CINXE.COM

Fractional calculus - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Fractional calculus - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c28ad5b5-6b3a-47bd-9384-81b25dcc7009","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Fractional_calculus","wgTitle":"Fractional calculus","wgCurRevisionId":1259125319,"wgRevisionId":1259125319,"wgArticleId":229939,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All pages needing factual verification","Wikipedia articles needing factual verification from July 2020","CS1 errors: periodical ignored","CS1: long volume value","Articles with short description","Short description matches Wikidata","Pages using sidebar with the child parameter","All articles with unsourced statements","Articles with unsourced statements from November 2020","Articles with unsourced statements from November 2022", "Wikipedia articles needing clarification from January 2017","Fractional calculus","Generalizations"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Fractional_calculus","wgRelevantArticleId":229939,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1339058","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"}; RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Fractional calculus - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Fractional_calculus"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Fractional_calculus&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Fractional_calculus"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Fractional_calculus rootpage-Fractional_calculus skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Fractional+calculus" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Fractional+calculus" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Fractional+calculus" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Fractional+calculus" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Historical_notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Historical_notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Historical notes</span> </div> </a> <ul id="toc-Historical_notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computing_the_fractional_integral" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computing_the_fractional_integral"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Computing the fractional integral</span> </div> </a> <button aria-controls="toc-Computing_the_fractional_integral-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computing the fractional integral subsection</span> </button> <ul id="toc-Computing_the_fractional_integral-sublist" class="vector-toc-list"> <li id="toc-Riemann–Liouville_fractional_integral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemann–Liouville_fractional_integral"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Riemann–Liouville fractional integral</span> </div> </a> <ul id="toc-Riemann–Liouville_fractional_integral-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hadamard_fractional_integral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hadamard_fractional_integral"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Hadamard fractional integral</span> </div> </a> <ul id="toc-Hadamard_fractional_integral-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Atangana–Baleanu_fractional_integral_(AB_fractional_integral)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Atangana–Baleanu_fractional_integral_(AB_fractional_integral)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Atangana–Baleanu fractional integral (AB fractional integral)</span> </div> </a> <ul id="toc-Atangana–Baleanu_fractional_integral_(AB_fractional_integral)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fractional_derivatives" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Fractional_derivatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Fractional derivatives</span> </div> </a> <button aria-controls="toc-Fractional_derivatives-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Fractional derivatives subsection</span> </button> <ul id="toc-Fractional_derivatives-sublist" class="vector-toc-list"> <li id="toc-Riemann–Liouville_fractional_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemann–Liouville_fractional_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Riemann–Liouville fractional derivative</span> </div> </a> <ul id="toc-Riemann–Liouville_fractional_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Caputo_fractional_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Caputo_fractional_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Caputo fractional derivative</span> </div> </a> <ul id="toc-Caputo_fractional_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Caputo–Fabrizio_fractional_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Caputo–Fabrizio_fractional_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Caputo–Fabrizio fractional derivative</span> </div> </a> <ul id="toc-Caputo–Fabrizio_fractional_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Atangana–Baleanu_fractional_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Atangana–Baleanu_fractional_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Atangana–Baleanu fractional derivative</span> </div> </a> <ul id="toc-Atangana–Baleanu_fractional_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riesz_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riesz_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Riesz derivative</span> </div> </a> <ul id="toc-Riesz_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_types" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Other types</span> </div> </a> <ul id="toc-Other_types-sublist" class="vector-toc-list"> <li id="toc-Coimbra_derivative" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Coimbra_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.1</span> <span>Coimbra derivative</span> </div> </a> <ul id="toc-Coimbra_derivative-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Nature_of_the_fractional_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nature_of_the_fractional_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Nature of the fractional derivative</span> </div> </a> <ul id="toc-Nature_of_the_fractional_derivative-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-Erdélyi–Kober_operator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Erdélyi–Kober_operator"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Erdélyi–Kober operator</span> </div> </a> <ul id="toc-Erdélyi–Kober_operator-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Functional_calculus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Functional_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Functional calculus</span> </div> </a> <ul id="toc-Functional_calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Fractional_conservation_of_mass" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fractional_conservation_of_mass"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Fractional conservation of mass</span> </div> </a> <ul id="toc-Fractional_conservation_of_mass-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrochemical_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrochemical_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Electrochemical analysis</span> </div> </a> <ul id="toc-Electrochemical_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Groundwater_flow_problem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Groundwater_flow_problem"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Groundwater flow problem</span> </div> </a> <ul id="toc-Groundwater_flow_problem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fractional_advection_dispersion_equation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fractional_advection_dispersion_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Fractional advection dispersion equation</span> </div> </a> <ul id="toc-Fractional_advection_dispersion_equation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time-space_fractional_diffusion_equation_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time-space_fractional_diffusion_equation_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Time-space fractional diffusion equation models</span> </div> </a> <ul id="toc-Time-space_fractional_diffusion_equation_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Structural_damping_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Structural_damping_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Structural damping models</span> </div> </a> <ul id="toc-Structural_damping_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-PID_controllers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#PID_controllers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.7</span> <span>PID controllers</span> </div> </a> <ul id="toc-PID_controllers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Acoustic_wave_equations_for_complex_media" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Acoustic_wave_equations_for_complex_media"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.8</span> <span>Acoustic wave equations for complex media</span> </div> </a> <ul id="toc-Acoustic_wave_equations_for_complex_media-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fractional_Schrödinger_equation_in_quantum_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fractional_Schrödinger_equation_in_quantum_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.9</span> <span>Fractional Schrödinger equation in quantum theory</span> </div> </a> <ul id="toc-Fractional_Schrödinger_equation_in_quantum_theory-sublist" class="vector-toc-list"> <li id="toc-Variable-order_fractional_Schrödinger_equation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Variable-order_fractional_Schrödinger_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.9.1</span> <span>Variable-order fractional Schrödinger equation</span> </div> </a> <ul id="toc-Variable-order_fractional_Schrödinger_equation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Other_fractional_theories" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_fractional_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Other fractional theories</span> </div> </a> <ul id="toc-Other_fractional_theories-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Articles_regarding_the_history_of_fractional_calculus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Articles_regarding_the_history_of_fractional_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Articles regarding the history of fractional calculus</span> </div> </a> <ul id="toc-Articles_regarding_the_history_of_fractional_calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Books" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Books"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Books</span> </div> </a> <ul id="toc-Books-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Fractional calculus</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 16 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-16" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">16 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D8%B6%D9%84_%D9%88%D8%AA%D9%83%D8%A7%D9%85%D9%84_%D9%83%D8%B3%D8%B1%D9%8A" title="تفاضل وتكامل كسري – Arabic" lang="ar" hreflang="ar" data-title="تفاضل وتكامل كسري" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Fraktionale_Infinitesimalrechnung" title="Fraktionale Infinitesimalrechnung – German" lang="de" hreflang="de" data-title="Fraktionale Infinitesimalrechnung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Murruline_diferentsiaal-_ja_integraalarvutus" title="Murruline diferentsiaal- ja integraalarvutus – Estonian" lang="et" hreflang="et" data-title="Murruline diferentsiaal- ja integraalarvutus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/C%C3%A1lculo_fraccional" title="Cálculo fraccional – Spanish" lang="es" hreflang="es" data-title="Cálculo fraccional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%DA%A9%D8%B3%D8%B1%DB%8C" title="حساب کسری – Persian" lang="fa" hreflang="fa" data-title="حساب کسری" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Analyse_fractionnaire" title="Analyse fractionnaire – French" lang="fr" hreflang="fr" data-title="Analyse fractionnaire" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B6%84%EC%88%98%EA%B3%84_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="분수계 미적분학 – Korean" lang="ko" hreflang="ko" data-title="분수계 미적분학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AD%E0%A4%BF%E0%A4%A8%E0%A5%8D%E0%A4%A8%E0%A4%BE%E0%A4%A4%E0%A5%8D%E0%A4%AE%E0%A4%95_%E0%A4%95%E0%A4%B2%E0%A4%A8" title="भिन्नात्मक कलन – Hindi" lang="hi" hreflang="hi" data-title="भिन्नात्मक कलन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Calcolo_frazionario" title="Calcolo frazionario – Italian" lang="it" hreflang="it" data-title="Calcolo frazionario" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%A9%D7%91%D7%95%D7%9F_%D7%90%D7%99%D7%A0%D7%A4%D7%99%D7%A0%D7%99%D7%98%D7%A1%D7%99%D7%9E%D7%9C%D7%99_%D7%A9%D7%91%D7%A8%D7%99" title="חשבון אינפיניטסימלי שברי – Hebrew" lang="he" hreflang="he" data-title="חשבון אינפיניטסימלי שברי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%88%86%E6%95%B0%E9%9A%8E%E5%BE%AE%E7%A9%8D%E5%88%86%E5%AD%A6" title="分数階微積分学 – Japanese" lang="ja" hreflang="ja" data-title="分数階微積分学" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pochodna_u%C5%82amkowa" title="Pochodna ułamkowa – Polish" lang="pl" hreflang="pl" data-title="Pochodna ułamkowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/C%C3%A1lculo_fracion%C3%A1rio" title="Cálculo fracionário – Portuguese" lang="pt" hreflang="pt" data-title="Cálculo fracionário" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Kesirli_analiz" title="Kesirli analiz – Turkish" lang="tr" hreflang="tr" data-title="Kesirli analiz" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D1%80%D0%BE%D0%B1%D0%BE%D0%B2%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F" title="Дробове числення – Ukrainian" lang="uk" hreflang="uk" data-title="Дробове числення" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%88%86%E6%95%B0%E5%BE%AE%E7%A7%AF%E5%88%86" title="分数微积分 – Chinese" lang="zh" hreflang="zh" data-title="分数微积分" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1339058#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Fractional_calculus" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Fractional_calculus" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Fractional_calculus"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Fractional_calculus"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Fractional_calculus" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Fractional_calculus" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;oldid=1259125319" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Fractional_calculus&amp;id=1259125319&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFractional_calculus"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFractional_calculus"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Fractional_calculus&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Fractional_calculus&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1339058" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Branch of mathematical analysis with fractional applications of derivatives and integrals</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For the associated operator, see <a href="/wiki/Differintegral" title="Differintegral">differintegral</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-bottom:0.25em;"><a href="/wiki/Calculus" title="Calculus">Calculus</a></th></tr><tr><td class="sidebar-image"><big><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17d063dc86a53a2efb1fe86f4a5d47d498652766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.228ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f&#039;(t)\,dt=f(b)-f(a)}"></span></big></td></tr><tr><td class="sidebar-above" style="padding:0.15em 0.25em 0.3em;font-weight:normal;"> <ul><li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limits</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuity</a></li></ul> </div><div class="hlist"> <ul><li><a href="/wiki/Rolle%27s_theorem" title="Rolle&#39;s theorem">Rolle's theorem</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a></li></ul> </div></td></tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base);display:block;margin-top:0.65em;"><span style="font-size:120%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a>&#160;(<a href="/wiki/Generalizations_of_the_derivative" title="Generalizations of the derivative">generalizations</a>)</li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a> <ul><li><a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">infinitesimal</a></li> <li><a href="/wiki/Differential_of_a_function" title="Differential of a function">of a function</a></li> <li><a href="/wiki/Differential_of_a_function#Differentials_in_several_variables" title="Differential of a function">total</a></li></ul></li></ul></td> </tr><tr><th class="sidebar-heading"> Concepts</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Differentiation notation</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Implicit_function" title="Implicit function">Implicit differentiation</a></li> <li><a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">Logarithmic differentiation</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor&#39;s theorem">Taylor's theorem</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules and identities</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L&#39;Hôpital&#39;s rule">L'Hôpital's rule</a></li> <li><a href="/wiki/Inverse_function_rule" title="Inverse function rule">Inverse</a></li> <li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz</a></li> <li><a href="/wiki/Fa%C3%A0_di_Bruno%27s_formula" title="Faà di Bruno&#39;s formula">Faà di Bruno's formula</a></li> <li><a href="/wiki/Reynolds_transport_theorem" title="Reynolds transport theorem">Reynolds</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Integral" title="Integral">Integral</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Leibniz integral rule</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a>&#160;(<a href="/wiki/Improper_integral" title="Improper integral">improper</a>)</li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Contour_integration" title="Contour integration">Contour integration</a></li> <li><a href="/wiki/Integral_of_inverse_functions" title="Integral of inverse functions">Integral of inverse functions</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Integration by</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Integration_by_parts" title="Integration by parts">Parts</a></li> <li><a href="/wiki/Disc_integration" title="Disc integration">Discs</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Cylindrical shells</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a>&#160;(<a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a>, <a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">tangent half-angle</a>, <a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a>)</li> <li><a href="/wiki/Integration_using_Euler%27s_formula" title="Integration using Euler&#39;s formula">Euler's formula</a></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions</a> (<a href="/wiki/Heaviside_cover-up_method" title="Heaviside cover-up method">Heaviside's method</a>)</li> <li><a href="/wiki/Order_of_integration_(calculus)" title="Order of integration (calculus)">Changing order</a></li> <li><a href="/wiki/Integration_by_reduction_formulae" title="Integration by reduction formulae">Reduction formulae</a></li> <li><a href="/wiki/Leibniz_integral_rule#Evaluating_definite_integrals" title="Leibniz integral rule">Differentiating under the integral sign</a></li> <li><a href="/wiki/Risch_algorithm" title="Risch algorithm">Risch algorithm</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a>&#160;(<a href="/wiki/Arithmetico%E2%80%93geometric_sequence" class="mw-redirect" title="Arithmetico–geometric sequence">arithmetico-geometric</a>)</li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Convergence_tests" title="Convergence tests">Convergence tests</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Summand limit (term test)</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><br /><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet&#39;s test">Dirichlet</a></li> <li><a href="/wiki/Abel%27s_test" title="Abel&#39;s test">Abel</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Vector_calculus_identities" title="Vector calculus identities">Identities</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Theorems</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient_theorem" title="Gradient theorem">Gradient</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green&#39;s theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">generalized Stokes</a></li> <li><a href="/wiki/Helmholtz_decomposition" title="Helmholtz decomposition">Helmholtz decomposition</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Formalisms</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Advanced</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Calculus_on_Euclidean_space" title="Calculus on Euclidean space">Calculus on Euclidean space</a></li> <li><a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a></li> <li><a href="/wiki/Limit_of_distributions" title="Limit of distributions">Limit of distributions</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Specialized</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a class="mw-selflink selflink">Fractional</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin</a></li> <li><a href="/wiki/Stochastic_calculus" title="Stochastic calculus">Stochastic</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Variations</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Miscellanea</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">History</a></li> <li><a href="/wiki/Glossary_of_calculus" title="Glossary of calculus">Glossary</a></li> <li><a href="/wiki/List_of_calculus_topics" title="List of calculus topics">List of topics</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Mathematical analysis</a></li> <li><a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">Nonstandard analysis</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus" title="Template:Calculus"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus" title="Template talk:Calculus"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus" title="Special:EditPage/Template:Calculus"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Fractional calculus</b> is a branch of <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> that studies the several different possibilities of defining <a href="/wiki/Real_number" title="Real number">real number</a> powers or <a href="/wiki/Complex_number" title="Complex number">complex number</a> powers of the <a href="/wiki/Derivative" title="Derivative">differentiation</a> <a href="/wiki/Operator_(mathematics)" title="Operator (mathematics)">operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Df(x)={\frac {d}{dx}}f(x)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Df(x)={\frac {d}{dx}}f(x)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd1c59da7454059970283a77a9a765100ce6a1f1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.273ex; height:5.509ex;" alt="{\displaystyle Df(x)={\frac {d}{dx}}f(x)\,,}"></span> </p><p>and of the <a href="/wiki/Integral" title="Integral">integration</a> operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> <sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>Note 1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Jf(x)=\int _{0}^{x}f(s)\,ds\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Jf(x)=\int _{0}^{x}f(s)\,ds\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d39490673c02687cc2d3df07b164dcca9636018" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.917ex; height:5.843ex;" alt="{\displaystyle Jf(x)=\int _{0}^{x}f(s)\,ds\,,}"></span> </p><p>and developing a <a href="/wiki/Calculus" title="Calculus">calculus</a> for such operators generalizing the classical one. </p><p>In this context, the term <i>powers</i> refers to iterative application of a <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> to a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>,</span> that is, repeatedly <a href="/wiki/Function_composition" title="Function composition">composing</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> with itself, as in <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}D^{n}(f)&amp;=(\underbrace {D\circ D\circ D\circ \cdots \circ D} _{n})(f)\\&amp;=\underbrace {D(D(D(\cdots D} _{n}(f)\cdots ))).