectrum">spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=telecommunication" title=" telecommunication"> telecommunication</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title=" cognitive radio"> cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a> </p> <a href="https://publications.waset.org/abstracts/93900/monitoring-of-spectrum-usage-and-signal-identification-using-cognitive-radio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1636</span> Comparison of Various Response Spectrum of Nuclear Power Plant at Chashma Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Iqbal">J. Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shah"> A. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zeeshan"> M. Zeeshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UBC-97, USNRC, chines origin code GB50011-2011 and site response spectrum was used to make comparison between them for Chashma site and most conservative one was selected and the USNRC was the most conservative one. The dynamic analysis of CHASNUPP-2 containment building was performed using SAP-2000 for dead load, live load (crane), pre stressed loads, wind load, temperature load, accidental pressure during LOCA, earthquake loads and the conservative response spectrum. After applying selected response spectrum on model, detail comparison was made against area of steal calculated from the analysis and the actually provided. Then prepared curve of area of steal vs. g value which shows that if the particular site was design on that spectrum that much steel needed for structural integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum" title="response spectrum">response spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=USNRC" title=" USNRC"> USNRC</a>, <a href="https://publications.waset.org/abstracts/search?q=LOCA" title=" LOCA"> LOCA</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20of%20steel" title=" area of steel"> area of steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20integrity" title=" structure integrity "> structure integrity </a> </p> <a href="https://publications.waset.org/abstracts/20573/comparison-of-various-response-spectrum-of-nuclear-power-plant-at-chashma-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1635</span> Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tallataf%20Rasheed">Tallataf Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Rashdi"> Adnan Rashdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Naeem%20Akhtar"> Ahmad Naeem Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detector" title=" energy detector"> energy detector</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20factors" title=" reliability factors"> reliability factors</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a> </p> <a href="https://publications.waset.org/abstracts/77586/reliability-factors-based-fuzzy-logic-scheme-for-spectrum-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1634</span> Numerical Simulation and Experimental Verification of Mechanical Displacements in Piezoelectric Transformer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Boukazouha">F. Boukazouha</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Poulin-Vittrant"> G. Poulin-Vittrant</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rguiti"> M. Rguiti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lethiecq"> M. Lethiecq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since its invention, by virtue of its remarkable features, the piezoelectric transformer (PT) has drawn the attention of the scientific community. In past years, it has been extensively studied and its performances have been continuously improved. Nowadays, such devices are designed in more and more sophisticated architectures with associated models describing their behavior quite accurately. However, the different studies usually carried out on such devices mainly focus on their electrical characteristics induced by direct piezoelectric effects such as voltage gain, efficiency or supplied power. In this work, we are particularly interested in the characterization of mechanical displacements induced by the inverse piezoelectric effect in a PT in vibration. For this purpose, a detailed three-dimensional finite element analysis is proposed to examine the mechanical behavior of a Rosen-type transformer made of a single bar of soft PZT (P191) and with dimensions 22mm×2.35mm×2.5mm. At the first three modes of vibration, output voltage and mechanical displacements ux, uy and uz along the length, the width and the thickness, respectively, are calculated. The amplitude of displacements varies in a range from a few nanometers to a few hundred nanometers. The validity of the simulations was successfully confirmed by experiments carried out on a prototype using a laser interferometer. A good match was observed between simulation and experimental results, especially for us at the second mode. Such 3D simulations thus appear as a helpful tool for a better understanding of mechanical phenomena in Rosen-type PT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title="piezoelectricity">piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=gain" title=" gain"> gain</a>, <a href="https://publications.waset.org/abstracts/search?q=dispalcement" title=" dispalcement"> dispalcement</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a> </p> <a href="https://publications.waset.org/abstracts/190170/numerical-simulation-and-experimental-verification-of-mechanical-displacements-in-piezoelectric-transformer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1633</span> Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byl%20Farney%20Cunha%20Junior">Byl Farney Cunha Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20wind" title=" synthetic wind"> synthetic wind</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20building" title=" shear building"> shear building</a> </p> <a href="https://publications.waset.org/abstracts/64989/dynamic-wind-effects-in-tall-buildings-a-comparative-study-of-synthetic-wind-and-brazilian-wind-standard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1632</span> Medical Image Classification Using Legendre Multifractal Spectrum Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Korchiyne">R. Korchiyne</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sbihi"> A. Sbihi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Farssi"> S. M. Farssi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Touahni"> R. Touahni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tahiri%20Alaoui"> M. Tahiri Alaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trabecular bone structure is important texture in the study of osteoporosis. Legendre multifractal spectrum can reflect the complex and self-similarity characteristic of structures. The main objective of this paper is to develop