CINXE.COM
Search results for: small engine design
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: small engine design</title> <meta name="description" content="Search results for: small engine design"> <meta name="keywords" content="small engine design"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="small engine design" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="small engine design"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17025</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: small engine design</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17025</span> A Novel Combustion Engine, Design and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Effati">M. A. Effati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hojjati"> M. R. Hojjati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Razmdideh"> M. Razmdideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20engine" title="combustion engine">combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%0D%0Aelement%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/33327/a-novel-combustion-engine-design-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17024</span> Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Okafor">A. A. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Achebe"> C. H. Achebe</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Chukwuneke"> J. L. Chukwuneke</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Ozoegwu"> C. G. Ozoegwu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivariate%20models" title="bivariate models">bivariate models</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20performance" title=" engine performance"> engine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=injector%20engine" title=" injector engine"> injector engine</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition" title=" spark ignition"> spark ignition</a> </p> <a href="https://publications.waset.org/abstracts/21924/modeling-and-optimization-of-performance-of-four-stroke-spark-ignition-injector-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17023</span> Design Improvement of Aircraft Turbofan Engine Following Bird Ingestion Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Elkholy">Ahmed H. Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircraft gas turbine engines are subject to damage by airborne foreign objects such as birds and garbage dumps. In order to assess their effect on engine performance, a complete foreign object damage (FOD) test was carried out and a component failure analysis was used to verify airworthiness standards (AWS) requirements for engine certification as set by international regulations. Ingestion damage due to 1.8 Kg (4 lb.) bird strike on an engine is presented in some detail. Based on the observed damage, improvements to the engine design were suggested in two different locations: the front bearing housing and the low compressor shaft. When these improvements were implemented, the engine showed an acceptable containment capability that meets AWS requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title="aircraft engine">aircraft engine</a>, <a href="https://publications.waset.org/abstracts/search?q=airworthiness%20standards" title=" airworthiness standards"> airworthiness standards</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20ingestion" title=" bird ingestion"> bird ingestion</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20object%20damage" title=" foreign object damage"> foreign object damage</a> </p> <a href="https://publications.waset.org/abstracts/31666/design-improvement-of-aircraft-turbofan-engine-following-bird-ingestion-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17022</span> Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homin%20Kim">Homin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjo%20Byun"> Hyungjo Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Do"> Jinyoung Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Lee"> Yongil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin"> Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbae%20Lee"> Seungbae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20room%20design" title=" engine room design"> engine room design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20hydraulics" title=" mobile hydraulics"> mobile hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/61957/thermal-and-acoustic-design-of-mobile-hydraulic-vehicle-engine-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17021</span> Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Calvin%20Antony">A. Calvin Antony</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthi%20Kumar%20Arul%20Prakash"> Sakthi Kumar Arul Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-beta%20double%20piston%20stirling%20engine" title="alpha-beta double piston stirling engine ">alpha-beta double piston stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20stirling%20engine" title=" alpha stirling engine "> alpha stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20double%20piston%20stirling%20engine" title=" beta double piston stirling engine "> beta double piston stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20from%20stirling%20engine" title=" electricity from stirling engine"> electricity from stirling engine</a> </p> <a href="https://publications.waset.org/abstracts/35104/design-manufacture-and-testing-of-a-combined-alpha-beta-double-piston-stirling-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17020</span> ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Soliman">Joseph Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Attia"> Youssef Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairy%20Megalla"> Khairy Megalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20energy" title=" new energy"> new energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20motion" title=" dynamic motion"> dynamic motion</a> </p> <a href="https://publications.waset.org/abstracts/27285/ansys-investigation-on-stability-and-performance-of-a-solar-driven-inline-alpha-stirling-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17019</span> Process of Dimensioning Small Type Annular Combustors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20B.%20Mohamed">Saleh B. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Elhsnawi"> Mohamed H. Elhsnawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20M.%20Salem"> Mesbah M. Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current and future applications of small gas turbine engines annular type combustors have requirements presenting difficult disputes to the combustor designer. Reduced cost and fuel consumption and improved durability and reliability as well as higher temperatures and pressures for such application are forecast. Coupled with these performance requirements, irrespective of the engine size, is the demand to control the pollutant emissions, namely the oxides of nitrogen, carbon monoxide, smoke and unburned hydrocarbons. These technical and environmental challenges have made the design of small size combustion system a very hard task. Thus, the main target of this work is to generalize a calculation method of annular type combustors for small gas turbine engines that enables to understand the fundamental concepts of the coupled processes and to identify the proper procedure that formulates and solves the problems in combustion fields in as much simplified and accurate manner as possible. The combustion chamber in task is designed with central vaporizing unit and to deliver 516.3 KW of power. The geometrical constraints are 142 mm & 140 mm overall length and casing diameter, respectively, while the airflow rate is 0.8 kg/sec and the fuel flow rate is 0.012 kg/sec. The relevant design equations are programmed by using MathCAD language for ease and speed up of the calculation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20gas%20turbine" title="design of gas turbine">design of gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20engine%20design" title=" small engine design"> small engine design</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20type%20combustors" title=" annular type combustors"> annular type combustors</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8537/process-of-dimensioning-small-type-annular-combustors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17018</span> Tuning for a Small Engine with a Supercharger </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Kajiwara">Shinji Kajiwara</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadamasa%20Fukuoka"> Tadamasa Fukuoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20system" title=" cooling system"> cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20super%20charger" title=" mechanical super charger"> mechanical super charger</a> </p> <a href="https://publications.waset.org/abstracts/46766/tuning-for-a-small-engine-with-a-supercharger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17017</span> Engine with Dual Helical Crankshaft System Operating at an Overdrive Gear Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anierudh%20Vishwanathan">Anierudh Vishwanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper suggests a new design of the crankshaft system that would help to use a low revving engine for applications requiring the use of a high revving engine operating at the same power by converting the extra or unnecessary torque obtained from a low revving engine into angular velocity of the crankshaft of the engine hence, improve the fuel economy of the vehicle because of the fact that low revving engines run more effectively on lean air fuel mixtures accompanied with less wear and tear of the engine due to lesser rubbing of the piston rings with the cylinder walls. If the crankshaft with the proposed design is used in a low revving engine, then it will give the same torque and speed as that given by a high revving engine operating at the same power but the new engine will give better fuel economy. Hence the new engine will give the benefits of a low revving engine as well as a high revving engine. The proposed crankshaft design will be achieved by changing the design of the crankweb in such a way that it functions both as a counterweight as well as a helical gear that can transfer power to the secondary gear shaft which will be incorporated in the crankshaft system. The crankshaft and the secondary gear shaft will be operating at an overdrive ratio. The crankshaft will now be a two shaft system instead of a single shaft system. The newly designed crankshaft will be mounted on the bearings instead of being connected to the flywheel of the engine. This newly designed crankshaft will transmit power to the secondary shaft which will rotate the flywheel and then the rotary motion will be transmitted to the transmission system as usual. In this design, the concept of power transmission will be incorporated in the crankshaft system. In the paper, the crankshaft and the secondary shafts have been designed in such a way that at any instant of time only half the number of crankwebs will be meshed with the secondary shaft. For example, during one revolution of the crankshaft, if for the first half of revolution; first, second, seventh and eighth crankwebs are meshing with the secondary shaft then for the next half revolution, third, fourth, fifth and sixth crankwebs will mesh with the secondary shaft. This paper also analyses the proposed crankshaft design for safety against fatigue failure. Finite element analysis of the crankshaft has been done and the resultant stresses have been calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20revving" title="low revving">low revving</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20revving" title=" high revving"> high revving</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20shaft" title=" secondary shaft"> secondary shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20meshing" title=" partial meshing"> partial meshing</a> </p> <a href="https://publications.waset.org/abstracts/31213/engine-with-dual-helical-crankshaft-system-operating-at-an-overdrive-gear-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17016</span> Variation of Stagnation Properties at Various Altitudes of an Klimov RD-33 Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Upamanyu%20Majumder">Upamanyu Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Angshuman%20Das"> Angshuman Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Klimov RD-33 is a turbofan jet engine for a lightweight fighter jet that is the primary engine for the Mikoyan MiG-29. Its production started in 1981. The RD-33 was the first afterburning turbofan engine produced by the Klimov Company of Russia in the 8,000 to 9,000 kilograms-force (78,000 to 88,000 N; 18,000 to 20,000 lbf) thrust class. It features a modular twin-shaft design with individual parts that can be replaced separately