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>D</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>D</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>D</mi> <mo>&#x2218;<!-- ∘ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2218;<!-- ∘ --></mo> <mi>D</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>D</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">(</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>D</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}D^{n}(f)&amp;=(\underbrace {D\circ D\circ D\circ \cdots \circ D} _{n})(f)\\&amp;=\underbrace {D(D(D(\cdots D} _{n}(f)\cdots ))).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02e6ee53a72e5ef49af5ad57ec7ea2ad0453d184" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:34.177ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}D^{n}(f)&amp;=(\underbrace {D\circ D\circ D\circ \cdots \circ D} _{n})(f)\\&amp;=\underbrace {D(D(D(\cdots D} _{n}(f)\cdots ))).\end{aligned}}}"></span> </p><p>For example, one may ask for a meaningful interpretation of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {D}}=D^{\scriptstyle {\frac {1}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>D</mi> </msqrt> </mrow> <mo>=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {D}}=D^{\scriptstyle {\frac {1}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1448413c33ca0cbd5b40f11df0587cdd13b4320b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.619ex; height:3.843ex;" alt="{\displaystyle {\sqrt {D}}=D^{\scriptstyle {\frac {1}{2}}}}"></span> </p><p>as an analogue of the <a href="/wiki/Functional_square_root" title="Functional square root">functional square root</a> for the differentiation operator, that is, an expression for some linear operator that, when applied <em>twice</em> to any function, will have the same effect as <a href="/wiki/Derivative" title="Derivative">differentiation</a>. More generally, one can look at the question of defining a linear operator <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11984b2968ff1326b343a3401db1c5af97cfe92" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.026ex; height:2.343ex;" alt="{\displaystyle D^{a}}"></span> </p><p>for every real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> in such a way that, when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> takes an <a href="/wiki/Integer" title="Integer">integer</a> value <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c1cf6a513f2062531d95dbb198944936f312982" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.786ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {Z} }"></span>,</span> it coincides with the usual <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-fold</span> differentiation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> if <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;0}"></span>,</span> and with the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-th</span> power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> when <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad9f68fb8426c4411972241aac6c359e7812eaba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&lt;0}"></span>.</span> </p><p>One of the motivations behind the introduction and study of these sorts of extensions of the differentiation operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is that the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a> of operator powers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{D^{a}\mid a\in \mathbb {R} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2223;<!-- ∣ --></mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{D^{a}\mid a\in \mathbb {R} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82ddd07e3e3cebebecbe6fd8759a86c5b6e19573" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.037ex; height:2.843ex;" alt="{\displaystyle \{D^{a}\mid a\in \mathbb {R} \}}"></span> defined in this way are <i>continuous</i> <a href="/wiki/Semigroup" title="Semigroup">semigroups</a> with parameter <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>,</span> of which the original <i>discrete</i> semigroup of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{D^{n}\mid n\in \mathbb {Z} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2223;<!-- ∣ --></mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{D^{n}\mid n\in \mathbb {Z} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7103633b3d6d0991222294fbdae4ab5ace36e85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.191ex; height:2.843ex;" alt="{\displaystyle \{D^{n}\mid n\in \mathbb {Z} \}}"></span> for integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is a <a href="/wiki/Denumerable_set" class="mw-redirect" title="Denumerable set">denumerable</a> subgroup: since continuous semigroups have a well developed mathematical theory, they can be applied to other branches of mathematics. </p><p>Fractional <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a>, also known as extraordinary differential equations,<sup id="cite_ref-Zwillinger2014_2-0" class="reference"><a href="#cite_note-Zwillinger2014-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> are a generalization of differential equations through the application of fractional calculus. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Historical_notes">Historical notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=1" title="Edit section: Historical notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a> and mathematical analysis, a <b>fractional derivative</b> is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to <a href="/wiki/Guillaume_de_l%27H%C3%B4pital" title="Guillaume de l&#39;Hôpital">Guillaume de l'Hôpital</a> by <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a> in 1695.<sup id="cite_ref-Derivative_3-0" class="reference"><a href="#cite_note-Derivative-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> &#160;Around the same time, Leibniz wrote to one of the Bernoulli brothers describing the similarity between the binomial theorem and the Leibniz rule for the fractional derivative of a product of two functions.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2020)">citation needed</span></a></i>&#93;</sup> </p><p>Fractional calculus was introduced in one of <a href="/wiki/Niels_Henrik_Abel" title="Niels Henrik Abel">Niels Henrik Abel</a>'s early papers<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized operation, and the unified notation for differentiation and integration of arbitrary real order.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Independently, the foundations of the subject were laid by <a href="/wiki/Liouville" class="mw-redirect" title="Liouville">Liouville</a> in a paper from 1832.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a> introduced the practical use of <a href="/wiki/Operational_calculus" title="Operational calculus">fractional differential operators</a> in electrical transmission line analysis circa 1890.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> The theory and applications of fractional calculus expanded greatly over the 19th and 20th centuries, and numerous contributors have given different definitions for fractional derivatives and integrals.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Computing_the_fractional_integral">Computing the fractional integral</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=2" title="Edit section: Computing the fractional integral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>f</i>(<i>x</i>)</span> be a function defined for <span class="texhtml"><i>x</i> &gt; 0</span>. Form the definite integral from 0 to <span class="texhtml mvar" style="font-style:italic;">x</span>. Call this <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Jf)(x)=\int _{0}^{x}f(t)\,dt\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>J</mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Jf)(x)=\int _{0}^{x}f(t)\,dt\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a39a447696b8ce70c8cd8600133f878116656b9f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.224ex; height:5.843ex;" alt="{\displaystyle (Jf)(x)=\int _{0}^{x}f(t)\,dt\,.}"></span> </p><p>Repeating this process gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(J^{2}f\right)(x)&amp;=\int _{0}^{x}(Jf)(t)\,dt\\&amp;=\int _{0}^{x}\left(\int _{0}^{t}f(s)\,ds\right)dt\,,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>J</mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left(J^{2}f\right)(x)&amp;=\int _{0}^{x}(Jf)(t)\,dt\\&amp;=\int _{0}^{x}\left(\int _{0}^{t}f(s)\,ds\right)dt\,,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a28fbaeefa4ad370d51343035834f136c43f7ae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.342ex; margin-bottom: -0.329ex; width:34.835ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}\left(J^{2}f\right)(x)&amp;=\int _{0}^{x}(Jf)(t)\,dt\\&amp;=\int _{0}^{x}\left(\int _{0}^{t}f(s)\,ds\right)dt\,,\end{aligned}}}"></span> </p><p>and this can be extended arbitrarily. </p><p>The <a href="/wiki/Cauchy_formula_for_repeated_integration" title="Cauchy formula for repeated integration">Cauchy formula for repeated integration</a>, namely <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(J^{n}f\right)(x)={\frac {1}{(n-1)!}}\int _{0}^{x}\left(x-t\right)^{n-1}f(t)\,dt\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(J^{n}f\right)(x)={\frac {1}{(n-1)!}}\int _{0}^{x}\left(x-t\right)^{n-1}f(t)\,dt\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec1fc6e89735bb0e11e01f2255bb03522bd5a5c4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.099ex; height:6.176ex;" alt="{\displaystyle \left(J^{n}f\right)(x)={\frac {1}{(n-1)!}}\int _{0}^{x}\left(x-t\right)^{n-1}f(t)\,dt\,,}"></span> leads in a straightforward way to a generalization for real <span class="texhtml mvar" style="font-style:italic;">n</span>: using the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a> to remove the discrete nature of the factorial function gives us a natural candidate for applications of the fractional integral operator as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(J^{\alpha }f\right)(x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}\left(x-t\right)^{\alpha -1}f(t)\,dt\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(J^{\alpha }f\right)(x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}\left(x-t\right)^{\alpha -1}f(t)\,dt\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b50d2a48f75b14dda93d1d832b64169eedc4197" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.127ex; height:6.176ex;" alt="{\displaystyle \left(J^{\alpha }f\right)(x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}\left(x-t\right)^{\alpha -1}f(t)\,dt\,.}"></span> </p><p>This is in fact a well-defined operator. </p><p>It is straightforward to show that the <span class="texhtml mvar" style="font-style:italic;">J</span> operator satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;=\left(J^{\beta }\right)\left(J^{\alpha }f\right)(x)\\&amp;=\left(J^{\alpha +\beta }f\right)(x)\\&amp;={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-t\right)^{\alpha +\beta -1}f(t)\,dt\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;=\left(J^{\beta }\right)\left(J^{\alpha }f\right)(x)\\&amp;=\left(J^{\alpha +\beta }f\right)(x)\\&amp;={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-t\right)^{\alpha +\beta -1}f(t)\,dt\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb5b3a3987bdf4997bb9ff0e5ed77be1725f0223" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:52.488ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;=\left(J^{\beta }\right)\left(J^{\alpha }f\right)(x)\\&amp;=\left(J^{\alpha +\beta }f\right)(x)\\&amp;={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-t\right)^{\alpha +\beta -1}f(t)\,dt\,.\end{aligned}}}"></span> </p> <style data-mw-deduplicate="TemplateStyles:r1256386598">.mw-parser-output .cot-header-mainspace{background:#F0F2F5;color:inherit}.mw-parser-output .cot-header-other{background:#CCFFCC;color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-night .mw-parser-output .cot-header-other{background:#003500;color:inherit}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-os .mw-parser-output .cot-header-other{background:#003500;color:inherit}}</style> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Proof of this identity</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}(x-t)^{\alpha -1}\left(J^{\beta }f\right)(t)\,dt\\&amp;={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\int _{0}^{t}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}f(s)\,ds\,dt\\&amp;={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}f(s)\left(\int _{s}^{x}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}\,dt\right)\,ds\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}(x-t)^{\alpha -1}\left(J^{\beta }f\right)(t)\,dt\\&amp;={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\int _{0}^{t}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}f(s)\,ds\,dt\\&amp;={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}f(s)\left(\int _{s}^{x}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}\,dt\right)\,ds\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d341e8a5e8e65cc98fb84efbdb6bbeba32235fd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.768ex; margin-bottom: -0.237ex; width:70.673ex; height:19.176ex;" alt="{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}(x-t)^{\alpha -1}\left(J^{\beta }f\right)(t)\,dt\\&amp;={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\int _{0}^{t}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}f(s)\,ds\,dt\\&amp;={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}f(s)\left(\int _{s}^{x}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}\,dt\right)\,ds\end{aligned}}}"></span> </p><p>where in the last step we exchanged the order of integration and pulled out the <span class="texhtml"><i>f</i>(<i>s</i>)</span> factor from the <span class="texhtml mvar" style="font-style:italic;">t</span> integration. </p><p>Changing variables to <span class="texhtml mvar" style="font-style:italic;">r</span> defined by <span class="texhtml"><i>t</i> = <i>s</i> + (<i>x</i> − <i>s</i>)<i>r</i></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\left(\int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr\right)\,ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\left(\int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr\right)\,ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc4e762156b4241d765e6042946c170fb8dc34b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:77.198ex; height:6.509ex;" alt="{\displaystyle \left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\left(\int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr\right)\,ds}"></span> </p><p>The inner integral is the <a href="/wiki/Beta_function" title="Beta function">beta function</a> which satisfies the following property: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr=B(\alpha ,\beta )={\frac {\Gamma (\alpha )\,\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>r</mi> <mo>=</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr=B(\alpha ,\beta )={\frac {\Gamma (\alpha )\,\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d7ce1da3589b058ffc6876da2ef32089fdc775" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:45.317ex; height:6.509ex;" alt="{\displaystyle \int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr=B(\alpha ,\beta )={\frac {\Gamma (\alpha )\,\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}"></span> </p><p>Substituting back into the equation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\,ds\\&amp;=\left(J^{\alpha +\beta }f\right)(x)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\,ds\\&amp;=\left(J^{\alpha +\beta }f\right)(x)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/900cdbb1b27cddc46aefff3fe284d412fd0321ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:52.207ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&amp;={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\,ds\\&amp;=\left(J^{\alpha +\beta }f\right)(x)\end{aligned}}}"></span> </p><p>Interchanging <span class="texhtml mvar" style="font-style:italic;">α</span> and <span class="texhtml mvar" style="font-style:italic;">β</span> shows that the order in which the <span class="texhtml mvar" style="font-style:italic;">J</span> operator is applied is irrelevant and completes the proof. </p> </td></tr></tbody></table></div> <p>This relationship is called the semigroup property of fractional <a href="/wiki/Differintegral" title="Differintegral">differintegral</a> operators. </p> <div class="mw-heading mw-heading3"><h3 id="Riemann–Liouville_fractional_integral"><span id="Riemann.E2.80.93Liouville_fractional_integral"></span>Riemann–Liouville fractional integral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=3" title="Edit section: Riemann–Liouville fractional integral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The classical form of fractional calculus is given by the <a href="/wiki/Riemann%E2%80%93Liouville_integral" title="Riemann–Liouville integral">Riemann–Liouville integral</a>, which is essentially what has been described above. The theory of fractional integration for <a href="/wiki/Periodic_function" title="Periodic function">periodic functions</a> (therefore including the "boundary condition" of repeating after a period) is given by the <a href="/wiki/Weyl_integral" title="Weyl integral">Weyl integral</a>. It is defined on <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>, and requires the constant Fourier coefficient to vanish (thus, it applies to functions on the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> whose integrals evaluate to zero). The Riemann–Liouville integral exists in two forms, upper and lower. Considering the interval <span class="texhtml">&#91;<i>a</i>,<i>b</i>&#93;</span>, the integrals are defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{-\alpha }}Df(t)&amp;=\sideset {_{a}}{_{t}^{\alpha }}If(t)\\&amp;={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau \\\sideset {_{t}}{_{b}^{-\alpha }}Df(t)&amp;=\sideset {_{t}}{_{b}^{\alpha }}If(t)\\&amp;={\frac {1}{\Gamma (\alpha )}}\int _{t}^{b}\left(\tau -t\right)^{\alpha -1}f(\tau )\,d\tau \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>I</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>I</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{-\alpha }}Df(t)&amp;=\sideset {_{a}}{_{t}^{\alpha }}If(t)\\&amp;={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau \\\sideset {_{t}}{_{b}^{-\alpha }}Df(t)&amp;=\sideset {_{t}}{_{b}^{\alpha }}If(t)\\&amp;={\frac {1}{\Gamma (\alpha )}}\int _{t}^{b}\left(\tau -t\right)^{\alpha -1}f(\tau )\,d\tau \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdb153742f9f7427df87cc3696cf830833982eb2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.338ex; width:40.299ex; height:19.843ex;" alt="{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{-\alpha }}Df(t)&amp;=\sideset {_{a}}{_{t}^{\alpha }}If(t)\\&amp;={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau \\\sideset {_{t}}{_{b}^{-\alpha }}Df(t)&amp;=\sideset {_{t}}{_{b}^{\alpha }}If(t)\\&amp;={\frac {1}{\Gamma (\alpha )}}\int _{t}^{b}\left(\tau -t\right)^{\alpha -1}f(\tau )\,d\tau \end{aligned}}}"></span> </p><p>Where the former is valid for <span class="texhtml"><i>t</i> &gt; <i>a</i></span> and the latter is valid for <span class="texhtml"><i>t</i> &lt; <i>b</i></span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>It has been suggested<sup id="cite_ref-Mainardi_12-0" class="reference"><a href="#cite_note-Mainardi-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> that the integral on the positive real axis (i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90d476e5e765a5d77bbcff32e4584579207ec7d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=0}"></span>) would be more appropriately named the Abel–Riemann integral, on the basis of history of discovery and use, and in the same vein the integral over the entire real line be named Liouville–Weyl integral. </p><p>By contrast the <a href="/wiki/Gr%C3%BCnwald%E2%80%93Letnikov_derivative" title="Grünwald–Letnikov derivative">Grünwald–Letnikov derivative</a> starts with the derivative instead of the integral. </p> <div class="mw-heading mw-heading3"><h3 id="Hadamard_fractional_integral">Hadamard fractional integral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=4" title="Edit section: Hadamard fractional integral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>Hadamard fractional integral</i> was introduced by <a href="/wiki/Jacques_Hadamard" title="Jacques Hadamard">Jacques Hadamard</a><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> and is given by the following formula, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sideset {_{a}}{_{t}^{-\alpha }}{\mathbf {D} }f(t)={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(\log {\frac {t}{\tau }}\right)^{\alpha -1}f(\tau ){\frac {d\tau }{\tau }},\qquad t&gt;a\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mi>&#x03C4;<!-- τ --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mi>&#x03C4;<!-- τ --></mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>t</mi> <mo>&gt;</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sideset {_{a}}{_{t}^{-\alpha }}{\mathbf {D} }f(t)={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(\log {\frac {t}{\tau }}\right)^{\alpha -1}f(\tau ){\frac {d\tau }{\tau }},\qquad t&gt;a\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/022f1350040ca31ff704e2809eeac34a1c216ea8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:54.018ex; height:6.676ex;" alt="{\displaystyle \sideset {_{a}}{_{t}^{-\alpha }}{\mathbf {D} }f(t)={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(\log {\frac {t}{\tau }}\right)^{\alpha -1}f(\tau ){\frac {d\tau }{\tau }},\qquad t&gt;a\,.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Atangana–Baleanu_fractional_integral_(AB_fractional_integral)"><span id="Atangana.E2.80.93Baleanu_fractional_integral_.28AB_fractional_integral.29"></span>Atangana–Baleanu fractional integral (AB fractional integral)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=5" title="Edit section: Atangana–Baleanu fractional integral (AB fractional integral)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Atangana–Baleanu fractional integral of a continuous function is defined as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sideset {_{{\hphantom {A}}a}^{\operatorname {AB} }}{_{t}^{\alpha }}If(t)={\frac {1-\alpha }{\operatorname {AB} (\alpha )}}f(t)+{\frac {\alpha }{\operatorname {AB} (\alpha )\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>I</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mphantom> <mi>A</mi> </mphantom> </mpadded> </mrow> </mrow> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>AB</mi> </mrow> </msubsup> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow> <mi>AB</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mrow> <mi>AB</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sideset {_{{\hphantom {A}}a}^{\operatorname {AB} }}{_{t}^{\alpha }}If(t)={\frac {1-\alpha }{\operatorname {AB} (\alpha )}}f(t)+{\frac {\alpha }{\operatorname {AB} (\alpha )\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b27768c8874c4fc99fe58bc7d51741a556598594" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:59.951ex; height:6.509ex;" alt="{\displaystyle \sideset {_{{\hphantom {A}}a}^{\operatorname {AB} }}{_{t}^{\alpha }}If(t)={\frac {1-\alpha }{\operatorname {AB} (\alpha )}}f(t)+{\frac {\alpha }{\operatorname {AB} (\alpha )\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau }"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Fractional_derivatives">Fractional derivatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=6" title="Edit section: Fractional derivatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Fractal_derivative" title="Fractal derivative">Fractal derivative</a>.