a new technique of medical image classification based on Legendre multifractal spectrum. Novel features have been developed from basic geometrical properties of this spectrum in a supervised image classification. The proposed method has been successfully used to classify medical images of bone trabeculations, and could be a useful supplement to the clinical observations for osteoporosis diagnosis. A comparative study with existing data reveals that the results of this approach are concordant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multifractal%20analysis" title="multifractal analysis">multifractal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image" title=" medical image"> medical image</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=Legendre%20spectrum" title=" Legendre spectrum"> Legendre spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classification" title=" supervised classification"> supervised classification</a> </p> <a href="https://publications.waset.org/abstracts/15795/medical-image-classification-using-legendre-multifractal-spectrum-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1631</span> An Intelligent Cloud Radio Access Network (RAN) Architecture for Future 5G Heterogeneous Wireless Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Xu">Jin Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 5G network developers need to satisfy the necessary requirements of additional capacity from massive users and spectrally efficient wireless technologies. Therefore, the significant amount of underutilized spectrum in network is motivating operators to combine long-term evolution (LTE) with intelligent spectrum management technology. This new LTE intelligent spectrum management in unlicensed band (LTE-U) has the physical layer topology to access spectrum, specifically the 5-GHz band. We proposed a new intelligent cloud RAN for 5G. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20radio%20access%20network" title="cloud radio access network">cloud radio access network</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20network" title=" wireless network"> wireless network</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a> </p> <a href="https://publications.waset.org/abstracts/50489/an-intelligent-cloud-radio-access-network-ran-architecture-for-future-5g-heterogeneous-wireless-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1630</span> An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daehyoung%20Kim">Daehyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Pervez%20Khan"> Pervez Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Kim"> Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sharing" title="spectrum sharing">spectrum sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20opportunistic%20transmission" title=" adaptive opportunistic transmission"> adaptive opportunistic transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=unlicensed%20bands" title=" unlicensed bands"> unlicensed bands</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20networks" title=" heterogeneous networks"> heterogeneous networks</a> </p> <a href="https://publications.waset.org/abstracts/51830/an-adaptive-opportunistic-transmission-for-unlicensed-spectrum-sharing-in-heterogeneous-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1629</span> Symbolic Analysis of Power Spectrum of CMOS Cross Couple Oscillator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes for the first time symbolic formula of the power spectrum of cross couple oscillator and its modified circuit. Many principle existed to derived power spectrum in microwave textbook such as impedance, admittance parameters, ABCD, H parameters, etc. It can be compared by graph of power spectrum which methodology is the best from the point of view of practical measurement setup such as condition of impedance parameter which used superposition of current to derived (its current injection of the other port of the circuit is zero, which is impossible in reality). Four Graphs of impedance parameters of cross couple oscillator is proposed. After that four graphs of Scattering parameters of cross couple oscillator will be shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectrum" title=" power spectrum"> power spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20parameters" title=" impedance parameters"> impedance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20parameter" title=" scattering parameter"> scattering parameter</a> </p> <a href="https://publications.waset.org/abstracts/36614/symbolic-analysis-of-power-spectrum-of-cmos-cross-couple-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1628</span> Kinetic Alfvén Wave Localization and Turbulent Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anju%20Kumari">Anju Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The localization of Kinetic Alfvén Wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. KAW breaks up into localized large amplitude structures when perturbed by MHD fluctuations of the medium which are in the form of magnetosonic waves. Numerical simulation has been performed to analyse the localized structures and resulting turbulent spectrum of KAW applicable to magnetopause. Simulation results reveal that power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. The obtained results are compared with observations collected from the THEMIS spacecraft in magnetopause. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinetic%20Alfv%C3%A9n%20Wave%20%28KAW%29" title="Kinetic Alfvén Wave (KAW)">Kinetic Alfvén Wave (KAW)</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20spectrum" title=" turbulent spectrum"> turbulent spectrum</a> </p> <a href="https://publications.waset.org/abstracts/14702/kinetic-alfven-wave-localization-and-turbulent-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1627</span> Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Kolev">Boris Kolev</a>, <a href="https://publications.waset.org/abstracts/search?q=Matt%20Kokan"> Matt Kokan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Deriszadeh"> Mohammad Deriszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Bateni"> Farshid Bateni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20excavations" title="deep excavations">deep excavations</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20displacements" title=" lateral displacements"> lateral displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shoring%20walls" title=" shoring walls"> shoring walls</a>, <a href="https://publications.waset.org/abstracts/search?q=tieback%20anchors" title=" tieback anchors"> tieback anchors</a> </p> <a href="https://publications.waset.org/abstracts/133141/evaluation-of-deformation-for-deep-excavations-in-the-greater-vancouver-area-through-case-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10