and has a good tolerance to the environment. The RD-33 is simple to maintain and retains good performance in challenging environments. In this paper the stagnation properties(pressure and temperature) at the intake diffuser, compressor and turbine sections of the RD-33 engine are calculated using the standard atmosphere conditions at different altitudes( take-off, 5000m, 10000m, 15000m, 20000m and 22500m). The results are plotted against altitude values using MS-Excel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klimov%20RD-33%20engine" title="Klimov RD-33 engine">Klimov RD-33 engine</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20properties" title=" stagnation properties"> stagnation properties</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20altitudes" title=" various altitudes"> various altitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=ms-excel" title=" ms-excel"> ms-excel</a> </p> <a href="https://publications.waset.org/abstracts/37620/variation-of-stagnation-properties-at-various-altitudes-of-an-klimov-rd-33-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17015</span> Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wendeker">M. Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Siadkowska"> K. Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Magryta"> P. Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Czyz"> Z. Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skiba"> K. Skiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/5115/optimal-diesel-engine-technology-analysis-matching-the-platform-of-the-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17014</span> Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Onal">O. Onal</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Turan"> O. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbofan" title="turbofan">turbofan</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/51790/calculation-and-comparison-of-a-turbofan-engine-performance-parameters-with-various-definitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17013</span> Study of Dual Fuel Engine as Environmentally Friendly Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilam%20S.%20Octaviani">Nilam S. Octaviani</a>, <a href="https://publications.waset.org/abstracts/search?q=Semin"> Semin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine. However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO<sub>2</sub>) and particular metter (PM) emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20diesel%20engine" title=" dual fuel diesel engine"> dual fuel diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20reduction" title=" emission reduction"> emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20characteristics" title=" technical characteristics"> technical characteristics</a> </p> <a href="https://publications.waset.org/abstracts/61852/study-of-dual-fuel-engine-as-environmentally-friendly-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17012</span> Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Otegui">J. Otegui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agirre"> M. Agirre</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Cestau"> M. A. Cestau</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Erauskin"> H. Erauskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20design" title=" mechanical design"> mechanical design</a>, <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine." title=" stirling engine."> stirling engine.</a> </p> <a href="https://publications.waset.org/abstracts/185276/development-of-gamma-configuration-stirling-engine-using-polymeric-and-metallic-additive-manufacturing-for-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17011</span> Design of an Instrumentation Setup and Data Acquisition System for a GAS Turbine Engine Using Suitable DAQ Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Nauman%20Bin%20Asghar%20Bukhari">Syed Nauman Bin Asghar Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohtashim%20Mansoor"> Mohtashim Mansoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nouman"> Mohammad Nouman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine test-Bed system is a fundamental tool to measure dynamic parameters, economic performance, and reliability of an aircraft Engine, and its automation and accuracy directly influences the precision of acquired and analysed data. In this paper, we present the design of digital Data Acquisition (DAQ) system for a vintage aircraft engine test bed that lacks the capability of displaying all the analyzed parameters at one convenient location (one panel-one screen). Recording such measurements in the vintage test bed is not only time consuming but also prone to human errors. Digitizing such measurement system requires a Data Acquisition (DAQ) system capable of recording these parameters and displaying them on one screen-one panel monitor. The challenge in designing upgrade to the vintage systems arises with a need to build and integrate digital measurement system from scratch with a minimal budget and modifications to the existing vintage system. The proposed design not only displays all the key performance / maintenance parameters of the gas turbine engines for operator as well as quality inspector on separate screens but also records the data for further processing / archiving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gas%20turbine%20engine" title="Gas turbine engine">Gas turbine engine</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20test%20cell" title=" engine test cell"> engine test cell</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition" title=" data acquisition"> data acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation" title=" instrumentation"> instrumentation</a> </p> <a href="https://publications.waset.org/abstracts/148541/design-of-an-instrumentation-setup-and-data-acquisition-system-for-a-gas-turbine-engine-using-suitable-daq-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17010</span> Turbine Engine Performance Experimental Tests of Subscale UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Altay">Haluk Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Y%C3%BCcel"> Bilal Yücel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berkcan%20Ulcay"> Berkcan Ulcay</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%C3%BCcel%20Ayd%C4%B1n"> Yücel Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20engine" title="jet