</div> <p>Unfortunately, the comparable process for the derivative operator <span class="texhtml mvar" style="font-style:italic;">D</span> is significantly more complex, but it can be shown that <span class="texhtml mvar" style="font-style:italic;">D</span> is neither <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a> nor <a href="/wiki/Additive_map" title="Additive map">additive</a> in general.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>Unlike classical Newtonian derivatives, fractional derivatives can be defined in a variety of different ways that often do not all lead to the same result even for smooth functions. Some of these are defined via a fractional integral. Because of the incompatibility of definitions, it is frequently necessary to be explicit about which definition is used. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Fractionalderivative.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Fractionalderivative.gif/220px-Fractionalderivative.gif" decoding="async" width="220" height="136" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Fractionalderivative.gif/330px-Fractionalderivative.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/d/dd/Fractionalderivative.gif 2x" data-file-width="360" data-file-height="222" /></a><figcaption>Fractional derivatives of a Gaussian, interpolating continuously between the function and its first derivative.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Riemann–Liouville_fractional_derivative"><span id="Riemann.E2.80.93Liouville_fractional_derivative"></span>Riemann–Liouville fractional derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=7" title="Edit section: Riemann–Liouville fractional derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The corresponding derivative is calculated using Lagrange's rule for differential operators. To find the <span class="texhtml mvar" style="font-style:italic;">α</span>th order derivative, the <span class="texhtml mvar" style="font-style:italic;">n</span>th order derivative of the integral of order <span class="texhtml">(<i>n</i> − <i>α</i>)</span> is computed, where <span class="texhtml mvar" style="font-style:italic;">n</span> is the smallest integer greater than <span class="texhtml mvar" style="font-style:italic;">α</span> (that is, <span class="texhtml"><i>n</i> = ⌈<i>α</i>⌉</span>). The Riemann–Liouville fractional derivative and integral has multiple applications such as in case of solutions to the equation in the case of multiple systems such as the tokamak systems, and Variable order fractional parameter.<sup id="cite_ref-Mostafanejad_15-0" class="reference"><a href="#cite_note-Mostafanejad-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Al-Raeei_16-0" class="reference"><a href="#cite_note-Al-Raeei-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Similar to the definitions for the Riemann–Liouville integral, the derivative has upper and lower variants.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{\alpha }}Df(t)&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{-(n-\alpha )}}Df(t)\\&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{n-\alpha }}If(t)\\\sideset {_{t}}{_{b}^{\alpha }}Df(t)&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{-(n-\alpha )}}Df(t)\\&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{n-\alpha }}If(t)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>I</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>I</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{\alpha }}Df(t)&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{-(n-\alpha )}}Df(t)\\&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{n-\alpha }}If(t)\\\sideset {_{t}}{_{b}^{\alpha }}Df(t)&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{-(n-\alpha )}}Df(t)\\&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{n-\alpha }}If(t)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45ac7dd211f711572b5a519ac76a5e5ea816cef8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:29.645ex; height:22.176ex;" alt="{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{\alpha }}Df(t)&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{-(n-\alpha )}}Df(t)\\&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{n-\alpha }}If(t)\\\sideset {_{t}}{_{b}^{\alpha }}Df(t)&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{-(n-\alpha )}}Df(t)\\&amp;={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{n-\alpha }}If(t)\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Caputo_fractional_derivative">Caputo fractional derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=8" title="Edit section: Caputo fractional derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Caputo_fractional_derivative" title="Caputo fractional derivative">Caputo fractional derivative</a></div> <p>Another option for computing fractional derivatives is the <a href="/wiki/Caputo_fractional_derivative" title="Caputo fractional derivative">Caputo fractional derivative</a>. It was introduced by <a href="/w/index.php?title=Michele_Caputo&amp;action=edit&amp;redlink=1" class="new" title="Michele Caputo (page does not exist)">Michele Caputo</a> in his 1967 paper.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> In contrast to the Riemann–Liouville fractional derivative, when solving differential equations using Caputo's definition, it is not necessary to define the fractional order initial conditions. Caputo's definition is illustrated as follows, where again <span class="texhtml"><i>n</i> = ⌈<i>α</i>⌉</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sideset {^{C}}{_{t}^{\alpha }}Df(t)={\frac {1}{\Gamma (n-\alpha )}}\int _{0}^{t}{\frac {f^{(n)}(\tau )}{\left(t-\tau \right)^{\alpha +1-n}}}\,d\tau .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <msup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sideset {^{C}}{_{t}^{\alpha }}Df(t)={\frac {1}{\Gamma (n-\alpha )}}\int _{0}^{t}{\frac {f^{(n)}(\tau )}{\left(t-\tau \right)^{\alpha +1-n}}}\,d\tau .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f1d0e67e4046b630424896df8d353ca8031bd1c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.229ex; height:7.343ex;" alt="{\displaystyle \sideset {^{C}}{_{t}^{\alpha }}Df(t)={\frac {1}{\Gamma (n-\alpha )}}\int _{0}^{t}{\frac {f^{(n)}(\tau )}{\left(t-\tau \right)^{\alpha +1-n}}}\,d\tau .}"></span> </p><p>There is the Caputo fractional derivative defined as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{\nu }f(t)={\frac {1}{\Gamma (n-\nu )}}\int _{0}^{t}(t-u)^{(n-\nu -1)}f^{(n)}(u)\,du\qquad (n-1)&lt;\nu &lt;n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>u</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>&#x03BD;<!-- ν --></mi> <mo>&lt;</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{\nu }f(t)={\frac {1}{\Gamma (n-\nu )}}\int _{0}^{t}(t-u)^{(n-\nu -1)}f^{(n)}(u)\,du\qquad (n-1)&lt;\nu &lt;n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b1a78fb1f0fb431ce8204decf418f3b369f595" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:67.429ex; height:6.509ex;" alt="{\displaystyle D^{\nu }f(t)={\frac {1}{\Gamma (n-\nu )}}\int _{0}^{t}(t-u)^{(n-\nu -1)}f^{(n)}(u)\,du\qquad (n-1)&lt;\nu &lt;n}"></span> which has the advantage that is zero when <span class="texhtml"><i>f</i>(<i>t</i>)</span> is constant and its Laplace Transform is expressed by means of the initial values of the function and its derivative. Moreover, there is the Caputo fractional derivative of distributed order defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sideset {_{a}^{b}}{^{n}u}Df(t)&amp;=\int _{a}^{b}\phi (\nu )\left[D^{(\nu )}f(t)\right]\,d\nu \\&amp;=\int _{a}^{b}\left[{\frac {\phi (\nu )}{\Gamma (1-\nu )}}\int _{0}^{t}\left(t-u\right)^{-\nu }f'(u)\,du\right]\,d\nu \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP"> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mspace width="negativethinmathspace" /> <msup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BD;<!-- ν --></mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>u</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BD;<!-- ν --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sideset {_{a}^{b}}{^{n}u}Df(t)&amp;=\int _{a}^{b}\phi (\nu )\left[D^{(\nu )}f(t)\right]\,d\nu \\&amp;=\int _{a}^{b}\left[{\frac {\phi (\nu )}{\Gamma (1-\nu )}}\int _{0}^{t}\left(t-u\right)^{-\nu }f'(u)\,du\right]\,d\nu \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50d42263d28b3965e20b9d49daadc8625ce5432e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:54.267ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\sideset {_{a}^{b}}{^{n}u}Df(t)&amp;=\int _{a}^{b}\phi (\nu )\left[D^{(\nu )}f(t)\right]\,d\nu \\&amp;=\int _{a}^{b}\left[{\frac {\phi (\nu )}{\Gamma (1-\nu )}}\int _{0}^{t}\left(t-u\right)^{-\nu }f&#039;(u)\,du\right]\,d\nu \end{aligned}}}"></span> </p><p>where <span class="texhtml"><i>ϕ</i>(<i>ν</i>)</span> is a weight function and which is used to represent mathematically the presence of multiple memory formalisms. </p> <div class="mw-heading mw-heading3"><h3 id="Caputo–Fabrizio_fractional_derivative"><span id="Caputo.E2.80.93Fabrizio_fractional_derivative"></span>Caputo–Fabrizio fractional derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=9" title="Edit section: Caputo–Fabrizio fractional derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a paper of 2015, M. Caputo and M. Fabrizio presented a definition of fractional derivative with a non singular kernel, for a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd24bae0d7570018e828e19851902c09c618af91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{1}}"></span> given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sideset {_{{\hphantom {C}}a}^{\text{CF}}}{_{t}^{\alpha }}Df(t)={\frac {1}{1-\alpha }}\int _{a}^{t}f'(\tau )\ e^{\left(-\alpha {\frac {t-\tau }{1-\alpha }}\right)}\ d\tau ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mphantom> <mi>C</mi> </mphantom> </mpadded> </mrow> </mrow> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>CF</mtext> </mrow> </msubsup> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sideset {_{{\hphantom {C}}a}^{\text{CF}}}{_{t}^{\alpha }}Df(t)={\frac {1}{1-\alpha }}\int _{a}^{t}f'(\tau )\ e^{\left(-\alpha {\frac {t-\tau }{1-\alpha }}\right)}\ d\tau ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c88582ef182d0b6f0961ce2ff39638a1537421" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.364ex; height:6.176ex;" alt="{\displaystyle \sideset {_{{\hphantom {C}}a}^{\text{CF}}}{_{t}^{\alpha }}Df(t)={\frac {1}{1-\alpha }}\int _{a}^{t}f&#039;(\tau )\ e^{\left(-\alpha {\frac {t-\tau }{1-\alpha }}\right)}\ d\tau ,}"></span> </p><p>where <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;0,\alpha \in (0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;0,\alpha \in (0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/191e796c1152367c593e26bced3b6bf24171e6b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.763ex; height:2.843ex;" alt="{\displaystyle a&lt;0,\alpha \in (0,1]}"></span>.</span><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Atangana–Baleanu_fractional_derivative"><span id="Atangana.E2.80.93Baleanu_fractional_derivative"></span>Atangana–Baleanu fractional derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=10" title="Edit section: Atangana–Baleanu fractional derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2016, Atangana and Baleanu suggested differential operators based on the generalized <a href="/wiki/Mittag-Leffler_function" title="Mittag-Leffler function">Mittag-Leffler function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/236b689dce03c17d59033e746b4e17860242cfe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.999ex; height:2.509ex;" alt="{\displaystyle E_{\alpha }}"></span>. The aim was to introduce fractional differential operators with non-singular nonlocal kernel. Their fractional differential operators are given below in Riemann–Liouville sense and Caputo sense respectively. For a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd24bae0d7570018e828e19851902c09c618af91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{1}}"></span> given by <sup id="cite_ref-Algahtani2016_20-0" class="reference"><a href="#cite_note-Algahtani2016-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-doiserbia.nb.rs_21-0" class="reference"><a href="#cite_note-doiserbia.nb.rs-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}\int _{a}^{t}f'(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mphantom> <mi>A</mi> <mi>B</mi> </mphantom> </mpadded> </mrow> </mrow> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>ABC</mtext> </mrow> </msubsup> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>AB</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}\int _{a}^{t}f'(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2238bc8633fea409c150e04ff7c08e4e4fe815b1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:53.019ex; height:6.343ex;" alt="{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}\int _{a}^{t}f&#039;(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}"></span> </p><p>If the function is continuous, the Atangana–Baleanu derivative in Riemann–Liouville sense is given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}{\frac {d}{dt}}\int _{a}^{t}f(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>D</mi> </mphantom> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mphantom> <mi>A</mi> <mi>B</mi> </mphantom> </mpadded> </mrow> </mrow> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>ABC</mtext> </mrow> </msubsup> <mspace width="negativethinmathspace" /> <msubsup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>AB</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}{\frac {d}{dt}}\int _{a}^{t}f(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/014c2d10b482e4b3265c9896dddd9b79ca20fd38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:55.184ex; height:6.343ex;" alt="{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}{\frac {d}{dt}}\int _{a}^{t}f(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}"></span> </p><p>The kernel used in Atangana–Baleanu fractional derivative has some properties of a cumulative distribution function.&#160; For example, for all <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in (0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in (0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ea174265d33ba6eed47a00e6ebffedda57cb03e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.239ex; height:2.843ex;" alt="{\displaystyle \alpha \in (0,1]}"></span>,</span> the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/236b689dce03c17d59033e746b4e17860242cfe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.999ex; height:2.509ex;" alt="{\displaystyle E_{\alpha }}"></span> is increasing on the real line, converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>,</span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\alpha }(0)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\alpha }(0)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/292e416fd870311ff5a6c8f5ac4cc1c65ac5838a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.232ex; height:2.843ex;" alt="{\displaystyle E_{\alpha }(0)=1}"></span>.</span> Therefore, we have that, the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto 1-E_{\alpha }(-x^{\alpha })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto 1-E_{\alpha }(-x^{\alpha })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76faf9a5c1222228b6b2f50367598f42711d6ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.177ex; height:2.843ex;" alt="{\displaystyle x\mapsto 1-E_{\alpha }(-x^{\alpha })}"></span> is the cumulative distribution function of a probability measure on the positive real numbers. The distribution is therefore defined, and any of its multiples is called a <a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler distribution</a> of order <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>.</span> It is also very well-known that, all these probability distributions are <a href="/wiki/Absolute_continuity" title="Absolute continuity">absolutely continuous</a>. In particular, the function Mittag-Leffler has a particular case <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ac42446bcd2cbb76ec8fe2895635d328da22e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{1}}"></span>,</span> which is the exponential function, the Mittag-Leffler distribution of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> is therefore an <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential distribution</a>. However, for <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5df576f7940384416d1553ab063704d37bf99420" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.496ex; height:2.843ex;" alt="{\displaystyle \alpha \in (0,1)}"></span>,</span> the Mittag-Leffler distributions are <a href="/wiki/Heavy-tailed_distribution" title="Heavy-tailed distribution">heavy-tailed</a>. Their Laplace transform is given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} (e^{-\lambda X_{\alpha }})={\frac {1}{1+\lambda ^{\alpha }}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} (e^{-\lambda X_{\alpha }})={\frac {1}{1+\lambda ^{\alpha }}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0afa259794949bf4db5ea3d9023c0250df7a359" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.515ex; height:5.509ex;" alt="{\displaystyle \mathbb {E} (e^{-\lambda X_{\alpha }})={\frac {1}{1+\lambda ^{\alpha }}},}"></span> </p><p>This directly implies that, for <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5df576f7940384416d1553ab063704d37bf99420" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.496ex; height:2.843ex;" alt="{\displaystyle \alpha \in (0,1)}"></span>,</span> the expectation is infinite. In addition, these distributions are <a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">geometric stable distributions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Riesz_derivative">Riesz derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=11" title="Edit section: Riesz derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Riesz derivative is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\left\{{\frac {\partial ^{\alpha }u}{\partial \left|x\right|^{\alpha }}}\right\}(k)=-\left|k\right|^{\alpha }{\mathcal {F}}\{u\}(k),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>|</mo> <mi>k</mi> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>u</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\left\{{\frac {\partial ^{\alpha }u}{\partial \left|x\right|^{\alpha }}}\right\}(k)=-\left|k\right|^{\alpha }{\mathcal {F}}\{u\}(k),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f35d44d8d559713d031a60a8898412dd8cd33f10" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.213ex; height:6.343ex;" alt="{\displaystyle {\mathcal {F}}\left\{{\frac {\partial ^{\alpha }u}{\partial \left|x\right|^{\alpha }}}\right\}(k)=-\left|k\right|^{\alpha }{\mathcal {F}}\{u\}(k),}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> denotes the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Other_types">Other types</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=12" title="Edit section: Other types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Classical fractional derivatives include: </p> <ul><li><a href="/wiki/Gr%C3%BCnwald%E2%80%93Letnikov_derivative" title="Grünwald–Letnikov derivative">Grünwald–Letnikov derivative</a><sup id="cite_ref-deOliveira2014_24-0" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Aslan2015_25-0" class="reference"><a href="#cite_note-Aslan2015-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></li> <li>Sonin–Letnikov derivative<sup id="cite_ref-Aslan2015_25-1" class="reference"><a href="#cite_note-Aslan2015-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></li> <li>Liouville derivative<sup id="cite_ref-deOliveira2014_24-1" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Differintegral" title="Differintegral">Caputo derivative</a><sup id="cite_ref-deOliveira2014_24-2" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li>Hadamard derivative<sup id="cite_ref-deOliveira2014_24-3" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup></li> <li>Marchaud derivative<sup id="cite_ref-deOliveira2014_24-4" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li>Riesz derivative<sup id="cite_ref-Aslan2015_25-2" class="reference"><a href="#cite_note-Aslan2015-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></li> <li>Miller–Ross derivative<sup id="cite_ref-deOliveira2014_24-5" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Weyl_integral" title="Weyl integral">Weyl derivative</a><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-deOliveira2014_24-6" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Erdelyi%E2%80%93Kober_operator" title="Erdelyi–Kober operator">Erdélyi–Kober derivative</a><sup id="cite_ref-deOliveira2014_24-7" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/w/index.php?title=Fractal_calculus&amp;action=edit&amp;redlink=1" class="new" title="Fractal calculus (page does not exist)"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81fb943af52f056cca6657ad9702de8fc4603f02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.099ex; height:2.343ex;" alt="{\displaystyle F^{\alpha }}"></span>-derivative</a><sup id="cite_ref-Ali_29-0" class="reference"><a href="#cite_note-Ali-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>New fractional derivatives include: </p> <ul><li>Coimbra derivative<sup id="cite_ref-deOliveira2014_24-8" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Katugampola_fractional_operators" title="Katugampola fractional operators">Katugampola derivative</a><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></li> <li>Hilfer derivative<sup id="cite_ref-deOliveira2014_24-9" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li>Davidson derivative<sup id="cite_ref-deOliveira2014_24-10" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li>Chen derivative<sup id="cite_ref-deOliveira2014_24-11" class="reference"><a href="#cite_note-deOliveira2014-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/w/index.php?title=Caputo_Fabrizio_derivative&amp;action=edit&amp;redlink=1" class="new" title="Caputo Fabrizio derivative (page does not exist)">Caputo Fabrizio derivative</a><sup id="cite_ref-Algahtani2016_20-1" class="reference"><a href="#cite_note-Algahtani2016-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup></li> <li>Atangana–Baleanu derivative<sup id="cite_ref-Algahtani2016_20-2" class="reference"><a href="#cite_note-Algahtani2016-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-doiserbia.nb.rs_21-1" class="reference"><a href="#cite_note-doiserbia.nb.rs-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Coimbra_derivative">Coimbra derivative</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=13" title="Edit section: Coimbra derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>Coimbra derivative</b> is used for physical modeling:<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> A number of applications in both mechanics and optics can be found in the works by Coimbra and collaborators,<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> as well as additional applications to physical problems and numerical implementations studied in a number of works by other authors<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p> <pre>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(t)&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(t)&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bbf2894b0a8cbcfcb8deae1d39475604208bdec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.979ex; height:2.843ex;" alt="{\displaystyle q(t)&lt;1}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}^{\mathbb {C} }_{a}\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [1-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{-q(t)}{\frac {d\,f(\tau )}{d\tau }}d\tau \,+\,{\frac {(f(0^{+})-f(0^{-}))\,t^{-q(t)}}{\Gamma (1-q(t))}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">[</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}^{\mathbb {C} }_{a}\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [1-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{-q(t)}{\frac {d\,f(\tau )}{d\tau }}d\tau \,+\,{\frac {(f(0^{+})-f(0^{-}))\,t^{-q(t)}}{\Gamma (1-q(t))}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b86ef386ed041f1f311995e8445ae3966aae5c81" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:75.591ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}^{\mathbb {C} }_{a}\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [1-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{-q(t)}{\frac {d\,f(\tau )}{d\tau }}d\tau \,+\,{\frac {(f(0^{+})-f(0^{-}))\,t^{-q(t)}}{\Gamma (1-q(t))}},\end{aligned}}}"></span> </pre> <p>where the lower limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> can be taken as either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb153c3e2b753e4b1627d97a00817d6ecab67eca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.673ex; height:2.509ex;" alt="{\displaystyle 0^{-}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span> as long as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> is identically zero from or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb153c3e2b753e4b1627d97a00817d6ecab67eca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.673ex; height:2.509ex;" alt="{\displaystyle 0^{-}}"></span>. Note that this operator returns the correct fractional derivatives for all values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> and can be applied to either the dependent function itself <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> with a variable order of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(f(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(f(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cdb625dbe9e4a39380dcb82e6860769ff44ad9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.806ex; height:2.843ex;" alt="{\displaystyle q(f(t))}"></span> or to the independent variable with a variable order of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b1f8079f76d0e8a89cf19db8fc43f34ec569d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.718ex; height:2.843ex;" alt="{\displaystyle q(t)}"></span>.<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{[1]}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{[1]}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c97b3809485cd490e1a61475329776d6b0efee76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.969ex; height:2.676ex;" alt="{\displaystyle ^{[1]}}"></span> </p><p>The Coimbra derivative can be generalized to any order<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup>, leading to the Coimbra Generalized Order Differintegration Operator (GODO)<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <pre>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(t)&lt;m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(t)&lt;m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dac39f3efa2c564ef574faf91d7dfebbe07f7424" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.857ex; height:2.843ex;" alt="{\displaystyle q(t)&lt;m}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}^{\mathbb {\quad C} }_{\,\,-\infty }\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [m-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{m-1-q(t)}{\frac {d^{m}f(\tau )}{d\tau ^{m}}}d\tau \,+\,\sum _{n=0}^{m-1}{\frac {({\frac {d^{n}f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}f(t)}{dt^{n}}}|_{0^{-}})\,t^{n-q(t)}}{\Gamma [n+1-q(t)]}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mi mathvariant="double-struck">C</mi> </mrow> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}^{\mathbb {\quad C} }_{\,\,-\infty }\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [m-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{m-1-q(t)}{\frac {d^{m}f(\tau )}{d\tau ^{m}}}d\tau \,+\,\sum _{n=0}^{m-1}{\frac {({\frac {d^{n}f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}f(t)}{dt^{n}}}|_{0^{-}})\,t^{n-q(t)}}{\Gamma [n+1-q(t)]}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c269b204f85974c9be81014f037ea5ef374a62c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.278ex; margin-bottom: -0.227ex; width:93.891ex; height:8.176ex;" alt="{\displaystyle {\begin{aligned}^{\mathbb {\quad C} }_{\,\,-\infty }\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [m-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{m-1-q(t)}{\frac {d^{m}f(\tau )}{d\tau ^{m}}}d\tau \,+\,\sum _{n=0}^{m-1}{\frac {({\frac {d^{n}f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}f(t)}{dt^{n}}}|_{0^{-}})\,t^{n-q(t)}}{\Gamma [n+1-q(t)]}},\end{aligned}}}"></span> </pre> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is an integer larger than the larger value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b1f8079f76d0e8a89cf19db8fc43f34ec569d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.718ex; height:2.843ex;" alt="{\displaystyle q(t)}"></span> for all values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. Note that the second (summation) term on the right side of the definition above can be expressed as </p> <pre><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {1}{\Gamma [m-q(t)]}}\sum _{n=0}^{m-1}\{[{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{-}}]\,t^{n-q(t)}\prod _{j=n+1}^{m-1}[j-q(t)]\}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">[</mo> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {1}{\Gamma [m-q(t)]}}\sum _{n=0}^{m-1}\{[{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{-}}]\,t^{n-q(t)}\prod _{j=n+1}^{m-1}[j-q(t)]\}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40ed12d6afff071f04afe1bc677ef43225ac4b82" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:63.349ex; height:7.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {1}{\Gamma [m-q(t)]}}\sum _{n=0}^{m-1}\{[{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{-}}]\,t^{n-q(t)}\prod _{j=n+1}^{m-1}[j-q(t)]\}\end{aligned}}}"></span> </pre> <p>so to keep the denominator on the positive branch of the Gamma (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span>) function and for ease of numerical calculation. </p> <div class="mw-heading mw-heading3"><h3 id="Nature_of_the_fractional_derivative">Nature of the fractional derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=14" title="Edit section: Nature of the fractional derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>-th</span> derivative of a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> at a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is a <i>local property</i> only when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is an integer; this is not the case for non-integer power derivatives. In other words, a non-integer fractional derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3642398a43ac55e2d858529b48f8e113682801d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.435ex; height:1.676ex;" alt="{\displaystyle x=c}"></span> depends on all values of <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>,</span> even those far away from <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>.</span> Therefore, it is expected that the fractional derivative operation involves some sort of <a href="/wiki/Boundary_condition" class="mw-redirect" title="Boundary condition">boundary conditions</a>, involving information on the function further out.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>The fractional derivative of a function of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is nowadays often defined by means of the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier</a> or <a href="/wiki/Mellin_transform" title="Mellin transform">Mellin</a> integral transforms.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Examination of recent papers does not mention this (November 2022)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=15" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Erdélyi–Kober_operator"><span id="Erd.C3.A9lyi.E2.80.93Kober_operator"></span>Erdélyi–Kober operator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=16" title="Edit section: Erdélyi–Kober operator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Erd%C3%A9lyi%E2%80%93Kober_operator" class="mw-redirect" title="Erdélyi–Kober operator">Erdélyi–Kober operator</a> is an integral operator introduced by <a href="/wiki/Arthur_Erd%C3%A9lyi" title="Arthur Erdélyi">Arthur Erdélyi</a> (1940).<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Hermann_Kober" title="Hermann Kober">Hermann Kober</a> (1940)<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> and is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x^{-\nu -\alpha +1}}{\Gamma (\alpha )}}\int _{0}^{x}\left(t-x\right)^{\alpha -1}t^{-\alpha -\nu }f(t)\,dt\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x^{-\nu -\alpha +1}}{\Gamma (\alpha )}}\int _{0}^{x}\left(t-x\right)^{\alpha -1}t^{-\alpha -\nu }f(t)\,dt\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/672aacf66c86143469c4a65e4dad0f58810d20f5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.55ex; height:6.509ex;" alt="{\displaystyle {\frac {x^{-\nu -\alpha +1}}{\Gamma (\alpha )}}\int _{0}^{x}\left(t-x\right)^{\alpha -1}t^{-\alpha -\nu }f(t)\,dt\,,}"></span> </p><p>which generalizes the <a href="#Fractional_integrals">Riemann–Liouville fractional integral</a> and the Weyl integral. </p> <div class="mw-heading mw-heading2"><h2 id="Functional_calculus">Functional calculus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=17" title="Edit section: Functional calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the context of <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>, functions <span class="texhtml"><i>f</i>(<i>D</i>)</span> more general than powers are studied in the <a href="/wiki/Functional_calculus" title="Functional calculus">functional calculus</a> of <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theory</a>. The theory of <a href="/wiki/Pseudo-differential_operator" title="Pseudo-differential operator">pseudo-differential operators</a> also allows one to consider powers of <span class="texhtml mvar" style="font-style:italic;">D</span>. The operators arising are examples of <a href="/wiki/Singular_integral_operator" class="mw-redirect" title="Singular integral operator">singular integral operators</a>; and the generalisation of the classical theory to higher dimensions is called the theory of <a href="/wiki/Riesz_potential" title="Riesz potential">Riesz potentials</a>. So there are a number of contemporary theories available, within which <i>fractional calculus</i> can be discussed. See also <a href="/wiki/Erd%C3%A9lyi%E2%80%93Kober_operator" class="mw-redirect" title="Erdélyi–Kober operator">Erdélyi–Kober operator</a>, important in <a href="/wiki/Special_function" class="mw-redirect" title="Special function">special function</a> theory (<a href="#CITEREFKober1940">Kober 1940</a>), (<a href="#CITEREFErdélyi1950–1951">Erdélyi 1950–1951</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=18" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Fractional_conservation_of_mass">Fractional conservation of mass</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=19" title="Edit section: Fractional conservation of mass"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As described by Wheatcraft and Meerschaert (2008),<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> a fractional conservation of mass equation is needed to model fluid flow when the <a href="/wiki/Control_volume" title="Control volume">control volume</a> is not large enough compared to the scale of <a href="/wiki/Heterogeneity" class="mw-redirect" title="Heterogeneity">heterogeneity</a> and when the flux within the control volume is non-linear. In the referenced paper, the fractional conservation of mass equation for fluid flow is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\rho \left(\nabla ^{\alpha }\cdot {\vec {u}}\right)=\Gamma (\alpha +1)\Delta x^{1-\alpha }\rho \left(\beta _{s}+\phi \beta _{w}\right){\frac {\partial p}{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03D5;<!-- ϕ --></mi> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>p</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\rho \left(\nabla ^{\alpha }\cdot {\vec {u}}\right)=\Gamma (\alpha +1)\Delta x^{1-\alpha }\rho \left(\beta _{s}+\phi \beta _{w}\right){\frac {\partial p}{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f29bebbff635e7c00e0a7ece9bdae1a487aca38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:46.315ex; height:5.509ex;" alt="{\displaystyle -\rho \left(\nabla ^{\alpha }\cdot {\vec {u}}\right)=\Gamma (\alpha +1)\Delta x^{1-\alpha }\rho \left(\beta _{s}+\phi \beta _{w}\right){\frac {\partial p}{\partial t}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Electrochemical_analysis">Electrochemical analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=20" title="Edit section: Electrochemical analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Neopolarogram" title="Neopolarogram">Neopolarogram</a></div> <p>When studying the redox behavior of a substrate in solution, a voltage is applied at an electrode surface to force electron transfer between electrode and substrate. The resulting electron transfer is measured as a current. The current depends upon the concentration of substrate at the electrode surface. As substrate is consumed, fresh substrate diffuses to the electrode as described by <a href="/wiki/Fick%27s_laws_of_diffusion" title="Fick&#39;s laws of diffusion">Fick's laws of diffusion</a>. Taking the Laplace transform of Fick's second law yields an ordinary second-order differential equation (here in dimensionless form): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{2}}{dx^{2}}}C(x,s)=sC(x,s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>C</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>s</mi> <mi>C</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{2}}{dx^{2}}}C(x,s)=sC(x,s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c5d8a846d25447fdca17a284b2f545c1c667fc9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:22.684ex; height:6.009ex;" alt="{\displaystyle {\frac {d^{2}}{dx^{2}}}C(x,s)=sC(x,s)}"></span> </p><p>whose solution <span class="texhtml"><i>C</i>(<i>x</i>,<i>s</i>)</span> contains a one-half power dependence on <span class="texhtml mvar" style="font-style:italic;">s</span>. Taking the derivative of <span class="texhtml"><i>C</i>(<i>x</i>,<i>s</i>)</span> and then the inverse Laplace transform yields the following relationship: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}C(x,t)={\frac {d^{\scriptstyle {\frac {1}{2}}}}{dt^{\scriptstyle {\frac {1}{2}}}}}C(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>C</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>C</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}C(x,t)={\frac {d^{\scriptstyle {\frac {1}{2}}}}{dt^{\scriptstyle {\frac {1}{2}}}}}C(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2940ba8a22d51bded0831c72b35278cda255395b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:24.665ex; height:8.176ex;" alt="{\displaystyle {\frac {d}{dx}}C(x,t)={\frac {d^{\scriptstyle {\frac {1}{2}}}}{dt^{\scriptstyle {\frac {1}{2}}}}}C(x,t)}"></span> </p><p>which relates the concentration of substrate at the electrode surface to the current.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> This relationship is applied in electrochemical kinetics to elucidate mechanistic behavior. For example, it has been used to study the rate of dimerization of substrates upon electrochemical reduction.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Groundwater_flow_problem">Groundwater flow problem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=21" title="Edit section: Groundwater flow problem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2013–2014 Atangana et al. described some groundwater flow problems using the concept of a derivative with fractional order.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> In these works, the classical <a href="/wiki/Darcy_law" class="mw-redirect" title="Darcy law">Darcy law</a> is generalized by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow. </p> <div class="mw-heading mw-heading3"><h3 id="Fractional_advection_dispersion_equation">Fractional advection dispersion equation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=22" title="Edit section: Fractional advection dispersion equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This equation<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (January 2017)">clarification needed</span></a></i>&#93;</sup> has been shown useful for modeling contaminant flow in heterogenous porous media.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>Atangana and Kilicman extended the fractional advection dispersion equation to a variable order equation. In their work, the hydrodynamic dispersion equation was generalized using the concept of a <a href="/w/index.php?title=Variational_order_derivative&amp;action=edit&amp;redlink=1" class="new" title="Variational order derivative (page does not exist)">variational order derivative</a>. The modified equation was numerically solved via the <a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson method</a>. The stability and convergence in numerical simulations showed that the modified equation is more reliable in predicting the movement of pollution in deformable aquifers than equations with constant fractional and integer derivatives<sup id="cite_ref-Atangana2014a_57-0" class="reference"><a href="#cite_note-Atangana2014a-57"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Time-space_fractional_diffusion_equation_models">Time-space fractional diffusion equation models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=23" title="Edit section: Time-space fractional diffusion equation models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Anomalous diffusion processes in complex media can be well characterized by using fractional-order diffusion equation models.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> The time derivative term corresponds to long-time heavy tail decay and the spatial derivative for diffusion nonlocality. The time-space fractional diffusion governing equation can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{\alpha }u}{\partial t^{\alpha }}}=-K(-\Delta )^{\beta }u.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mi>u</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{\alpha }u}{\partial t^{\alpha }}}=-K(-\Delta )^{\beta }u.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6adbc7788741db4e7e17b847400d2adaefe6b652" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.47ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial ^{\alpha }u}{\partial t^{\alpha }}}=-K(-\Delta )^{\beta }u.}"></span> </p><p>A simple extension of the fractional derivative is the variable-order fractional derivative, <span class="texhtml mvar" style="font-style:italic;">α</span> and <span class="texhtml mvar" style="font-style:italic;">β</span> are changed into <span class="texhtml"><i>α</i>(<i>x</i>, <i>t</i>)</span> and <span class="texhtml"><i>β</i>(<i>x</i>, <i>t</i>)</span>. Its applications in anomalous diffusion modeling can be found in the reference.<sup id="cite_ref-Atangana2014a_57-1" class="reference"><a href="#cite_note-Atangana2014a-57"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Structural_damping_models">Structural damping models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=24" title="Edit section: Structural damping models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fractional derivatives are used to model <a href="/wiki/Viscoelastic" class="mw-redirect" title="Viscoelastic">viscoelastic</a> <a href="/wiki/Damping" title="Damping">damping</a> in certain types of materials like polymers.<sup id="cite_ref-Mainardi_12-1" class="reference"><a href="#cite_note-Mainardi-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="PID_controllers">PID controllers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=25" title="Edit section: PID controllers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generalizing <a href="/wiki/PID_controller" class="mw-redirect" title="PID controller">PID controllers</a> to use fractional orders can increase their degree of freedom. The new equation relating the <i>control variable</i> <span class="texhtml"><i>u</i>(<i>t</i>)</span> in terms of a measured <i>error value</i> <span class="texhtml"><i>e</i>(<i>t</i>)</span> can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(t)=K_{\mathrm {p} }e(t)+K_{\mathrm {i} }D_{t}^{-\alpha }e(t)+K_{\mathrm {d} }D_{t}^{\beta }e(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> </msub> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> </msub> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msubsup> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(t)=K_{\mathrm {p} }e(t)+K_{\mathrm {i} }D_{t}^{-\alpha }e(t)+K_{\mathrm {d} }D_{t}^{\beta }e(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbd7d26c2245e2d6a8227b48ee7ffcc9e770fa90" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.442ex; height:3.509ex;" alt="{\displaystyle u(t)=K_{\mathrm {p} }e(t)+K_{\mathrm {i} }D_{t}^{-\alpha }e(t)+K_{\mathrm {d} }D_{t}^{\beta }e(t)}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">α</span> and <span class="texhtml">β</span> are positive fractional orders and <span class="texhtml"><i>K</i><sub>p</sub></span>, <span class="texhtml"><i>K</i><sub>i</sub></span>, and <span class="texhtml"><i>K</i><sub>d</sub></span>, all non-negative, denote the coefficients for the <a href="/wiki/Proportional_control" title="Proportional control">proportional</a>, <a href="/wiki/Integral" title="Integral">integral</a>, and <a href="/wiki/Derivative" title="Derivative">derivative</a> terms, respectively (sometimes denoted <span class="texhtml mvar" style="font-style:italic;">P</span>, <span class="texhtml mvar" style="font-style:italic;">I</span>, and <span class="texhtml mvar" style="font-style:italic;">D</span>).<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Acoustic_wave_equations_for_complex_media">Acoustic wave equations for complex media</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=26" title="Edit section: Acoustic wave equations for complex media"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The propagation of acoustical waves in complex media, such as in biological tissue, commonly implies attenuation obeying a frequency power-law. This kind of phenomenon may be described using a causal wave equation which incorporates fractional time derivatives: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}u-{\dfrac {1}{c_{0}^{2}}}{\frac {\partial ^{2}u}{\partial t^{2}}}+\tau _{\sigma }^{\alpha }{\dfrac {\partial ^{\alpha }}{\partial t^{\alpha }}}\nabla ^{2}u-{\dfrac {\tau _{\epsilon }^{\beta }}{c_{0}^{2}}}{\dfrac {\partial ^{\beta +2}u}{\partial t^{\beta +2}}}=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msubsup> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}u-{\dfrac {1}{c_{0}^{2}}}{\frac {\partial ^{2}u}{\partial t^{2}}}+\tau _{\sigma }^{\alpha }{\dfrac {\partial ^{\alpha }}{\partial t^{\alpha }}}\nabla ^{2}u-{\dfrac {\tau _{\epsilon }^{\beta }}{c_{0}^{2}}}{\dfrac {\partial ^{\beta +2}u}{\partial t^{\beta +2}}}=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89aba7f1c6b3d5a29461e324dd057fb57db722eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.788ex; height:7.176ex;" alt="{\displaystyle \nabla ^{2}u-{\dfrac {1}{c_{0}^{2}}}{\frac {\partial ^{2}u}{\partial t^{2}}}+\tau _{\sigma }^{\alpha }{\dfrac {\partial ^{\alpha }}{\partial t^{\alpha }}}\nabla ^{2}u-{\dfrac {\tau _{\epsilon }^{\beta }}{c_{0}^{2}}}{\dfrac {\partial ^{\beta +2}u}{\partial t^{\beta +2}}}=0\,.