engine">jet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=loadcell" title=" loadcell"> loadcell</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/168678/turbine-engine-performance-experimental-tests-of-subscale-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17009</span> Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Tsai%20Weng">Feng-Tsai Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-%20Syuan%20Cai"> Dong- Syuan Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsochu-Lin"> Tsochu-Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-level%20gear%20oil" title="multi-level gear oil">multi-level gear oil</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20oil" title=" engine oil"> engine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasion" title=" abrasion"> abrasion</a> </p> <a href="https://publications.waset.org/abstracts/54824/lubrication-performance-of-multi-level-gear-oil-in-a-gasoline-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17008</span> Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Kumar%20R.%20G.">Aakash Kumar R. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20K.%20Ahamed"> Anees K. Ahamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20M.%20Mohan"> Raj M. Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fins" title="fins">fins</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20fins" title=" perforated fins"> perforated fins</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20flux" title=" thermal flux"> thermal flux</a> </p> <a href="https://publications.waset.org/abstracts/59711/comparative-analysis-of-internal-combustion-engine-cooling-fins-using-ansys-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17007</span> Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veena%20Chaudhary">Veena Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20P.%20Gakkhar"> Rakesh P. Gakkhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20destruction" title=" exergy destruction"> exergy destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/51552/determination-of-optimum-torque-of-an-internal-combustion-engine-by-exergy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17006</span> Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Kapahi">Sahil Kapahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%20D%20Simulation" title="1 D Simulation">1 D Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20simulation" title=" air flow simulation"> air flow simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title=" ANSYS CFX"> ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=four-stroke%20engine" title=" four-stroke engine"> four-stroke engine</a>, <a href="https://publications.waset.org/abstracts/search?q=OPTIMUM%20LAP" title=" OPTIMUM LAP"> OPTIMUM LAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20WAVE" title=" Ricardo WAVE"> Ricardo WAVE</a> </p> <a href="https://publications.waset.org/abstracts/75416/development-of-restricted-formula-sae-intake-manifold-using-1d-and-flow-simulations-based-on-track-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17005</span> Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Misoc">Florian Misoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Okhio"> Cyril Okhio</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Tolbert"> Joshua Tolbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Carlin"> Nick Carlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ramey"> Thomas Ramey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-thermal" title=" solar-thermal"> solar-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20inverter" title=" power inverter"> power inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=alternator" title=" alternator"> alternator</a> </p> <a href="https://publications.waset.org/abstracts/84756/solar-thermal-electric-stirling-engine-powered-system-for-residential-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17004</span> Investigation of Vibration in Diesel-Fueled Motoblocks in the Case of Supplying Different Types of Fuel Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merab%20Mamuladze">Merab Mamuladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mixeil%20Lejava"> Mixeil Lejava</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadiko%20Abuselidze"> Fadiko Abuselidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, where most of the soils of Georgia have a small contour, the demand for small-capacity technical means, in particular motoblocks, has increased. Motoblocks perform agricultural work for various purposes, where the work process is performed by the operator, who experiences various magnitudes of vibration, impact, noise, and in general, as a result of long-term work production, causes body damage, dynamic load, and respiratory diseases in people. In the scientific paper, the dependence on the vibration of different types of diesel fuel is investigated in the case of five different revolutions in the internal combustion engine. Studies have shown that fuel and engine speed are the only risk factors that contradict the ISO 5349-2(2004) international standard. The experience of four years of work studies showed that 10% of operators received various types of injuries as a result of working with motoblocks. Experiments also showed that the amount of vibration decreases when the number of revolutions of the engine increases, and in the case of using biodiesel fuel, the damage risk factor is 5-10%, and in the case of using conventional diesel, this indicator has gone up to 20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20risk%20factor" title=" high risk factor"> high risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20conditions" title=" working conditions"> working conditions</a> </p> <a href="https://publications.waset.org/abstracts/162855/investigation-of-vibration-in-diesel-fueled-motoblocks-in-the-case-of-supplying-different-types-of-fuel-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17003</span> Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdin%C3%A7%20Vural">Erdinç Vural</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%BClent%20%C3%96zdalyan"> Bülent Özdalyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20%C3%96zel"> Serkan Özel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) in different ratios has been added in the power of zirconium (ZrO<sub>2</sub>) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO<sub>2</sub> + MgO), (ZrO<sub>2</sub> + MgO + 25% Al<sub>2</sub>O<sub>3</sub>), (ZrO<sub>2</sub> + MgO + 50% Al<sub>2</sub>O<sub>3</sub>), (ZrO<sub>2</sub> + MgO + 75% Al<sub>2</sub>O<sub>3</sub>), (Al<sub>2</sub>O<sub>3</sub>) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO<sub>2</sub> + MgO + 50% Al<sub>2</sub>O<sub>3</sub>). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20coating" title="ceramic coating">ceramic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20performance" title=" engine performance"> engine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20emissions" title=" exhaust emissions"> exhaust emissions</a> </p> <a href="https://publications.waset.org/abstracts/61725/experimental-investigation-on-effect-of-the-zirconium-magnesium-coating-of-the-piston-and-valve-of-the-single-cylinder-diesel-engine-to-the-engine-performance-and-emission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17002</span> Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Lee">Sang-Wook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=So-Yeon%20Jeon"> So-Yeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Gi%20Cho"> Min-Gi Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Young%20Shin"> Dae-Young Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ho%20Hwang"> Sung-Ho Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20mode%20changing" title="continuous mode changing">continuous mode changing</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20fuel%20consumption" title=" engine fuel consumption"> engine fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=excavator" title=" excavator"> excavator</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20efficiency" title=" fuel efficiency"> fuel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=IMV" title=" IMV"> IMV</a> </p> <a href="https://publications.waset.org/abstracts/89388/energy-efficiency-improvement-of-excavator-with-independent-metering-valve-by-continuous-mode-changing-considering-engine-fuel-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17001</span> Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liubov%20Magerramova">Liubov Magerramova</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kratt"> Eugene Kratt</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Presniakov"> Pavel Presniakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20technologies" title="additive technologies">additive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20engine" title=" gas turbine engine"> gas turbine engine</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20technology" title=" powder technology"> powder technology</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20wheel" title=" turbine wheel"> turbine wheel</a> </p> <a href="https://publications.waset.org/abstracts/66360/application-of-powder-metallurgy-technologies-for-gas-turbine-engine-wheel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17000</span> The Effect of Mean Pressure on the Performance of a Low-Grade Heat-Driven Thermoacoustic Cooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irna%20Farikhah">Irna Farikhah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Converting low-grade waste heat into useful energy such as sound energy which can then be used to generate acoustic power in a thermoacoustic engine has become an attracting issue for researchers. The generated power in thermoacoustic engine can be used for driving a thermoacoustic cooler when they are installed in a tube. This cooler system can be called as a heat-driven thermoacoustic cooler. In this study, low heating temperature of the engine is discussed. In addition, having high efficiency of the whole cooler is also essential. To design a thermoacoustic cooler having high efficiency with using low-grade waste heat for the engine, the effect of mean pressure is investigated. By increasing the mean pressure, the heating temperature to generate acoustic power can be decreased from 557 °C to 300 °C. Moreover, the efficiency of the engine and cooler regenerators attain 67% and 47% of the upper limit values, respectively and 49% of the acoustical work generated by the engine regenerator is utilized in the cooler regenerator. As a result, the efficiency of the whole cooler becomes 15% of the upper limit value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooler" title="cooler">cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20pressure" title=" mean pressure"> mean pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic" title=" thermoacoustic"> thermoacoustic</a> </p> <a href="https://publications.waset.org/abstracts/91261/the-effect-of-mean-pressure-on-the-performance-of-a-low-grade-heat-driven-thermoacoustic-cooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16999</span> Effect of Film Cooling on Gas-Turbine Engine Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Kaplan">Burak Kaplan</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Cnver%20Kaynak"> Ünver Kaynak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine engines, crucial for modern aviation and power generation, rely on the efficient operation of turbine blades. However, extreme temperatures and pressures can lead to material degradation and failure. Film cooling, a widely employed technique, injects a coolant onto the blade surface to mitigate the effects of hot gas exposure. This research investigates the impact of film cooling on gas turbine engine performance, focusing on its influence on efficiency, longevity, and overall engine performance. Through a comprehensive literature review, computational fluid dynamics simulations, and thermal performance analysis, this study aims to provide insights into optimizing film cooling configurations for enhanced engine performance. The research explores the thermal performance characteristics of turbine blades with and without film cooling, the influence of various film cooling techniques on engine efficiency, and the design factors that optimize film cooling effectiveness. The findings of this study have the potential to contribute to the development of more efficient and reliable gas turbine engines, ultimately advancing the field of gas turbine technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=engine" title=" engine"> engine</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=blade" title=" blade"> blade</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/195371/effect-of-film-cooling-on-gas-turbine-engine-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16998</span> Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak">Adam Majczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Bialy"> Michał Bialy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czy%C5%BC"> Zbigniew Czyż</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski"> Zdzislaw Kaminski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generator" title=" power generator"> power generator</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20extender" title=" range extender"> range extender</a>, <a href="https://publications.waset.org/abstracts/search?q=Wankel%20engine" title=" Wankel engine"> Wankel engine</a> </p> <a href="https://publications.waset.org/abstracts/81482/investigating-the-algorithm-to-maintain-a-constant-speed-in-the-wankel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16997</span> Combustion Improvements by C4/C5 Bio-Alcohol Isomer Blended Fuels Combined with Supercharging and EGR in a Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasufumi%20Yoshimoto">Yasufumi Yoshimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Enkhjargal%20Tserenochir"> Enkhjargal Tserenochir</a>, <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Kinoshita"> Eiji Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Otaka"> Takeshi Otaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next generation bio-alcohols produced from non-food based sources like cellulosic biomass are promising renewable energy sources. The present study investigates engine performance, combustion characteristics, and emissions of a small single cylinder direct injection diesel engine fueled by four kinds of next generation bio-alcohol isomer and diesel fuel blends with a constant blending ratio of 3:7 (mass). The tested bio-alcohol isomers here are n-butanol and iso-butanol (C<sub>4</sub> alcohol), and n-pentanol and iso-pentanol (C<sub>5</sub> alcohol). To obtain simultaneous reductions in NOx and smoke emissions, the experiments employed supercharging combined with EGR (Exhaust Gas Recirculation). The boost pressures were fixed at two conditions, 100 kPa (naturally aspirated operation) and 120 kPa (supercharged operation) provided with a roots blower type supercharger. The EGR rates were varied from 0 to 25% using a cooled EGR technique. The results showed that both with and without supercharging, all the bio-alcohol blended diesel fuels improved the trade-off relation between NOx and smoke emissions at all EGR rates while maintaining good engine performance, when compared with diesel fuel operation. It was also found that regardless of boost pressure and EGR rate, the ignition delays of the tested bio-alcohol isomer blends are in the order of iso-butanol > n-butanol > iso-pentanol > n-pentanol. Overall, it was concluded that, except for the changes in the ignition delays the influence of bio-alcohol isomer blends on the engine performance, combustion characteristics, and emissions are relatively small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title="alternative fuel">alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=butanol" title=" butanol"> butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=EGR%20%28Exhaust%20Gas%20Recirculation%29" title=" EGR (Exhaust Gas Recirculation)"> EGR (Exhaust Gas Recirculation)</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20bio-alcohol%20isomer%20blended%20fuel" title=" next generation bio-alcohol isomer blended fuel"> next generation bio-alcohol isomer blended fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=pentanol" title=" pentanol"> pentanol</a>, <a href="https://publications.waset.org/abstracts/search?q=supercharging" title=" supercharging"> supercharging</a> </p> <a href="https://publications.waset.org/abstracts/83809/combustion-improvements-by-c4c5-bio-alcohol-isomer-blended-fuels-combined-with-supercharging-and-egr-in-a-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16996</span> Numerical Approach to Boost an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20El%20Hameur">Mohamed Amine El Hameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Tarabet"> Lyes Tarabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoudh%20Cerdoun"> Mahfoudh Cerdoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Boubkr%20Zebiri"> Boubkr Zebiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Ferrara"> Giovanni Ferrara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the drastic environmental and energy regulations regarding the reduction of exhaust emissions and fuel consumption, added to the increasing demand for powerful performance, several automotive manufacturers are constantly obliged to redesign their existing products and/or develop novel powertrain techniques to respond to the aforementioned restrictions. In this aspect, an implemented approach is proposed in the present work to boost a 1.5 L, three-cylinder Diesel engine with a new turbocharger, based on 1D preliminary design codes, 3D design, and numerical assessment of a suitable radial turbine followed by an accurate selection procedure of an adequate centrifugal compressor. Furthermore, to investigate the effect of the turbine’s rotor position on the simulation convergence, stability, and calculation time; two combinations (rotor blade- volute) have been assessed. Consequently, significant results are obtained when comparing the original turbocharged engine and the new one at the engine’s full load and rated speed (@4500rpm) conditions. A maximum improvement in terms of brake-specific fuel consumption, thermal efficiency, total-to-static turbine efficiency, and total-to-total compressor efficiency equal 6.5% (corresponding to a decrease of 2.3 litre/hr in fuel consumption), 7%, 10.9%, and 19.9%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20investigation" title="CFD investigation">CFD investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20boosting" title=" engine boosting"> engine boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20design" title=" turbine design"> turbine design</a>, <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title=" turbocharger"> turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20blade%20positioning" title=" rotor blade positioning"> rotor blade positioning</a> </p> <a href="https://publications.waset.org/abstracts/158211/numerical-approach-to-boost-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=567">567</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=568">568</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20engine%20design&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>