}"></span> </p><p>See also Holm &amp; Näsholm (2011)<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> and the references therein. Such models are linked to the commonly recognized hypothesis that multiple relaxation phenomena give rise to the attenuation measured in complex media. This link is further described in Näsholm &amp; Holm (2011b)<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> and in the survey paper,<sup id="cite_ref-Nasholm2_65-0" class="reference"><a href="#cite_note-Nasholm2-65"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> as well as the <i><a href="/wiki/Acoustic_attenuation" title="Acoustic attenuation">Acoustic attenuation</a></i> article. See Holm &amp; Nasholm (2013)<sup id="cite_ref-HolmNasholm2014_66-0" class="reference"><a href="#cite_note-HolmNasholm2014-66"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> for a paper which compares fractional wave equations which model power-law attenuation. This book on power-law attenuation also covers the topic in more detail.<sup id="cite_ref-Holm2019_67-0" class="reference"><a href="#cite_note-Holm2019-67"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p><p>Pandey and Holm gave a physical meaning to fractional differential equations by deriving them from physical principles and interpreting the fractional-order in terms of the parameters of the acoustical media, example in fluid-saturated granular unconsolidated marine sediments.<sup id="cite_ref-Pandey2016_68-0" class="reference"><a href="#cite_note-Pandey2016-68"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> Interestingly, Pandey and Holm derived <a href="/wiki/Cinna_Lomnitz" title="Cinna Lomnitz">Lomnitz's law</a> in <a href="/wiki/Seismology" title="Seismology">seismology</a> and Nutting's law in <a href="/wiki/Non-Newtonian_fluid" title="Non-Newtonian fluid">non-Newtonian rheology</a> using the framework of fractional calculus.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> Nutting's law was used to model the wave propagation in marine sediments using fractional derivatives.<sup id="cite_ref-Pandey2016_68-1" class="reference"><a href="#cite_note-Pandey2016-68"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fractional_Schrödinger_equation_in_quantum_theory"><span id="Fractional_Schr.C3.B6dinger_equation_in_quantum_theory"></span>Fractional Schrödinger equation in quantum theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=27" title="Edit section: Fractional Schrödinger equation in quantum theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/w/index.php?title=Fractional_Schr%C3%B6dinger_equation&amp;action=edit&amp;redlink=1" class="new" title="Fractional Schrödinger equation (page does not exist)">fractional Schrödinger equation</a>, a fundamental equation of <a href="/w/index.php?title=Fractional_quantum_mechanics&amp;action=edit&amp;redlink=1" class="new" title="Fractional quantum mechanics (page does not exist)">fractional quantum mechanics</a>, has the following form:<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial \psi (\mathbf {r} ,t)}{\partial t}}=D_{\alpha }\left(-\hbar ^{2}\Delta \right)^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial \psi (\mathbf {r} ,t)}{\partial t}}=D_{\alpha }\left(-\hbar ^{2}\Delta \right)^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9306359d8ae6c87ae1144f721d44ea1678940f38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:50.083ex; height:5.843ex;" alt="{\displaystyle i\hbar {\frac {\partial \psi (\mathbf {r} ,t)}{\partial t}}=D_{\alpha }\left(-\hbar ^{2}\Delta \right)^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t)\,.}"></span> </p><p>where the solution of the equation is the <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunction</a> <span class="texhtml"><i>ψ</i>(<b>r</b>, <i>t</i>)</span> – the quantum mechanical <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a> for the particle to have a given <a href="/wiki/Position_vector" class="mw-redirect" title="Position vector">position vector</a> <span class="texhtml"><b>r</b></span> at any given time <span class="texhtml mvar" style="font-style:italic;">t</span>, and <span class="texhtml mvar" style="font-style:italic;">ħ</span> is the <a href="/wiki/Reduced_Planck_constant" class="mw-redirect" title="Reduced Planck constant">reduced Planck constant</a>. The <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a> function <span class="texhtml"><i>V</i>(<b>r</b>, <i>t</i>)</span> depends on the system. </p><p>Further, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7f5138716ff9f4e227d3174a3dee47a859c7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:8.413ex; height:4.343ex;" alt="{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}}"></span> is the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplace operator</a>, and <span class="texhtml mvar" style="font-style:italic;">D<sub>α</sub></span> is a scale constant with physical <a href="/wiki/Dimensional_analysis" title="Dimensional analysis">dimension</a> <span class="texhtml">[<i>D<sub>α</sub></i>] = J<sup>1 − <i>α</i></sup>·m<sup><i>α</i></sup>·s<sup>−<i>α</i></sup> = kg<sup>1 − <i>α</i></sup>·m<sup>2 − <i>α</i></sup>·s<sup><i>α</i> − 2</sup></span>, (at <span class="texhtml"><i>α</i> = 2</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle D_{2}={\frac {1}{2m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle D_{2}={\frac {1}{2m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14fe9bd3f2a4a239a67b2951311f0572bf71d47c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.178ex; height:3.509ex;" alt="{\textstyle D_{2}={\frac {1}{2m}}}"></span> for a particle of mass <span class="texhtml mvar" style="font-style:italic;">m</span>), and the operator <span class="texhtml">(−<i>ħ</i><sup>2</sup>Δ)<sup><i>α</i>/2</sup></span> is the 3-dimensional fractional quantum Riesz derivative defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\hbar ^{2}\Delta )^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)={\frac {1}{(2\pi \hbar )^{3}}}\int d^{3}pe^{{\frac {i}{\hbar }}\mathbf {p} \cdot \mathbf {r} }|\mathbf {p} |^{\alpha }\varphi (\mathbf {p} ,t)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>p</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\hbar ^{2}\Delta )^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)={\frac {1}{(2\pi \hbar )^{3}}}\int d^{3}pe^{{\frac {i}{\hbar }}\mathbf {p} \cdot \mathbf {r} }|\mathbf {p} |^{\alpha }\varphi (\mathbf {p} ,t)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ad70321f5d5c8212f31b81e45bff4184bd76dfd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:50.133ex; height:6.009ex;" alt="{\displaystyle (-\hbar ^{2}\Delta )^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)={\frac {1}{(2\pi \hbar )^{3}}}\int d^{3}pe^{{\frac {i}{\hbar }}\mathbf {p} \cdot \mathbf {r} }|\mathbf {p} |^{\alpha }\varphi (\mathbf {p} ,t)\,.}"></span> </p><p>The index <span class="texhtml mvar" style="font-style:italic;">α</span> in the fractional Schrödinger equation is the Lévy index, <span class="texhtml">1 &lt; <i>α</i> ≤ 2</span>. </p> <div class="mw-heading mw-heading4"><h4 id="Variable-order_fractional_Schrödinger_equation"><span id="Variable-order_fractional_Schr.C3.B6dinger_equation"></span>Variable-order fractional Schrödinger equation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=28" title="Edit section: Variable-order fractional Schrödinger equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As a natural generalization of the <a href="/w/index.php?title=Fractional_Schr%C3%B6dinger_equation&amp;action=edit&amp;redlink=1" class="new" title="Fractional Schrödinger equation (page does not exist)">fractional Schrödinger equation</a>, the variable-order fractional Schrödinger equation has been exploited to study fractional quantum phenomena:<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial \psi ^{\alpha (\mathbf {r} )}(\mathbf {r} ,t)}{\partial t^{\alpha (\mathbf {r} )}}}=\left(-\hbar ^{2}\Delta \right)^{\frac {\beta (t)}{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial \psi ^{\alpha (\mathbf {r} )}(\mathbf {r} ,t)}{\partial t^{\alpha (\mathbf {r} )}}}=\left(-\hbar ^{2}\Delta \right)^{\frac {\beta (t)}{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57f444c1da75e4b2ab19dad1ee46621eea7773a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:51.262ex; height:6.509ex;" alt="{\displaystyle i\hbar {\frac {\partial \psi ^{\alpha (\mathbf {r} )}(\mathbf {r} ,t)}{\partial t^{\alpha (\mathbf {r} )}}}=\left(-\hbar ^{2}\Delta \right)^{\frac {\beta (t)}{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t),}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7f5138716ff9f4e227d3174a3dee47a859c7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:8.413ex; height:4.343ex;" alt="{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}}"></span> is the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplace operator</a> and the operator <span class="texhtml">(−<i>ħ</i><sup>2</sup>Δ)<sup><i>β</i>(<i>t</i>)/2</sup></span> is the variable-order fractional quantum Riesz derivative. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=29" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Acoustic_attenuation" title="Acoustic attenuation">Acoustic attenuation</a></li> <li><a href="/wiki/Autoregressive_fractionally_integrated_moving_average" title="Autoregressive fractionally integrated moving average">Autoregressive fractionally integrated moving average</a></li> <li><a href="/wiki/Initialized_fractional_calculus" title="Initialized fractional calculus">Initialized fractional calculus</a></li> <li><a href="/wiki/Nonlocal_operator" title="Nonlocal operator">Nonlocal operator</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Other_fractional_theories">Other fractional theories</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=30" title="Edit section: Other fractional theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Fractional-order_system" title="Fractional-order system">Fractional-order system</a></li> <li><a href="/wiki/Fractional_Fourier_transform" title="Fractional Fourier transform">Fractional Fourier transform</a></li> <li><a href="/wiki/Prabhakar_function" title="Prabhakar function">Prabhakar function</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=31" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">The symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> is commonly used instead of the intuitive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> in order to avoid confusion with other concepts identified by similar <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>–like</span> <a href="/wiki/Glyph" title="Glyph">glyphs</a>, such as <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identities</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=32" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Zwillinger2014-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zwillinger2014_2-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFDaniel_Zwillinger2014" class="citation book cs1">Daniel Zwillinger (12 May 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9QLjBQAAQBAJ"><i>Handbook of Differential Equations</i></a>. Elsevier Science. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-2096-3" title="Special:BookSources/978-1-4832-2096-3"><bdi>978-1-4832-2096-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Differential+Equations&amp;rft.pub=Elsevier+Science&amp;rft.date=2014-05-12&amp;rft.isbn=978-1-4832-2096-3&amp;rft.au=Daniel+Zwillinger&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9QLjBQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Derivative-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Derivative_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatugampola2014" class="citation journal cs1">Katugampola, Udita N. (15 October 2014). <a rel="nofollow" class="external text" href="https://www.emis.de/journals/BMAA/repository/docs/BMAA6-4-1.pdf">"A New Approach To Generalized Fractional Derivatives"</a> <span class="cs1-format">(PDF)</span>. <i>Bulletin of Mathematical Analysis and Applications</i>. <b>6</b> (4): 1–15. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1106.0965">1106.0965</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+Mathematical+Analysis+and+Applications&amp;rft.atitle=A+New+Approach+To+Generalized+Fractional+Derivatives&amp;rft.volume=6&amp;rft.issue=4&amp;rft.pages=1-15&amp;rft.date=2014-10-15&amp;rft_id=info%3Aarxiv%2F1106.0965&amp;rft.aulast=Katugampola&amp;rft.aufirst=Udita+N.&amp;rft_id=https%3A%2F%2Fwww.emis.de%2Fjournals%2FBMAA%2Frepository%2Fdocs%2FBMAA6-4-1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNiels_Henrik_Abel1823" class="citation journal cs1">Niels Henrik Abel (1823). <a rel="nofollow" class="external text" href="https://abelprize.no/sites/default/files/2021-04/Magazin_for_Naturvidenskaberne_oplosning_av_et_par1_opt.pdf">"Oplösning af et Par Opgaver ved Hjelp af bestemte Integraler (Solution de quelques problèmes à l'aide d'intégrales définies, Solution of a couple of problems by means of definite integrals)"</a> <span class="cs1-format">(PDF)</span>. <i>Magazin for Naturvidenskaberne</i>. Kristiania (Oslo): 55–68.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Magazin+for+Naturvidenskaberne&amp;rft.atitle=Opl%C3%B6sning+af+et+Par+Opgaver+ved+Hjelp+af+bestemte+Integraler+%28Solution+de+quelques+probl%C3%A8mes+%C3%A0+l%27aide+d%27int%C3%A9grales+d%C3%A9finies%2C+Solution+of+a+couple+of+problems+by+means+of+definite+integrals%29&amp;rft.pages=55-68&amp;rft.date=1823&amp;rft.au=Niels+Henrik+Abel&amp;rft_id=https%3A%2F%2Fabelprize.no%2Fsites%2Fdefault%2Ffiles%2F2021-04%2FMagazin_for_Naturvidenskaberne_oplosning_av_et_par1_opt.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPodlubnyMaginTrymorush2017" class="citation journal cs1">Podlubny, Igor; Magin, Richard L.; Trymorush, Irina (2017). "Niels Henrik Abel and the birth of fractional calculus". <i>Fractional Calculus and Applied Analysis</i>. <b>20</b> (5): 1068–1075. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1802.05441">1802.05441</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Ffca-2017-0057">10.1515/fca-2017-0057</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119664694">119664694</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fractional+Calculus+and+Applied+Analysis&amp;rft.atitle=Niels+Henrik+Abel+and+the+birth+of+fractional+calculus&amp;rft.volume=20&amp;rft.issue=5&amp;rft.pages=1068-1075&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1802.05441&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119664694%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1515%2Ffca-2017-0057&amp;rft.aulast=Podlubny&amp;rft.aufirst=Igor&amp;rft.au=Magin%2C+Richard+L.&amp;rft.au=Trymorush%2C+Irina&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiouville1832" class="citation cs2"><a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Liouville, Joseph</a> (1832), <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k4336778/f2.item.r=Joseph%20Liouville">"Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions"</a>, <i>Journal de l'École Polytechnique</i>, <b>13</b>, Paris: 1–69</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+l%27%C3%89cole+Polytechnique&amp;rft.atitle=M%C3%A9moire+sur+quelques+questions+de+g%C3%A9om%C3%A9trie+et+de+m%C3%A9canique%2C+et+sur+un+nouveau+genre+de+calcul+pour+r%C3%A9soudre+ces+questions&amp;rft.volume=13&amp;rft.pages=1-69&amp;rft.date=1832&amp;rft.aulast=Liouville&amp;rft.aufirst=Joseph&amp;rft_id=https%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k4336778%2Ff2.item.r%3DJoseph%2520Liouville&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span>.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiouville1832" class="citation cs2"><a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Liouville, Joseph</a> (1832), <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k4336778/f72.image">"Mémoire sur le calcul des différentielles à indices quelconques"</a>, <i>Journal de l'École Polytechnique</i>, <b>13</b>, Paris: 71–162</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+l%27%C3%89cole+Polytechnique&amp;rft.atitle=M%C3%A9moire+sur+le+calcul+des+diff%C3%A9rentielles+%C3%A0+indices+quelconques&amp;rft.volume=13&amp;rft.pages=71-162&amp;rft.date=1832&amp;rft.aulast=Liouville&amp;rft.aufirst=Joseph&amp;rft_id=https%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k4336778%2Ff72.image&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">For the history of the subject, see the thesis (in French): Stéphane Dugowson, <a rel="nofollow" class="external text" href="http://s.dugowson.free.fr/recherche/dones/index.html"><i>Les différentielles métaphysiques</i></a> (<i>histoire et philosophie de la généralisation de l'ordre de dérivation</i>), Thèse, Université Paris Nord (1994)</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">For a historical review of the subject up to the beginning of the 20th century, see: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertram_Ross1977" class="citation journal cs1">Bertram Ross (1977). "The development of fractional calculus 1695–1900". <i>Historia Mathematica</i>. <b>4</b>: 75–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2877%2990039-8">10.1016/0315-0860(77)90039-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122146887">122146887</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=The+development+of+fractional+calculus+1695%E2%80%931900&amp;rft.volume=4&amp;rft.pages=75-89&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.1016%2F0315-0860%2877%2990039-8&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122146887%23id-name%3DS2CID&amp;rft.au=Bertram+Ross&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValérioMachadoKiryakova2014" class="citation journal cs1">Valério, Duarte; Machado, José; <a href="/wiki/Virginia_Kiryakova" title="Virginia Kiryakova">Kiryakova, Virginia</a> (2014-01-01). "Some pioneers of the applications of fractional calculus". <i>Fractional Calculus and Applied Analysis</i>. <b>17</b> (2): 552–578. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2478%2Fs13540-014-0185-1">10.2478/s13540-014-0185-1</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10400.22%2F5491">10400.22/5491</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1314-2224">1314-2224</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121482200">121482200</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fractional+Calculus+and+Applied+Analysis&amp;rft.atitle=Some+pioneers+of+the+applications+of+fractional+calculus&amp;rft.volume=17&amp;rft.issue=2&amp;rft.pages=552-578&amp;rft.date=2014-01-01&amp;rft_id=info%3Ahdl%2F10400.22%2F5491&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121482200%23id-name%3DS2CID&amp;rft.issn=1314-2224&amp;rft_id=info%3Adoi%2F10.2478%2Fs13540-014-0185-1&amp;rft.aulast=Val%C3%A9rio&amp;rft.aufirst=Duarte&amp;rft.au=Machado%2C+Jos%C3%A9&amp;rft.au=Kiryakova%2C+Virginia&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHermann2014" class="citation book cs1">Hermann, Richard (2014). <i>Fractional Calculus: An Introduction for Physicists</i> (2nd&#160;ed.). New Jersey: World Scientific Publishing. p.&#160;46. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014fcip.book.....H">2014fcip.book.....H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F8934">10.1142/8934</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-4551-07-6" title="Special:BookSources/978-981-4551-07-6"><bdi>978-981-4551-07-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Calculus%3A+An+Introduction+for+Physicists&amp;rft.place=New+Jersey&amp;rft.pages=46&amp;rft.edition=2nd&amp;rft.pub=World+Scientific+Publishing&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1142%2F8934&amp;rft_id=info%3Abibcode%2F2014fcip.book.....H&amp;rft.isbn=978-981-4551-07-6&amp;rft.aulast=Hermann&amp;rft.aufirst=Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Mainardi-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mainardi_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mainardi_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMainardi2010" class="citation book cs1">Mainardi, Francesco (May 2010). <i>Fractional Calculus and Waves in Linear Viscoelasticity</i>. <a href="/wiki/Imperial_College_Press" title="Imperial College Press">Imperial College Press</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fp614">10.1142/p614</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84816-329-4" title="Special:BookSources/978-1-84816-329-4"><bdi>978-1-84816-329-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118719247">118719247</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Calculus+and+Waves+in+Linear+Viscoelasticity&amp;rft.pub=Imperial+College+Press&amp;rft.date=2010-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118719247%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2Fp614&amp;rft.isbn=978-1-84816-329-4&amp;rft.aulast=Mainardi&amp;rft.aufirst=Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHadamard1892" class="citation journal cs1">Hadamard, J. (1892). <a rel="nofollow" class="external text" href="http://sites.mathdoc.fr/JMPA/PDF/JMPA_1892_4_8_A4_0.pdf">"Essai sur l'étude des fonctions données par leur développement de Taylor"</a> <span class="cs1-format">(PDF)</span>. <i>Journal de Mathématiques Pures et Appliquées</i>. <b>4</b> (8): 101–186.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&amp;rft.atitle=Essai+sur+l%27%C3%A9tude+des+fonctions+donn%C3%A9es+par+leur+d%C3%A9veloppement+de+Taylor&amp;rft.volume=4&amp;rft.issue=8&amp;rft.pages=101-186&amp;rft.date=1892&amp;rft.aulast=Hadamard&amp;rft.aufirst=J.&amp;rft_id=http%3A%2F%2Fsites.mathdoc.fr%2FJMPA%2FPDF%2FJMPA_1892_4_8_A4_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKilbasSrivastavaTrujillo2006" class="citation book cs1">Kilbas, A. Anatolii Aleksandrovich; Srivastava, Hari Mohan; Trujillo, Juan J. (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LhkO83ZioQkC"><i>Theory And Applications of Fractional Differential Equations</i></a>. Elsevier. p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=LhkO83ZioQkC&amp;pg=PA75">75 (Property 2.4)</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-444-51832-3" title="Special:BookSources/978-0-444-51832-3"><bdi>978-0-444-51832-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+And+Applications+of+Fractional+Differential+Equations&amp;rft.pages=75+%28Property+2.4%29&amp;rft.pub=Elsevier&amp;rft.date=2006&amp;rft.isbn=978-0-444-51832-3&amp;rft.aulast=Kilbas&amp;rft.aufirst=A.+Anatolii+Aleksandrovich&amp;rft.au=Srivastava%2C+Hari+Mohan&amp;rft.au=Trujillo%2C+Juan+J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLhkO83ZioQkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Mostafanejad-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mostafanejad_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMostafanejad2021" class="citation journal cs1">Mostafanejad, Mohammad (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fqua.26762">"Fractional paradigms in quantum chemistry"</a>. <i>International Journal of Quantum Chemistry</i>. <b>121</b> (20). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fqua.26762">10.1002/qua.26762</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Quantum+Chemistry&amp;rft.atitle=Fractional+paradigms+in+quantum+chemistry&amp;rft.volume=121&amp;rft.issue=20&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1002%2Fqua.26762&amp;rft.aulast=Mostafanejad&amp;rft.aufirst=Mohammad&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fqua.26762&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Al-Raeei-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Al-Raeei_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAl-Raeei2021" class="citation journal cs1">Al-Raeei, Marwan (2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0960077921005634">"Applying fractional quantum mechanics to systems with electrical screening effects"</a>. <i>Chaos, Solitons &amp; Fractals</i>. <b>150</b> (September): 111209. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021CSF...15011209A">2021CSF...15011209A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.chaos.2021.111209">10.1016/j.chaos.2021.111209</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chaos%2C+Solitons+%26+Fractals&amp;rft.atitle=Applying+fractional+quantum+mechanics+to+systems+with+electrical+screening+effects&amp;rft.volume=150&amp;rft.issue=September&amp;rft.pages=111209&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1016%2Fj.chaos.2021.111209&amp;rft_id=info%3Abibcode%2F2021CSF...15011209A&amp;rft.aulast=Al-Raeei&amp;rft.aufirst=Marwan&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0960077921005634&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerrmann2014" class="citation book cs1">Herrmann, Richard, ed. (2014). <i>Fractional Calculus</i> (2nd&#160;ed.). New Jersey: World Scientific Publishing Co. p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=60S7CgAAQBAJ&amp;pg=PA54">54</a><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag needs to be fact-checked with the cited source(s). (July 2020)">verification needed</span></a></i>&#93;</sup>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014fcip.book.....H">2014fcip.book.....H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F8934">10.1142/8934</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-4551-07-6" title="Special:BookSources/978-981-4551-07-6"><bdi>978-981-4551-07-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Calculus&amp;rft.place=New+Jersey&amp;rft.pages=54Category%3AAll+pages+needing+factual+verificationCategory%3AWikipedia+articles+needing+factual+verification+from+July+2020%3Csup+class%3D%22noprint+Inline-Template+%22+style%3D%22white-space%3Anowrap%3B%22%3E%26%2391%3B%3Ci%3EWikipedia%3AVerifiability%7C%3Cspan+title%3D%22The+material+near+this+tag+needs+to+be+fact-checked+with+the+cited+source%28s%29.%26%2332%3B%28July+2020%29%22%3Everification+needed%3C%2Fspan%3E%3C%2Fi%3E%26%2393%3B%3C%2Fsup%3E&amp;rft.edition=2nd&amp;rft.pub=World+Scientific+Publishing+Co.&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1142%2F8934&amp;rft_id=info%3Abibcode%2F2014fcip.book.....H&amp;rft.isbn=978-981-4551-07-6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaputo1967" class="citation journal cs1">Caputo, Michele (1967). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-246x.1967.tb02303.x">"Linear model of dissipation whose <i>Q</i> is almost frequency independent. II"</a>. <i>Geophysical Journal International</i>. <b>13</b> (5): 529–539. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967GeoJ...13..529C">1967GeoJ...13..529C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-246x.1967.tb02303.x">10.1111/j.1365-246x.1967.tb02303.x</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geophysical+Journal+International&amp;rft.atitle=Linear+model+of+dissipation+whose+Q+is+almost+frequency+independent.+II&amp;rft.volume=13&amp;rft.issue=5&amp;rft.pages=529-539&amp;rft.date=1967&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1365-246x.1967.tb02303.x&amp;rft_id=info%3Abibcode%2F1967GeoJ...13..529C&amp;rft.aulast=Caputo&amp;rft.aufirst=Michele&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-246x.1967.tb02303.x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaputoFabrizio2015" class="citation journal cs1">Caputo, Michele; Fabrizio, Mauro (2015). <a rel="nofollow" class="external text" href="https://www.naturalspublishing.com/ContIss.asp?IssID=255">"A new Definition of Fractional Derivative without Singular Kernel"</a>. <i>Progress in Fractional Differentiation and Applications</i>. <b>1</b> (2): 73–85<span class="reference-accessdate">. Retrieved <span class="nowrap">7 August</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Fractional+Differentiation+and+Applications&amp;rft.atitle=A+new+Definition+of+Fractional+Derivative+without+Singular+Kernel&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=73-85&amp;rft.date=2015&amp;rft.aulast=Caputo&amp;rft.aufirst=Michele&amp;rft.au=Fabrizio%2C+Mauro&amp;rft_id=https%3A%2F%2Fwww.naturalspublishing.com%2FContIss.asp%3FIssID%3D255&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Algahtani2016-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Algahtani2016_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Algahtani2016_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Algahtani2016_20-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlgahtani2016" class="citation journal cs1">Algahtani, Obaid Jefain Julaighim (2016-08-01). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0960077916301059">"Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model"</a>. <i>Chaos, Solitons &amp; Fractals</i>. Nonlinear Dynamics and Complexity. <b>89</b>: 552–559. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016CSF....89..552A">2016CSF....89..552A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.chaos.2016.03.026">10.1016/j.chaos.2016.03.026</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0960-0779">0960-0779</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chaos%2C+Solitons+%26+Fractals&amp;rft.atitle=Comparing+the+Atangana%E2%80%93Baleanu+and+Caputo%E2%80%93Fabrizio+derivative+with+fractional+order%3A+Allen+Cahn+model&amp;rft.volume=89&amp;rft.pages=552-559&amp;rft.date=2016-08-01&amp;rft.issn=0960-0779&amp;rft_id=info%3Adoi%2F10.1016%2Fj.chaos.2016.03.026&amp;rft_id=info%3Abibcode%2F2016CSF....89..552A&amp;rft.aulast=Algahtani&amp;rft.aufirst=Obaid+Jefain+Julaighim&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0960077916301059&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-doiserbia.nb.rs-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-doiserbia.nb.rs_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-doiserbia.nb.rs_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtanganaBaleanu2016" class="citation journal cs1">Atangana, Abdon; Baleanu, Dumitru (2016). <a rel="nofollow" class="external text" href="http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361600018A">"New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model"</a>. <i>Thermal Science</i>. <b>20</b> (2): 763–769. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.03408">1602.03408</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2298%2FTSCI160111018A">10.2298/TSCI160111018A</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0354-9836">0354-9836</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Thermal+Science&amp;rft.atitle=New+fractional+derivatives+with+nonlocal+and+non-singular+kernel%3A+Theory+and+application+to+heat+transfer+model&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=763-769&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1602.03408&amp;rft.issn=0354-9836&amp;rft_id=info%3Adoi%2F10.2298%2FTSCI160111018A&amp;rft.aulast=Atangana&amp;rft.aufirst=Abdon&amp;rft.au=Baleanu%2C+Dumitru&amp;rft_id=http%3A%2F%2Fwww.doiserbia.nb.rs%2FArticle.aspx%3FID%3D0354-98361600018A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenLiDing2014" class="citation journal cs1">Chen, YangQuan; Li, Changpin; Ding, Hengfei (22 May 2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F653797">"High-Order Algorithms for Riesz Derivative and Their Applications"</a>. <i><a href="/wiki/Abstract_and_Applied_Analysis" title="Abstract and Applied Analysis">Abstract and Applied Analysis</a></i>. <b>2014</b>: 1–17. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F653797">10.1155/2014/653797</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Abstract+and+Applied+Analysis&amp;rft.atitle=High-Order+Algorithms+for+Riesz+Derivative+and+Their+Applications&amp;rft.volume=2014&amp;rft.pages=1-17&amp;rft.date=2014-05-22&amp;rft_id=info%3Adoi%2F10.1155%2F2014%2F653797&amp;rft.aulast=Chen&amp;rft.aufirst=YangQuan&amp;rft.au=Li%2C+Changpin&amp;rft.au=Ding%2C+Hengfei&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2014%252F653797&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBayın2016" class="citation journal cs1">Bayın, Selçuk Ş. (5 December 2016). "Definition of the Riesz derivative and its application to space fractional quantum mechanics". <i>Journal of Mathematical Physics</i>. <b>57</b> (12): 123501. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.03046">1612.03046</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JMP....57l3501B">2016JMP....57l3501B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4968819">10.1063/1.4968819</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119099201">119099201</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Definition+of+the+Riesz+derivative+and+its+application+to+space+fractional+quantum+mechanics&amp;rft.volume=57&amp;rft.issue=12&amp;rft.pages=123501&amp;rft.date=2016-12-05&amp;rft_id=info%3Aarxiv%2F1612.03046&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119099201%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.4968819&amp;rft_id=info%3Abibcode%2F2016JMP....57l3501B&amp;rft.aulast=Bay%C4%B1n&amp;rft.aufirst=Sel%C3%A7uk+%C5%9E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-deOliveira2014-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-deOliveira2014_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-deOliveira2014_24-11"><sup><i><b>l</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_OliveiraTenreiro_Machado2014" class="citation journal cs1">de Oliveira, Edmundo Capelas; Tenreiro Machado, José António (2014-06-10). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F238459">"A Review of Definitions for Fractional Derivatives and Integral"</a>. <i>Mathematical Problems in Engineering</i>. <b>2014</b>: 1–6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F238459">10.1155/2014/238459</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10400.22%2F5497">10400.22/5497</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Problems+in+Engineering&amp;rft.atitle=A+Review+of+Definitions+for+Fractional+Derivatives+and+Integral&amp;rft.volume=2014&amp;rft.pages=1-6&amp;rft.date=2014-06-10&amp;rft_id=info%3Ahdl%2F10400.22%2F5497&amp;rft_id=info%3Adoi%2F10.1155%2F2014%2F238459&amp;rft.aulast=de+Oliveira&amp;rft.aufirst=Edmundo+Capelas&amp;rft.au=Tenreiro+Machado%2C+Jos%C3%A9+Ant%C3%B3nio&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2014%252F238459&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Aslan2015-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aslan2015_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aslan2015_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Aslan2015_25-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAslan2015" class="citation journal cs1">Aslan, İsmail (2015-01-15). "An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation". <i>Mathematical Methods in the Applied Sciences</i>. <b>38</b> (1): 27–36. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015MMAS...38...27A">2015MMAS...38...27A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fmma.3047">10.1002/mma.3047</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11147%2F5562">11147/5562</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120881978">120881978</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Methods+in+the+Applied+Sciences&amp;rft.atitle=An+analytic+approach+to+a+class+of+fractional+differential-difference+equations+of+rational+type+via+symbolic+computation&amp;rft.volume=38&amp;rft.issue=1&amp;rft.pages=27-36&amp;rft.date=2015-01-15&amp;rft_id=info%3Ahdl%2F11147%2F5562&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120881978%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fmma.3047&amp;rft_id=info%3Abibcode%2F2015MMAS...38...27A&amp;rft.aulast=Aslan&amp;rft.aufirst=%C4%B0smail&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaLi2017" class="citation journal cs1">Ma, Li; Li, Changpin (2017-05-11). "On hadamard fractional calculus". <i>Fractals</i>. <b>25</b> (3): 1750033–2980. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Fract..2550033M">2017Fract..2550033M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218348X17500335">10.1142/S0218348X17500335</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0218-348X">0218-348X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fractals&amp;rft.atitle=On+hadamard+fractional+calculus&amp;rft.volume=25&amp;rft.issue=3&amp;rft.pages=1750033-2980&amp;rft.date=2017-05-11&amp;rft.issn=0218-348X&amp;rft_id=info%3Adoi%2F10.1142%2FS0218348X17500335&amp;rft_id=info%3Abibcode%2F2017Fract..2550033M&amp;rft.aulast=Ma&amp;rft.aufirst=Li&amp;rft.au=Li%2C+Changpin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller1975" class="citation book cs1">Miller, Kenneth S. (1975). "The Weyl fractional calculus". In Ross, Bertram (ed.). <i>Fractional Calculus and Its Applications</i>. Lecture Notes in Mathematics. Vol.&#160;457. Springer. pp.&#160;80–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbfb0067098">10.1007/bfb0067098</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-69975-0" title="Special:BookSources/978-3-540-69975-0"><bdi>978-3-540-69975-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Weyl+fractional+calculus&amp;rft.btitle=Fractional+Calculus+and+Its+Applications&amp;rft.series=Lecture+Notes+in+Mathematics&amp;rft.pages=80-89&amp;rft.pub=Springer&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.1007%2Fbfb0067098&amp;rft.isbn=978-3-540-69975-0&amp;rft.aulast=Miller&amp;rft.aufirst=Kenneth+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;work=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerrari2018" class="citation journal cs1">Ferrari, Fausto (January 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath6010006">"Weyl and Marchaud Derivatives: A Forgotten History"</a>. <i>Mathematics</i>. <b>6</b> (1): 6. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1711.08070">1711.08070</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath6010006">10.3390/math6010006</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics&amp;rft.atitle=Weyl+and+Marchaud+Derivatives%3A+A+Forgotten+History&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=6&amp;rft.date=2018-01&amp;rft_id=info%3Aarxiv%2F1711.08070&amp;rft_id=info%3Adoi%2F10.3390%2Fmath6010006&amp;rft.aulast=Ferrari&amp;rft.aufirst=Fausto&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fmath6010006&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Ali-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ali_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhalili_Golmankhaneh2022" class="citation book cs1">Khalili Golmankhaneh, Alireza (2022). <a rel="nofollow" class="external text" href="https://worldscientific.com/worldscibooks/10.1142/12988#t=aboutBook"><i>Fractal Calculus and its Applications</i></a>. Singapore: World Scientific Pub Co Inc. p.&#160;328. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F12988">10.1142/12988</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-126-110-7" title="Special:BookSources/978-981-126-110-7"><bdi>978-981-126-110-7</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248575991">248575991</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractal+Calculus+and+its+Applications&amp;rft.place=Singapore&amp;rft.pages=328&amp;rft.pub=World+Scientific+Pub+Co+Inc&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248575991%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1142%2F12988&amp;rft.isbn=978-981-126-110-7&amp;rft.aulast=Khalili+Golmankhaneh&amp;rft.aufirst=Alireza&amp;rft_id=https%3A%2F%2Fworldscientific.com%2Fworldscibooks%2F10.1142%2F12988%23t%3DaboutBook&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersonUlness2015" class="citation journal cs1">Anderson, Douglas R.; Ulness, Darin J. (2015-06-01). "Properties of the Katugampola fractional derivative with potential application in quantum mechanics". <i>Journal of Mathematical Physics</i>. <b>56</b> (6): 063502. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015JMP....56f3502A">2015JMP....56f3502A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4922018">10.1063/1.4922018</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-2488">0022-2488</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Properties+of+the+Katugampola+fractional+derivative+with+potential+application+in+quantum+mechanics&amp;rft.volume=56&amp;rft.issue=6&amp;rft.pages=063502&amp;rft.date=2015-06-01&amp;rft.issn=0022-2488&amp;rft_id=info%3Adoi%2F10.1063%2F1.4922018&amp;rft_id=info%3Abibcode%2F2015JMP....56f3502A&amp;rft.aulast=Anderson&amp;rft.aufirst=Douglas+R.&amp;rft.au=Ulness%2C+Darin+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaputoFabrizio2016" class="citation journal cs1">Caputo, Michele; Fabrizio, Mauro (2016-01-01). "Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels". <i>Progress in Fractional Differentiation and Applications</i>. <b>2</b> (1): 1–11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.18576%2Fpfda%2F020101">10.18576/pfda/020101</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2356-9336">2356-9336</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Fractional+Differentiation+and+Applications&amp;rft.atitle=Applications+of+New+Time+and+Spatial+Fractional+Derivatives+with+Exponential+Kernels&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=1-11&amp;rft.date=2016-01-01&amp;rft_id=info%3Adoi%2F10.18576%2Fpfda%2F020101&amp;rft.issn=2356-9336&amp;rft.aulast=Caputo&amp;rft.aufirst=Michele&amp;rft.au=Fabrizio%2C+Mauro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"> C. F. M. Coimbra (2003) “Mechanics with Variable Order Differential Equations,” Annalen der Physik (12), No. 11-12, pp. 692-703.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">L. E. S. Ramirez, and C. F. M. Coimbra (2007) “A Variable Order Constitutive Relation for Viscoelasticity”– Annalen der Physik (16) 7-8, pp. 543-552.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F. M. Coimbra (2008) “Variable Order Modeling of Diffusive-Convective Effects on the Oscillatory Flow Past a Sphere” – Journal of Vibration and Control, (14) 9-10, pp. 1569-1672.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">G. Diaz, and C. F. M. Coimbra (2009) “Nonlinear Dynamics and Control of a Variable Order Oscillator with Application to the van der Pol Equation” – Nonlinear Dynamics, 56, pp. 145—157.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">L. E. S. Ramirez, and C. F. M. Coimbra (2010) “On the Selection and Meaning of Variable Order Operators for Dynamic Modeling”– International Journal of Differential Equations Vol. 2010, Article ID 846107.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"> L. E. S. Ramirez and C. F. M. Coimbra (2011) “On the Variable Order Dynamics of the Nonlinear Wake Caused by a Sedimenting Particle,” Physica D (240) 13, pp. 1111-1118.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">E. A. Lim, M. H. Kobayashi and C. F. M. Coimbra (2014) “Fractional Dynamics of Tethered Particles in Oscillatory Stokes Flows,” Journal of Fluid Mechanics (746) pp. 606-625.</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">J. Orosco and C. F. M. Coimbra (2016) “On the Control and Stability of Variable Order Mechanical Systems” Nonlinear Dynamics, (86:1), pp. 695–710.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">E. C. de Oliveira, J. A. Tenreiro Machado (2014), "A Review of Definitions for Fractional Derivatives and Integral", Mathematical Problems in Engineering, vol. 2014, Article ID 238459.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">S. Shen, F. Liu, J. Chen, I. Turner, and V. Anh (2012) "Numerical techniques for the variable order time fractional diffusion equation" Applied Mathematics and Computation Volume 218, Issue 22, pp. 10861-10870.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">H. Zhang and S. Shen, "The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equation," Numer. Math. Theor. Meth. Appl. Vol. 6, No. 4, pp. 571-585.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">H. Zhang, F. Liu, M. S. Phanikumar, and M. M. Meerschaert (2013) "A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model," Computers &amp; Mathematics with Applications, 66, issue 5, pp. 693–701.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"> C. F. M. Coimbra “Methods of using generalized order differentiation and integration of input variables to forecast trends," U.S. Patent Application 13,641,083 (2013). </span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">J. Orosco and C. F. M. Coimbra (2018) “Variable-order Modeling of Nonlocal Emergence in Many-body Systems: Application to Radiative Dispersion,” Physical Review E (98), 032208.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mathpages.com/home/kmath616/kmath616.htm.htm">"Fractional Calculus"</a>. <i>MathPages.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathPages.com&amp;rft.atitle=Fractional+Calculus&amp;rft_id=http%3A%2F%2Fwww.mathpages.com%2Fhome%2Fkmath616%2Fkmath616.htm.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdélyi1950–1951" class="citation journal cs1"><a href="/wiki/Arthur_Erd%C3%A9lyi" title="Arthur Erdélyi">Erdélyi, Arthur</a> (1950–1951). "On some functional transformations". <i>Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino</i>. <b>10</b>: 217–234. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0047818">0047818</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rendiconti+del+Seminario+Matematico+dell%27Universit%C3%A0+e+del+Politecnico+di+Torino&amp;rft.atitle=On+some+functional+transformations&amp;rft.volume=10&amp;rft.pages=217-234&amp;rft.date=1950%2F1951&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0047818%23id-name%3DMR&amp;rft.aulast=Erd%C3%A9lyi&amp;rft.aufirst=Arthur&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKober1940" class="citation journal cs1 cs1-prop-long-vol">Kober, Hermann (1940). "On fractional integrals and derivatives". <i>The Quarterly Journal of Mathematics</i>. os-11 (1): 193–211. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1940QJMat..11..193K">1940QJMat..11..193K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fqmath%2Fos-11.1.193">10.1093/qmath/os-11.1.193</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Quarterly+Journal+of+Mathematics&amp;rft.atitle=On+fractional+integrals+and+derivatives&amp;rft.volume=os-11&amp;rft.issue=1&amp;rft.pages=193-211&amp;rft.date=1940&amp;rft_id=info%3Adoi%2F10.1093%2Fqmath%2Fos-11.1.193&amp;rft_id=info%3Abibcode%2F1940QJMat..11..193K&amp;rft.aulast=Kober&amp;rft.aufirst=Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWheatcraftMeerschaert2008" class="citation journal cs1">Wheatcraft, Stephen W.; Meerschaert, Mark M. (October 2008). <a rel="nofollow" class="external text" href="https://www.stt.msu.edu/users/mcubed/fCOM.pdf">"Fractional conservation of mass"</a> <span class="cs1-format">(PDF)</span>. <i>Advances in Water Resources</i>. <b>31</b> (10): 1377–1381. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008AdWR...31.1377W">2008AdWR...31.1377W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.advwatres.2008.07.004">10.1016/j.advwatres.2008.07.004</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0309-1708">0309-1708</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Water+Resources&amp;rft.atitle=Fractional+conservation+of+mass&amp;rft.volume=31&amp;rft.issue=10&amp;rft.pages=1377-1381&amp;rft.date=2008-10&amp;rft.issn=0309-1708&amp;rft_id=info%3Adoi%2F10.1016%2Fj.advwatres.2008.07.004&amp;rft_id=info%3Abibcode%2F2008AdWR...31.1377W&amp;rft.aulast=Wheatcraft&amp;rft.aufirst=Stephen+W.&amp;rft.au=Meerschaert%2C+Mark+M.&amp;rft_id=https%3A%2F%2Fwww.stt.msu.edu%2Fusers%2Fmcubed%2FfCOM.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text">Oldham, K. B. <i>Analytical Chemistry</i> 44(1) <b>1972</b> 196-198.</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">Pospíšil, L. et al. <i>Electrochimica Acta</i> 300 <b>2019</b> 284-289.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtanganaBildik2013" class="citation journal cs1">Atangana, Abdon; Bildik, Necdet (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2013%2F543026">"The Use of Fractional Order Derivative to Predict the Groundwater Flow"</a>. <i>Mathematical Problems in Engineering</i>. <b>2013</b>: 1–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2013%2F543026">10.1155/2013/543026</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Problems+in+Engineering&amp;rft.atitle=The+Use+of+Fractional+Order+Derivative+to+Predict+the+Groundwater+Flow&amp;rft.volume=2013&amp;rft.pages=1-9&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1155%2F2013%2F543026&amp;rft.aulast=Atangana&amp;rft.aufirst=Abdon&amp;rft.au=Bildik%2C+Necdet&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2013%252F543026&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtanganaVermeulen2014" class="citation journal cs1">Atangana, Abdon; Vermeulen, P. D. (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F381753">"Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation"</a>. <i>Abstract and Applied Analysis</i>. <b>2014</b>: 1–11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F381753">10.1155/2014/381753</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Abstract+and+Applied+Analysis&amp;rft.atitle=Analytical+Solutions+of+a+Space-Time+Fractional+Derivative+of+Groundwater+Flow+Equation&amp;rft.volume=2014&amp;rft.pages=1-11&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1155%2F2014%2F381753&amp;rft.aulast=Atangana&amp;rft.aufirst=Abdon&amp;rft.au=Vermeulen%2C+P.+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2014%252F381753&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBensonWheatcraftMeerschaert2000" class="citation journal cs1">Benson, D.; Wheatcraft, S.; Meerschaert, M. (2000). "Application of a fractional advection-dispersion equation". <i>Water Resources Research</i>. <b>36</b> (6): 1403–1412. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000WRR....36.1403B">2000WRR....36.1403B</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.4838">10.1.1.1.4838</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2000wr900031">10.1029/2000wr900031</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7669161">7669161</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Water+Resources+Research&amp;rft.atitle=Application+of+a+fractional+advection-dispersion+equation&amp;rft.volume=36&amp;rft.issue=6&amp;rft.pages=1403-1412&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.1.4838%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7669161%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1029%2F2000wr900031&amp;rft_id=info%3Abibcode%2F2000WRR....36.1403B&amp;rft.aulast=Benson&amp;rft.aufirst=D.&amp;rft.au=Wheatcraft%2C+S.&amp;rft.au=Meerschaert%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBensonWheatcraftMeerschaert2000" class="citation journal cs1">Benson, D.; Wheatcraft, S.; Meerschaert, M. (2000). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2000wr900032">"The fractional-order governing equation of Lévy motion"</a>. <i>Water Resources Research</i>. <b>36</b> (6): 1413–1423. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000WRR....36.1413B">2000WRR....36.1413B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2000wr900032">10.1029/2000wr900032</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16579630">16579630</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Water+Resources+Research&amp;rft.atitle=The+fractional-order+governing+equation+of+L%C3%A9vy+motion&amp;rft.volume=36&amp;rft.issue=6&amp;rft.pages=1413-1423&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16579630%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1029%2F2000wr900032&amp;rft_id=info%3Abibcode%2F2000WRR....36.1413B&amp;rft.aulast=Benson&amp;rft.aufirst=D.&amp;rft.au=Wheatcraft%2C+S.&amp;rft.au=Meerschaert%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2000wr900032&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWheatcraftMeerschaertSchumerBenson2001" class="citation journal cs1">Wheatcraft, Stephen W.; Meerschaert, Mark M.; Schumer, Rina; Benson, David A. (2001-01-01). "Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests". <i><a href="/w/index.php?title=Transport_in_Porous_Media&amp;action=edit&amp;redlink=1" class="new" title="Transport in Porous Media (page does not exist)">Transport in Porous Media</a></i>. <b>42</b> (1–2): 211–240. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.2062">10.1.1.58.2062</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1006733002131">10.1023/A:1006733002131</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1573-1634">1573-1634</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189899853">189899853</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transport+in+Porous+Media&amp;rft.atitle=Fractional+Dispersion%2C+L%C3%A9vy+Motion%2C+and+the+MADE+Tracer+Tests&amp;rft.volume=42&amp;rft.issue=1%E2%80%932&amp;rft.pages=211-240&amp;rft.date=2001-01-01&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.58.2062%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189899853%23id-name%3DS2CID&amp;rft.issn=1573-1634&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1006733002131&amp;rft.aulast=Wheatcraft&amp;rft.aufirst=Stephen+W.&amp;rft.au=Meerschaert%2C+Mark+M.&amp;rft.au=Schumer%2C+Rina&amp;rft.au=Benson%2C+David+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Atangana2014a-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-Atangana2014a_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Atangana2014a_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtanganaKilicman2014" class="citation journal cs1">Atangana, Abdon; Kilicman, Adem (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F542809">"On the Generalized Mass Transport Equation to the Concept of Variable Fractional Derivative"</a>. <i>Mathematical Problems in Engineering</i>. <b>2014</b>: 9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2014%2F542809">10.1155/2014/542809</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Problems+in+Engineering&amp;rft.atitle=On+the+Generalized+Mass+Transport+Equation+to+the+Concept+of+Variable+Fractional+Derivative&amp;rft.volume=2014&amp;rft.pages=9&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1155%2F2014%2F542809&amp;rft.aulast=Atangana&amp;rft.aufirst=Abdon&amp;rft.au=Kilicman%2C+Adem&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2014%252F542809&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMetzlerKlafter2000" class="citation journal cs1">Metzler, R.; Klafter, J. (2000). "The random walk's guide to anomalous diffusion: a fractional dynamics approach". <i>Phys. Rep</i>. <b>339</b> (1): 1–77. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000PhR...339....1M">2000PhR...339....1M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0370-1573%2800%2900070-3">10.1016/s0370-1573(00)00070-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Rep.&amp;rft.atitle=The+random+walk%27s+guide+to+anomalous+diffusion%3A+a+fractional+dynamics+approach&amp;rft.volume=339&amp;rft.issue=1&amp;rft.pages=1-77&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1016%2Fs0370-1573%2800%2900070-3&amp;rft_id=info%3Abibcode%2F2000PhR...339....1M&amp;rft.aulast=Metzler&amp;rft.aufirst=R.&amp;rft.au=Klafter%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMainardiLuchkoPagnini2001" class="citation journal cs1">Mainardi, F.; <a href="/wiki/Yuri_Luchko" title="Yuri Luchko">Luchko, Y.</a>; Pagnini, G. (2001). "The fundamental solution of the space-time fractional diffusion equation". <i>Fractional Calculus and Applied Analysis</i>. <b>4</b> (2): 153–192. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0702419">cond-mat/0702419</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007cond.mat..2419M">2007cond.mat..2419M</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fractional+Calculus+and+Applied+Analysis&amp;rft.atitle=The+fundamental+solution+of+the+space-time+fractional+diffusion+equation&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=153-192&amp;rft.date=2001&amp;rft_id=info%3Aarxiv%2Fcond-mat%2F0702419&amp;rft_id=info%3Abibcode%2F2007cond.mat..2419M&amp;rft.aulast=Mainardi&amp;rft.aufirst=F.&amp;rft.au=Luchko%2C+Y.&amp;rft.au=Pagnini%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGorenfloMainardi2007" class="citation book cs1">Gorenflo, Rudolf; Mainardi, Francesco (2007). "Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk". In Rangarajan, G.; Ding, M. (eds.). <i>Processes with Long-Range Correlations</i>. Lecture Notes in Physics. Vol.&#160;621. pp.&#160;148–166. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0709.3990">0709.3990</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003LNP...621..148G">2003LNP...621..148G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-44832-2_8">10.1007/3-540-44832-2_8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-40129-2" title="Special:BookSources/978-3-540-40129-2"><bdi>978-3-540-40129-2</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14946568">14946568</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Fractional+Diffusion+Processes%3A+Probability+Distributions+and+Continuous+Time+Random+Walk&amp;rft.btitle=Processes+with+Long-Range+Correlations&amp;rft.series=Lecture+Notes+in+Physics&amp;rft.pages=148-166&amp;rft.date=2007&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14946568%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2003LNP...621..148G&amp;rft_id=info%3Aarxiv%2F0709.3990&amp;rft_id=info%3Adoi%2F10.1007%2F3-540-44832-2_8&amp;rft.isbn=978-3-540-40129-2&amp;rft.aulast=Gorenflo&amp;rft.aufirst=Rudolf&amp;rft.au=Mainardi%2C+Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColbrookMaHopkinsSquire2017" class="citation journal cs1">Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2Fstx261">"Scaling laws of passive-scalar diffusion in the interstellar medium"</a>. <i><a href="/wiki/Monthly_Notices_of_the_Royal_Astronomical_Society" title="Monthly Notices of the Royal Astronomical Society">Monthly Notices of the Royal Astronomical Society</a></i>. <b>467</b> (2): 2421–2429. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1610.06590">1610.06590</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.2421C">2017MNRAS.467.2421C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2Fstx261">10.1093/mnras/stx261</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20203131">20203131</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=Scaling+laws+of+passive-scalar+diffusion+in+the+interstellar+medium&amp;rft.volume=467&amp;rft.issue=2&amp;rft.pages=2421-2429&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1610.06590&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20203131%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1093%2Fmnras%2Fstx261&amp;rft_id=info%3Abibcode%2F2017MNRAS.467.2421C&amp;rft.aulast=Colbrook&amp;rft.aufirst=Matthew+J.&amp;rft.au=Ma%2C+Xiangcheng&amp;rft.au=Hopkins%2C+Philip+F.&amp;rft.au=Squire%2C+Jonathan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fmnras%252Fstx261&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTenreiro_MachadoSilvaBarbosaJesus2010" class="citation journal cs1">Tenreiro Machado, J. A.; Silva, Manuel F.; Barbosa, Ramiro S.; Jesus, Isabel S.; Reis, Cecília M.; Marcos, Maria G.; Galhano, Alexandra F. (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2010%2F639801">"Some Applications of Fractional Calculus in Engineering"</a>. <i><a href="/wiki/Mathematical_Problems_in_Engineering" class="mw-redirect" title="Mathematical Problems in Engineering">Mathematical Problems in Engineering</a></i>. <b>2010</b>: 1–34. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2010%2F639801">10.1155/2010/639801</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10400.22%2F13143">10400.22/13143</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Problems+in+Engineering&amp;rft.atitle=Some+Applications+of+Fractional+Calculus+in+Engineering&amp;rft.volume=2010&amp;rft.pages=1-34&amp;rft.date=2010&amp;rft_id=info%3Ahdl%2F10400.22%2F13143&amp;rft_id=info%3Adoi%2F10.1155%2F2010%2F639801&amp;rft.aulast=Tenreiro+Machado&amp;rft.aufirst=J.+A.&amp;rft.au=Silva%2C+Manuel+F.&amp;rft.au=Barbosa%2C+Ramiro+S.&amp;rft.au=Jesus%2C+Isabel+S.&amp;rft.au=Reis%2C+Cec%C3%ADlia+M.&amp;rft.au=Marcos%2C+Maria+G.&amp;rft.au=Galhano%2C+Alexandra+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2010%252F639801&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolmNäsholm2011" class="citation journal cs1">Holm, S.; Näsholm, S. P. (2011). "A causal and fractional all-frequency wave equation for lossy media". <i>Journal of the Acoustical Society of America</i>. <b>130</b> (4): 2195–2201. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011ASAJ..130.2195H">2011ASAJ..130.2195H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1121%2F1.3631626">10.1121/1.3631626</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10852%2F103311">10852/103311</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21973374">21973374</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7804006">7804006</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Acoustical+Society+of+America&amp;rft.atitle=A+causal+and+fractional+all-frequency+wave+equation+for+lossy+media&amp;rft.volume=130&amp;rft.issue=4&amp;rft.pages=2195-2201&amp;rft.date=2011&amp;rft_id=info%3Ahdl%2F10852%2F103311&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7804006%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2011ASAJ..130.2195H&amp;rft_id=info%3Apmid%2F21973374&amp;rft_id=info%3Adoi%2F10.1121%2F1.3631626&amp;rft.aulast=Holm&amp;rft.aufirst=S.&amp;rft.au=N%C3%A4sholm%2C+S.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNäsholmHolm2011" class="citation journal cs1">Näsholm, S. P.; Holm, S. (2011). "Linking multiple relaxation, power-law attenuation, and fractional wave equations". <i>Journal of the Acoustical Society of America</i>. <b>130</b> (5): 3038–3045. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011ASAJ..130.3038N">2011ASAJ..130.3038N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1121%2F1.3641457">10.1121/1.3641457</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10852%2F103312">10852/103312</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22087931">22087931</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10376751">10376751</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Acoustical+Society+of+America&amp;rft.atitle=Linking+multiple+relaxation%2C+power-law+attenuation%2C+and+fractional+wave+equations&amp;rft.volume=130&amp;rft.issue=5&amp;rft.pages=3038-3045&amp;rft.date=2011&amp;rft_id=info%3Ahdl%2F10852%2F103312&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10376751%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2011ASAJ..130.3038N&amp;rft_id=info%3Apmid%2F22087931&amp;rft_id=info%3Adoi%2F10.1121%2F1.3641457&amp;rft.aulast=N%C3%A4sholm&amp;rft.aufirst=S.+P.&amp;rft.au=Holm%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Nasholm2-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nasholm2_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNäsholmHolm2012" class="citation journal cs1">Näsholm, S. P.; Holm, S. (2012). "On a Fractional Zener Elastic Wave Equation". <i>Fract. Calc. Appl. Anal</i>. <b>16</b>: 26–50. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1212.4024">1212.4024</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2478%2Fs13540-013-0003-1">10.2478/s13540-013-0003-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120348311">120348311</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fract.+Calc.+Appl.+Anal.&amp;rft.atitle=On+a+Fractional+Zener+Elastic+Wave+Equation&amp;rft.volume=16&amp;rft.pages=26-50&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1212.4024&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120348311%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.2478%2Fs13540-013-0003-1&amp;rft.aulast=N%C3%A4sholm&amp;rft.aufirst=S.+P.&amp;rft.au=Holm%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-HolmNasholm2014-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-HolmNasholm2014_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolmNäsholm2013" class="citation journal cs1">Holm, S.; Näsholm, S. P. (2013). "Comparison of fractional wave equations for power law attenuation in ultrasound and elastography". <i>Ultrasound in Medicine &amp; Biology</i>. <b>40</b> (4): 695–703. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1306.6507">1306.6507</a></span>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.765.120">10.1.1.765.120</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ultrasmedbio.2013.09.033">10.1016/j.ultrasmedbio.2013.09.033</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24433745">24433745</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11983716">11983716</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ultrasound+in+Medicine+%26+Biology&amp;rft.atitle=Comparison+of+fractional+wave+equations+for+power+law+attenuation+in+ultrasound+and+elastography&amp;rft.volume=40&amp;rft.issue=4&amp;rft.pages=695-703&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11983716%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ultrasmedbio.2013.09.033&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.765.120%23id-name%3DCiteSeerX&amp;rft_id=info%3Apmid%2F24433745&amp;rft_id=info%3Aarxiv%2F1306.6507&amp;rft.aulast=Holm&amp;rft.aufirst=S.&amp;rft.au=N%C3%A4sholm%2C+S.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Holm2019-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Holm2019_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolm2019" class="citation book cs1">Holm, S. (2019). <a rel="nofollow" class="external text" href="https://link.springer.com/book/10.1007/978-3-030-14927-7"><i>Waves with Power-Law Attenuation</i></a>. Springer and Acoustical Society of America Press. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019wpla.book.....H">2019wpla.book.....H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-14927-7">10.1007/978-3-030-14927-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-14926-0" title="Special:BookSources/978-3-030-14926-0"><bdi>978-3-030-14926-0</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145880744">145880744</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Waves+with+Power-Law+Attenuation&amp;rft.pub=Springer+and+Acoustical+Society+of+America+Press&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-14927-7&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145880744%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019wpla.book.....H&amp;rft.isbn=978-3-030-14926-0&amp;rft.aulast=Holm&amp;rft.aufirst=S.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-030-14927-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Pandey2016-68"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pandey2016_68-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pandey2016_68-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPandeyHolm2016" class="citation journal cs1">Pandey, Vikash; Holm, Sverre (2016-12-01). "Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations". <i>The Journal of the Acoustical Society of America</i>. <b>140</b> (6): 4225–4236. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.05557">1612.05557</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016ASAJ..140.4225P">2016ASAJ..140.4225P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1121%2F1.4971289">10.1121/1.4971289</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0001-4966">0001-4966</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28039990">28039990</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:29552742">29552742</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&amp;rft.atitle=Connecting+the+grain-shearing+mechanism+of+wave+propagation+in+marine+sediments+to+fractional+order+wave+equations&amp;rft.volume=140&amp;rft.issue=6&amp;rft.pages=4225-4236&amp;rft.date=2016-12-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A29552742%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016ASAJ..140.4225P&amp;rft_id=info%3Aarxiv%2F1612.05557&amp;rft.issn=0001-4966&amp;rft_id=info%3Adoi%2F10.1121%2F1.4971289&amp;rft_id=info%3Apmid%2F28039990&amp;rft.aulast=Pandey&amp;rft.aufirst=Vikash&amp;rft.au=Holm%2C+Sverre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPandeyHolm2016" class="citation journal cs1">Pandey, Vikash; Holm, Sverre (2016-09-23). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.94.032606">"Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity"</a>. <i>Physical Review E</i>. <b>94</b> (3): 032606. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvE..94c2606P">2016PhRvE..94c2606P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.94.032606">10.1103/PhysRevE.94.032606</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10852%2F53091">10852/53091</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27739858">27739858</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+E&amp;rft.atitle=Linking+the+fractional+derivative+and+the+Lomnitz+creep+law+to+non-Newtonian+time-varying+viscosity&amp;rft.volume=94&amp;rft.issue=3&amp;rft.pages=032606&amp;rft.date=2016-09-23&amp;rft_id=info%3Ahdl%2F10852%2F53091&amp;rft_id=info%3Apmid%2F27739858&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevE.94.032606&amp;rft_id=info%3Abibcode%2F2016PhRvE..94c2606P&amp;rft.aulast=Pandey&amp;rft.aufirst=Vikash&amp;rft.au=Holm%2C+Sverre&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevE.94.032606&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaskin2002" class="citation journal cs1">Laskin, N. (2002). "Fractional Schrodinger equation". <i>Phys. Rev. E</i>. <b>66</b> (5): 056108. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0206098">quant-ph/0206098</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhRvE..66e6108L">2002PhRvE..66e6108L</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.6732">10.1.1.252.6732</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.66.056108">10.1103/PhysRevE.66.056108</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12513557">12513557</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7520956">7520956</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Rev.+E&amp;rft.atitle=Fractional+Schrodinger+equation&amp;rft.volume=66&amp;rft.issue=5&amp;rft.pages=056108&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7520956%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2002PhRvE..66e6108L&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.6732%23id-name%3DCiteSeerX&amp;rft_id=info%3Apmid%2F12513557&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevE.66.056108&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0206098&amp;rft.aulast=Laskin&amp;rft.aufirst=N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaskin2018" class="citation book cs1">Laskin, Nick (2018). <i>Fractional Quantum Mechanics</i>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.247.5449">10.1.1.247.5449</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F10541">10.1142/10541</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-322-379-0" title="Special:BookSources/978-981-322-379-0"><bdi>978-981-322-379-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Quantum+Mechanics&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.247.5449%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1142%2F10541&amp;rft.isbn=978-981-322-379-0&amp;rft.aulast=Laskin&amp;rft.aufirst=Nick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhrawyZaky2017" class="citation journal cs1">Bhrawy, A.H.; Zaky, M.A. (2017). "An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations". <i>Applied Numerical Mathematics</i>. <b>111</b>: 197–218. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apnum.2016.09.009">10.1016/j.apnum.2016.09.009</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Numerical+Mathematics&amp;rft.atitle=An+improved+collocation+method+for+multi-dimensional+space%E2%80%93time+variable-order+fractional+Schr%C3%B6dinger+equations&amp;rft.volume=111&amp;rft.pages=197-218&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1016%2Fj.apnum.2016.09.009&amp;rft.aulast=Bhrawy&amp;rft.aufirst=A.H.&amp;rft.au=Zaky%2C+M.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=33" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Articles_regarding_the_history_of_fractional_calculus">Articles regarding the history of fractional calculus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=34" title="Edit section: Articles regarding the history of fractional calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDebnath2004" class="citation journal cs1">Debnath, L. (2004). "A brief historical introduction to fractional calculus". <i>International Journal of Mathematical Education in Science and Technology</i>. <b>35</b> (4): 487–501. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00207390410001686571">10.1080/00207390410001686571</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122198977">122198977</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Mathematical+Education+in+Science+and+Technology&amp;rft.atitle=A+brief+historical+introduction+to+fractional+calculus&amp;rft.volume=35&amp;rft.issue=4&amp;rft.pages=487-501&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1080%2F00207390410001686571&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122198977%23id-name%3DS2CID&amp;rft.aulast=Debnath&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Books">Books</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=35" title="Edit section: Books"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillerRoss1993" class="citation book cs1">Miller, Kenneth S.; Ross, Bertram, eds. (1993). <i>An Introduction to the Fractional Calculus and Fractional Differential Equations</i>. John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-58884-9" title="Special:BookSources/978-0-471-58884-9"><bdi>978-0-471-58884-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Fractional+Calculus+and+Fractional+Differential+Equations&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1993&amp;rft.isbn=978-0-471-58884-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamkoKilbasMarichev1993" class="citation book cs1">Samko, S.; Kilbas, A.A.; Marichev, O. (1993). <i>Fractional Integrals and Derivatives: Theory and Applications</i>. Taylor &amp; Francis Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-2-88124-864-1" title="Special:BookSources/978-2-88124-864-1"><bdi>978-2-88124-864-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Integrals+and+Derivatives%3A+Theory+and+Applications&amp;rft.pub=Taylor+%26+Francis+Books&amp;rft.date=1993&amp;rft.isbn=978-2-88124-864-1&amp;rft.aulast=Samko&amp;rft.aufirst=S.&amp;rft.au=Kilbas%2C+A.A.&amp;rft.au=Marichev%2C+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarpinteriMainardi1998" class="citation book cs1">Carpinteri, A.; Mainardi, F., eds. (1998). <i>Fractals and Fractional Calculus in Continuum Mechanics</i>. Springer-Verlag Telos. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-211-82913-4" title="Special:BookSources/978-3-211-82913-4"><bdi>978-3-211-82913-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractals+and+Fractional+Calculus+in+Continuum+Mechanics&amp;rft.pub=Springer-Verlag+Telos&amp;rft.date=1998&amp;rft.isbn=978-3-211-82913-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgor_Podlubny1998" class="citation book cs1">Igor Podlubny (27 October 1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=K5FdXohLto0C"><i>Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-053198-4" title="Special:BookSources/978-0-08-053198-4"><bdi>978-0-08-053198-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Differential+Equations%3A+An+Introduction+to+Fractional+Derivatives%2C+Fractional+Differential+Equations%2C+to+Methods+of+Their+Solution+and+Some+of+Their+Applications&amp;rft.pub=Elsevier&amp;rft.date=1998-10-27&amp;rft.isbn=978-0-08-053198-4&amp;rft.au=Igor+Podlubny&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DK5FdXohLto0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTarasov2010" class="citation book cs1">Tarasov, V.E. (2010). <a rel="nofollow" class="external text" href="https://link.springer.com/book/10.1007/978-3-642-14003-7"><i>Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media</i></a>. Nonlinear Physical Science. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-14003-7">10.1007/978-3-642-14003-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-14003-7" title="Special:BookSources/978-3-642-14003-7"><bdi>978-3-642-14003-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fractional+Dynamics%3A+Applications+of+Fractional+Calculus+to+Dynamics+of+Particles%2C+Fields+and+Media&amp;rft.series=Nonlinear+Physical+Science&amp;rft.pub=Springer&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-14003-7&amp;rft.isbn=978-3-642-14003-7&amp;rft.aulast=Tarasov&amp;rft.aufirst=V.E.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-642-14003-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiCai2019" class="citation book cs1">Li, Changpin; Cai, Min (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1137/1.9781611975888"><i>Theory and Numerical Approximations of Fractional Integrals and Derivatives</i></a>. SIAM. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F1.9781611975888">10.1137/1.9781611975888</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-61197-587-1" title="Special:BookSources/978-1-61197-587-1"><bdi>978-1-61197-587-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+and+Numerical+Approximations+of+Fractional+Integrals+and+Derivatives&amp;rft.pub=SIAM&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1137%2F1.9781611975888&amp;rft.isbn=978-1-61197-587-1&amp;rft.aulast=Li&amp;rft.aufirst=Changpin&amp;rft.au=Cai%2C+Min&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1137%2F1.9781611975888&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fractional_calculus&amp;action=edit&amp;section=36" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Fractional_calculus"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/FractionalCalculus.html">"Fractional calculus"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Fractional+calculus&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FFractionalCalculus.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mathpages.com/home/kmath616/kmath616.htm.htm">"Fractional Calculus"</a>. <i>MathPages.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathPages.com&amp;rft.atitle=Fractional+Calculus&amp;rft_id=http%3A%2F%2Fwww.mathpages.com%2Fhome%2Fkmath616%2Fkmath616.htm.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.degruyter.com/journal/key/fca/html">Journal of Fractional Calculus and Applied Analysis</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://www.worldcat.org/search?fq=x0:jrnl&amp;q=n2:1314-2224">1314-2224</a> 2015—</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorenzoHartley2002" class="citation web cs1">Lorenzo, Carl F.; Hartley, Tom T. (2002). <a rel="nofollow" class="external text" href="https://www.techbriefs.com/component/content/article/tb/pub/briefs/information-sciences/2264">"Initialized Fractional Calculus"</a>. <i>Tech Briefs</i>. NASA John H. Glenn Research Center.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Tech+Briefs&amp;rft.atitle=Initialized+Fractional+Calculus&amp;rft.date=2002&amp;rft.aulast=Lorenzo&amp;rft.aufirst=Carl+F.&amp;rft.au=Hartley%2C+Tom+T.&amp;rft_id=https%3A%2F%2Fwww.techbriefs.com%2Fcomponent%2Fcontent%2Farticle%2Ftb%2Fpub%2Fbriefs%2Finformation-sciences%2F2264&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerrmann2018" class="citation web cs1">Herrmann, Richard (2018). <a rel="nofollow" class="external text" href="https://fractionalcalculus.org/">"GigaHedron"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=GigaHedron&amp;rft.date=2018&amp;rft.aulast=Herrmann&amp;rft.aufirst=Richard&amp;rft_id=https%3A%2F%2Ffractionalcalculus.org%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span> collection of books, articles, preprints, etc.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoverro2005" class="citation web cs1">Loverro, Adam (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20051029113800/http://www.nd.edu/~msen/Teaching/UnderRes/FracCalc.pdf">"History, Definitions, and Applications for the Engineer"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/University_of_Notre_Dame" title="University of Notre Dame">University of Notre Dame</a>. Archived from <a rel="nofollow" class="external text" href="http://www.nd.edu/~msen/Teaching/UnderRes/FracCalc.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2005-10-29.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=History%2C+Definitions%2C+and+Applications+for+the+Engineer&amp;rft.pub=University+of+Notre+Dame&amp;rft.date=2005&amp;rft.aulast=Loverro&amp;rft.aufirst=Adam&amp;rft_id=http%3A%2F%2Fwww.nd.edu%2F~msen%2FTeaching%2FUnderRes%2FFracCalc.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFractional+calculus" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Differential_equations" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differential_equations_topics" title="Template:Differential equations topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differential_equations_topics" title="Template talk:Differential equations topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differential_equations_topics" title="Special:EditPage/Template:Differential equations topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Differential_equations" style="font-size:114%;margin:0 4em"><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classification</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Operations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation for differentiation</a></li> <li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial</a></li> <li><a href="/wiki/Differential-algebraic_system_of_equations" title="Differential-algebraic system of equations">Differential-algebraic</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential</a></li> <li><a href="/wiki/Fractional_differential_equations" class="mw-redirect" title="Fractional differential equations">Fractional</a></li> <li><a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear</a></li> <li><a href="/wiki/Non-linear_differential_equation" class="mw-redirect" title="Non-linear differential equation">Non-linear</a></li> <li><a href="/wiki/Holonomic_function" title="Holonomic function">Holonomic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Attributes of variables</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dependent_and_independent_variables" title="Dependent and independent variables">Dependent and independent variables</a></li> <li><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">Homogeneous</a></li> <li><a href="/wiki/Non-homogeneous_differential_equation" class="mw-redirect" title="Non-homogeneous differential equation">Nonhomogeneous</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Coupled</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Decoupled</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Order</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Degree</a></li> <li><a href="/wiki/Autonomous_system_(mathematics)" title="Autonomous system (mathematics)">Autonomous</a></li> <li><a href="/wiki/Exact_differential_equation" title="Exact differential equation">Exact differential equation</a></li> <li><a href="/wiki/Jet_bundle#Partial_differential_equations" title="Jet bundle">On jet bundles</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Relation to processes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference</a> (discrete analogue)</li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic</a> <ul><li><a href="/wiki/Stochastic_partial_differential_equation" title="Stochastic partial differential equation">Stochastic partial</a></li></ul></li> <li><a href="/wiki/Delay_differential_equation" title="Delay differential equation">Delay</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solutions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Existence/uniqueness</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard–Lindelöf theorem</a></li> <li><a href="/wiki/Peano_existence_theorem" title="Peano existence theorem">Peano existence theorem</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_existence_theorem" title="Carathéodory&#39;s existence theorem">Carathéodory's existence theorem</a></li> <li><a href="/wiki/Cauchy%E2%80%93Kowalevski_theorem" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solution topics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li> <li><a href="/wiki/Phase_portrait" title="Phase portrait">Phase portrait</a></li> <li><a href="/wiki/Phase_space" title="Phase space">Phase space</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov stability</a></li> <li><a href="/wiki/Asymptotic_stability" class="mw-redirect" title="Asymptotic stability">Asymptotic stability</a></li> <li><a href="/wiki/Exponential_stability" title="Exponential stability">Exponential stability</a></li> <li><a href="/wiki/Rate_of_convergence" title="Rate of convergence">Rate of convergence</a></li> <li><a href="/wiki/Power_series_solution_of_differential_equations" title="Power series solution of differential equations">Series solutions</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a> solutions</li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solution methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_mathematical_jargon#Proof_techniques" class="mw-redirect" title="List of mathematical jargon">Inspection</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a></li> <li><a href="/wiki/Separation_of_variables" title="Separation of variables">Separation of variables</a></li> <li><a href="/wiki/Method_of_undetermined_coefficients" title="Method of undetermined coefficients">Method of undetermined coefficients</a></li> <li><a href="/wiki/Variation_of_parameters" title="Variation of parameters">Variation of parameters</a></li> <li><a href="/wiki/Integrating_factor" title="Integrating factor">Integrating factor</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transforms</a></li> <li><a href="/wiki/Euler_method" title="Euler method">Euler method</a></li> <li><a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference method</a></li> <li><a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson method</a></li> <li><a href="/wiki/Runge%E2%80%93Kutta_methods" title="Runge–Kutta methods">Runge–Kutta methods</a></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element method</a></li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume method</a></li> <li><a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin method</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_named_differential_equations" title="List of named differential equations">List of named differential equations</a></li> <li><a href="/wiki/List_of_linear_ordinary_differential_equations" title="List of linear ordinary differential equations">List of linear ordinary differential equations</a></li> <li><a href="/wiki/List_of_nonlinear_ordinary_differential_equations" title="List of nonlinear ordinary differential equations">List of nonlinear ordinary differential equations</a></li> <li><a href="/wiki/List_of_nonlinear_partial_differential_equations" title="List of nonlinear partial differential equations">List of nonlinear partial differential equations</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mathematicians</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></li> <li><a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a></li> <li><a href="/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski" title="Józef Maria Hoene-Wroński">Józef Maria Hoene-Wroński</a></li> <li><a href="/wiki/Ernst_Leonard_Lindel%C3%B6f" title="Ernst Leonard Lindelöf">Ernst Lindelöf</a></li> <li><a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/John_Crank" title="John Crank">John Crank</a></li> <li><a href="/wiki/Phyllis_Nicolson" title="Phyllis Nicolson">Phyllis Nicolson</a></li> <li><a href="/wiki/Carl_David_Tolm%C3%A9_Runge" class="mw-redirect" title="Carl David Tolmé Runge">Carl David Tolmé Runge</a></li> <li><a href="/wiki/Martin_Kutta" title="Martin Kutta">Martin Kutta</a></li> <li><a href="/wiki/Sofya_Kovalevskaya" title="Sofya Kovalevskaya">Sofya Kovalevskaya</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q1339058#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q1339058#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1339058#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/933515/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4722475-7">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh93004015">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="zlomkový počet"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph608640&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX552339">Spain</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007563572305171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7gxbk Cached time: 20241124054355 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.192 seconds Real time usage: 1.514 seconds Preprocessor visited node count: 8041/1000000 Post‐expand include size: 232742/2097152 bytes Template argument size: 7890/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 357933/5000000 bytes Lua time usage: 0.614/10.000 seconds Lua memory usage: 8446180/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1104.265 1 -total 39.56% 436.893 2 Template:Reflist 19.37% 213.867 42 Template:Cite_journal 15.61% 172.363 16 Template:Cite_book 10.38% 114.569 1 Template:Calculus 8.12% 89.648 1 Template:Short_description 5.29% 58.456 2 Template:Harv 5.12% 56.492 2 Template:Pagetype 4.20% 46.396 3 Template:Fix 4.17% 46.011 2 Template:Citation_needed --> <!-- Saved in parser cache with key enwiki:pcache:idhash:229939-0!canonical and timestamp 20241124054355 and revision id 1259125319. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Fractional_calculus&amp;oldid=1259125319">https://en.wikipedia.org/w/index.php?title=Fractional_calculus&amp;oldid=1259125319</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Fractional_calculus" title="Category:Fractional calculus">Fractional calculus</a></li><li><a href="/wiki/Category:Generalizations" title="Category:Generalizations">Generalizations</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_pages_needing_factual_verification" title="Category:All pages needing factual verification">All pages needing factual verification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_factual_verification_from_July_2020" title="Category:Wikipedia articles needing factual verification from July 2020">Wikipedia articles needing factual verification from July 2020</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Pages_using_sidebar_with_the_child_parameter" title="Category:Pages using sidebar with the child parameter">Pages using sidebar with the child parameter</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2020" title="Category:Articles with unsourced statements from November 2020">Articles with unsourced statements from November 2020</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2022" title="Category:Articles with unsourced statements from November 2022">Articles with unsourced statements from November 2022</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_January_2017" title="Category:Wikipedia articles needing clarification from January 2017">Wikipedia articles needing clarification from January 2017</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 November 2024, at 14:20<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Fractional_calculus&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-9j6r5","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"1.192","walltime":"1.514","ppvisitednodes":{"value":8041,"limit":1000000},"postexpandincludesize":{"value":232742,"limit":2097152},"templateargumentsize":{"value":7890,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":357933,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1104.265 1 -total"," 39.56% 436.893 2 Template:Reflist"," 19.37% 213.867 42 Template:Cite_journal"," 15.61% 172.363 16 Template:Cite_book"," 10.38% 114.569 1 Template:Calculus"," 8.12% 89.648 1 Template:Short_description"," 5.29% 58.456 2 Template:Harv"," 5.12% 56.492 2 Template:Pagetype"," 4.20% 46.396 3 Template:Fix"," 4.17% 46.011 2 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.614","limit":"10.000"},"limitreport-memusage":{"value":8446180,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAl-Raeei2021\"] = 1,\n [\"CITEREFAlgahtani2016\"] = 1,\n [\"CITEREFAndersonUlness2015\"] = 1,\n [\"CITEREFAslan2015\"] = 1,\n [\"CITEREFAtanganaBaleanu2016\"] = 1,\n [\"CITEREFAtanganaBildik2013\"] = 1,\n [\"CITEREFAtanganaKilicman2014\"] = 1,\n [\"CITEREFAtanganaVermeulen2014\"] = 1,\n [\"CITEREFBayın2016\"] = 1,\n [\"CITEREFBensonWheatcraftMeerschaert2000\"] = 2,\n [\"CITEREFBertram_Ross1977\"] = 1,\n [\"CITEREFBhrawyZaky2017\"] = 1,\n [\"CITEREFCaputo1967\"] = 1,\n [\"CITEREFCaputoFabrizio2015\"] = 1,\n [\"CITEREFCaputoFabrizio2016\"] = 1,\n [\"CITEREFCarpinteriMainardi1998\"] = 1,\n [\"CITEREFChenLiDing2014\"] = 1,\n [\"CITEREFColbrookMaHopkinsSquire2017\"] = 1,\n [\"CITEREFDaniel_Zwillinger2014\"] = 1,\n [\"CITEREFDebnath2004\"] = 1,\n [\"CITEREFErdélyi1950–1951\"] = 1,\n [\"CITEREFFerrari2018\"] = 1,\n [\"CITEREFGorenfloMainardi2007\"] = 1,\n [\"CITEREFHadamard1892\"] = 1,\n [\"CITEREFHermann2014\"] = 1,\n [\"CITEREFHerrmann2014\"] = 1,\n [\"CITEREFHerrmann2018\"] = 1,\n [\"CITEREFHolm2019\"] = 1,\n [\"CITEREFHolmNäsholm2011\"] = 1,\n [\"CITEREFHolmNäsholm2013\"] = 1,\n [\"CITEREFIgor_Podlubny1998\"] = 1,\n [\"CITEREFKatugampola2014\"] = 1,\n [\"CITEREFKhalili_Golmankhaneh2022\"] = 1,\n [\"CITEREFKilbasSrivastavaTrujillo2006\"] = 1,\n [\"CITEREFKober1940\"] = 1,\n [\"CITEREFLaskin2002\"] = 1,\n [\"CITEREFLaskin2018\"] = 1,\n [\"CITEREFLiCai2019\"] = 1,\n [\"CITEREFLiouville1832\"] = 2,\n [\"CITEREFLorenzoHartley2002\"] = 1,\n [\"CITEREFLoverro2005\"] = 1,\n [\"CITEREFMaLi2017\"] = 1,\n [\"CITEREFMainardi2010\"] = 1,\n [\"CITEREFMainardiLuchkoPagnini2001\"] = 1,\n [\"CITEREFMetzlerKlafter2000\"] = 1,\n [\"CITEREFMiller1975\"] = 1,\n [\"CITEREFMillerRoss1993\"] = 1,\n [\"CITEREFMostafanejad2021\"] = 1,\n [\"CITEREFNiels_Henrik_Abel1823\"] = 1,\n [\"CITEREFNäsholmHolm2011\"] = 1,\n [\"CITEREFNäsholmHolm2012\"] = 1,\n [\"CITEREFPandeyHolm2016\"] = 2,\n [\"CITEREFPodlubnyMaginTrymorush2017\"] = 1,\n [\"CITEREFSamkoKilbasMarichev1993\"] = 1,\n [\"CITEREFTarasov2010\"] = 1,\n [\"CITEREFTenreiro_MachadoSilvaBarbosaJesus2010\"] = 1,\n [\"CITEREFValérioMachadoKiryakova2014\"] = 1,\n [\"CITEREFWheatcraftMeerschaert2008\"] = 1,\n [\"CITEREFWheatcraftMeerschaertSchumerBenson2001\"] = 1,\n [\"CITEREFde_OliveiraTenreiro_Machado2014\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Authority control\"] = 1,\n [\"Calculus\"] = 1,\n [\"Ceil\"] = 1,\n [\"Citation\"] = 2,\n [\"Citation needed\"] = 2,\n [\"Cite book\"] = 16,\n [\"Cite journal\"] = 42,\n [\"Cite web\"] = 3,\n [\"Clarify\"] = 1,\n [\"Closed-closed\"] = 1,\n [\"Collapse bottom\"] = 1,\n [\"Collapse top\"] = 1,\n [\"Differential equations topics\"] = 1,\n [\"Distinguish\"] = 1,\n [\"Em\"] = 1,\n [\"For\"] = 1,\n [\"Google books\"] = 1,\n [\"Harv\"] = 2,\n [\"ISSN\"] = 1,\n [\"Main\"] = 1,\n [\"Math\"] = 30,\n [\"MathPages\"] = 2,\n [\"MathWorld\"] = 1,\n [\"Mvar\"] = 27,\n [\"Nowrap\"] = 19,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 2,\n [\"See also\"] = 1,\n [\"Short description\"] = 1,\n [\"Verify source\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7gxbk","timestamp":"20241124054355","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Fractional calculus","url":"https:\/\/en.wikipedia.org\/wiki\/Fractional_calculus","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1339058","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1339058","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-05-19T14:32:07Z","dateModified":"2024-11-23T14:20:32Z","headline":"branch of mathematical analysis with fractional applications of derivatives and integrals"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10