CINXE.COM

Search results for: microchannel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microchannel</title> <meta name="description" content="Search results for: microchannel"> <meta name="keywords" content="microchannel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microchannel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microchannel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 74</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microchannel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Oscillatory Electroosmotic Flow in a Microchannel with Slippage at the Walls and Asymmetric Wall Zeta Potentials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Bautista">Oscar Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Arcos"> Jose Arcos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we conduct a theoretical analysis of an oscillatory electroosmotic flow in a parallel-plate microchannel taking into account slippage at the microchannel walls. The governing equations given by the Poisson-Boltzmann (with the Debye-Huckel approximation) and momentum equations are nondimensionalized from which four dimensionless parameters appear; a Reynolds angular number, the ratio between the zeta potentials of the microchannel walls, the electrokinetic parameter and the dimensionless slip length which measures the competition between the Navier slip length and the half height microchannel. The principal results indicate that the slippage has a strong influence on the magnitude of the oscillatory electroosmotic flow increasing the velocity magnitude up to 50% for the numerical values used in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flows" title="electroosmotic flows">electroosmotic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20flow" title=" oscillatory flow"> oscillatory flow</a>, <a href="https://publications.waset.org/abstracts/search?q=slippage" title=" slippage"> slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a> </p> <a href="https://publications.waset.org/abstracts/100473/oscillatory-electroosmotic-flow-in-a-microchannel-with-slippage-at-the-walls-and-asymmetric-wall-zeta-potentials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Complex Cooling Approach in Microchannel Heat Exchangers Using Solid and Hollow Fins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahum%20Yustus%20Godi">Nahum Yustus Godi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional numerical optimisation of combined microchannels with constructal solid, half hollow, and hollow circular fins is documented in this paper. The technique seeks to minimize peak temperature in the entire volume of the microchannel heat sink. The volume and axial length were all fixed, while the width of the microchannel could morph. High-density heat flux was applied at the bottom wall of the microchannel. The coolant employed to remove the heat deposited at the bottom surface of the microchannel was a single-phase fluid (water) in a forced convection laminar condition, and heat transfer was a conjugate problem. The unit cell symmetrical computation domain was discretised, and governing equations were solved using computational fluid dynamic (CFD) code. The results reveal that the combined microchannel with hollow circular fins and solid fins performed better at different Reynolds numbers. The numerical study was validated for the single microchannel without fins and found to be in good agreement with previous studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constructal%20fins" title="constructal fins">constructal fins</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20heat%20exchangers" title=" complex heat exchangers"> complex heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20technique" title=" cooling technique"> cooling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20optimisation" title=" numerical optimisation"> numerical optimisation</a> </p> <a href="https://publications.waset.org/abstracts/140080/complex-cooling-approach-in-microchannel-heat-exchangers-using-solid-and-hollow-fins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Jafari">Rahim Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuba%20Okutucu-%C3%96zyurt"> Tuba Okutucu-Özyurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microchannel" title="microchannel">microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20method" title=" Cahn-Hilliard method"> Cahn-Hilliard method</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/18878/cfd-modeling-of-boiling-in-a-microchannel-based-on-phase-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjit%20Singh">Gurjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmail%20Singh"> Gurmail Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20heat%20sink" title=" microchannel heat sink"> microchannel heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=chape%20of%20microchannel" title=" chape of microchannel"> chape of microchannel</a> </p> <a href="https://publications.waset.org/abstracts/163605/a-review-of-the-relation-between-thermofludic-properties-of-the-fluid-in-micro-channel-based-cooling-solutions-and-the-shape-of-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Numerical Optimization of Trapezoidal Microchannel Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue-Tzu%20Yang">Yue-Tzu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Ching%20Liao"> Shu-Ching Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microchannel%20heat%20sinks" title="microchannel heat sinks">microchannel heat sinks</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20method" title=" genetic algorithm method"> genetic algorithm method</a> </p> <a href="https://publications.waset.org/abstracts/7509/numerical-optimization-of-trapezoidal-microchannel-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Louw%20Coetzee">J. A. Louw Coetzee</a>, <a href="https://publications.waset.org/abstracts/search?q=Josua%20P.%20Meyer"> Josua P. Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title=" pressure gradient"> pressure gradient</a> </p> <a href="https://publications.waset.org/abstracts/33001/an-experimental-study-on-the-effects-of-aspect-ratio-of-a-rectangular-microchannel-on-the-two-phase-frictional-pressure-drop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Numerical Study of Fluid Flow and Heat Transfer in Microchannel with Thin Obstacles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malorzata%20Kmiotek">Malorzata Kmiotek</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Kucaba-Pietal"> Anna Kucaba-Pietal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Smusz"> Robert Smusz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the miniaturisation process, in many technical devices, microchannels are used in cooling systems. Because of the small size of microchannels, the flow inside is laminar, which caused a slow heat exchange. In order to intensify the heat exchange, the flow must be disturbed, for example, by introducing obstacles. We present results on the influence of a thin obstacle, placed on microchannel wall, on the fluid and heat flow in the aspect of their use by constructors of heat exchangers. The obstacle is called 'thin' when its geometrical parameter (o=w/h, w- width, h - height of the obstacle) satisfies inequality: o < 0.5. In this work, we report numerical results on heat and mass transfer in the microchannels of 400 micrometer height (H - height of the microchannel), where thin obstacles are immersed on the walls, to disturb the flow. The Reynolds number of the flow in microchannel varies between 20 and 200 and is typical for the flow in micro heat exchangers. The equations describing the fluid and heat flows in microchannels were solved numerically by using the finite element method with an application of CFD&FSI package of ADINA R&D, Inc. 9.4 solver. In the case of flows in the microchannels with sequences of thin rectangular obstacles placed on the bottom and the top wall of a microchannel, the influence of distances s (s is the distance between two thin obstacles) and heights of obstacles on the fluid and heat transfer was investigated. Thermal and flow conditions of the application area of microchannels in electronic cooling systems, i.e., wall temperature of 60 °C, the fluid temperature of 20°C were used to solve equations. Additionally, the distance s between the thin obstacles in microchannels as a multiple of the amount of the channel height was determined. Results show that placing thin obstacles on microchannel walls increase the length of recirculation zones of the flow and improves the heat transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title="Finite Element Method">Finite Element Method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a> </p> <a href="https://publications.waset.org/abstracts/110207/numerical-study-of-fluid-flow-and-heat-transfer-in-microchannel-with-thin-obstacles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Theoretical Analysis of Performance Parameters of a Microchannel Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Kotian">Shreyas Kotian</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Jainm"> Nishant Jainm</a>, <a href="https://publications.waset.org/abstracts/search?q=Nachiket%20Methekar"> Nachiket Methekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in energy demands in various industrial sectors has called for devices small in size with high heat transfer rates. Microchannel heat exchangers (MCHX) have thus been studied and applied in various fields such as thermal engineering, aerospace engineering and nanoscale heat transfer. They have been a case of investigation due to their augmented thermal characteristics and low-pressure drop. The goal of the current investigation is to analyze the thermohydraulic performance of the heat exchanger analytically. Studies are done for various inlet conditions and flow conditions. At Thi of 90°C, the effectiveness increased by about 22% for an increase in Re from 1000 to 5000 of the cold fluid. It was also observed that at Re = 5000 for the hot fluid, the heat recovered by the hot fluid increases by about 69% for an increase in inlet temperature of the hot fluid from 50°C to 70°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=theoretical%20analysis" title="theoretical analysis">theoretical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20heat%20exchanger" title=" microchannel heat exchanger"> microchannel heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/142967/theoretical-analysis-of-performance-parameters-of-a-microchannel-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Optimization of Double-Layered Microchannel Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tu-Chieh%20Hung">Tu-Chieh Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Mon%20Yan"> Wei-Mon Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Dong%20Wang"> Xiao-Dong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Xian%20Huang"> Yu-Xian Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=double-layered%20microchannel%20heat%20sink" title=" double-layered microchannel heat sink"> double-layered microchannel heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=simplified%20conjugate-gradient%20method" title=" simplified conjugate-gradient method"> simplified conjugate-gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/15975/optimization-of-double-layered-microchannel-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Chandra">Abhishek Kumar Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushal%20Kishor"> Kaushal Kishor</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasim%20Khan"> Wasim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjay%20Singh"> Dhananjay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alam"> M. S. Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contraction-expansion%20flow" title="contraction-expansion flow">contraction-expansion flow</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20microchannel" title=" integrated microchannel"> integrated microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20network" title=" microchannel network"> microchannel network</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase%20flow" title=" single phase flow"> single phase flow</a> </p> <a href="https://publications.waset.org/abstracts/75976/single-phase-fluid-flow-in-series-of-microchannel-connected-via-converging-diverging-section-with-or-without-throat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> AC Electro-Kinetics, Bipolar Current and Concentration-Polarization in a Microchannel-Nafion Membrane System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinwook%20Park">Sinwook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilad%20Yossifon"> Gilad Yossifon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of a floating electrode array located within the depletion layer formed due to concentration-polarization (CP) across a microchannel-membrane device, produces not only induced-charge electro-osmosis (ICEO) vortex and but also a bipolar current resulting from faradaic reactions. It has been shown that there exists an optimal SiO2 layer thickness of ~50nm which is sufficient to suppress bipolar currents (at least up to 5V applied voltage) but still enables ICEO vortices that stir the depletion layer, thereby affecting its I-V response. This effect is pronounced beyond the limiting current where the existence of the depletion layer results in increased local electric field due to decreased solution conductivity. This comprehensive study of the interaction of embedded electrodes with the induced CP in microchannel-perm selective medium systems, allows one to choose the thickness of the thin dielectric coating to either enhance the mixing as a means to control the diffuse layer, or suppress it, for example, in the case where electrodes are intended for local measurements of the solution conductivity with minimal invasion. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the CP length. In addition, the use of embedded heaters within the depletion layer generates electro-thermal vortices that in turn also control the CP length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20electrokinetics" title="AC electrokinetics">AC electrokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration-polarization" title=" concentration-polarization"> concentration-polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20current" title=" bipolar current "> bipolar current </a> </p> <a href="https://publications.waset.org/abstracts/50897/ac-electro-kinetics-bipolar-current-and-concentration-polarization-in-a-microchannel-nafion-membrane-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haroon%20Khan">Haroon Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Min%20Kim"> Chul Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Yeol%20Kim"> Sung Yeol Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanket%20Goel"> Sanket Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhat%20K.%20Dwivedi"> Prabhat K. Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Sharma"> Ashutosh Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyu%20Man%20Kim"> Gyu Man Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EBFC" title="EBFC">EBFC</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a> </p> <a href="https://publications.waset.org/abstracts/65345/fabrication-of-glucoseo2-microfluidic-biofuel-cell-with-double-layer-of-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mohammadpour">J. Mohammadpour</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Lau"> G. E. Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cheng"> S. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lee"> A. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180&deg; out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180&deg; out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20jets" title="synthetic jets">synthetic jets</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20cooling" title=" electronic cooling"> electronic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/126507/thermal-performance-of-a-pair-of-synthetic-jets-equipped-in-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ibrahim-Rassoul">N. Ibrahim-Rassoul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kessi"> A. Kessi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20Si-Ahmed"> E. K. Si-Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Djilali"> N. Djilali</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Legrand"> J. Legrand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title="green energy">green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20plug" title=" water plug"> water plug</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20diffusion%20layer" title=" gas diffusion layer"> gas diffusion layer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20of%20revolution" title=" surface of revolution"> surface of revolution</a> </p> <a href="https://publications.waset.org/abstracts/37977/mathematical-modeling-of-the-water-bridge-formation-in-porous-media-pemfc-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Teodoro">Carlos Teodoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Bautista"> Oscar Bautista</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flow" title="electroosmotic flow">electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transport" title=" mass transport"> mass transport</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20flow" title=" oscillatory flow"> oscillatory flow</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20separation" title=" species separation"> species separation</a> </p> <a href="https://publications.waset.org/abstracts/94932/enhancement-of-mass-transport-and-separations-of-species-in-a-electroosmotic-flow-by-distinct-oscillatory-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rub%C3%A9n%20B%C3%A3nos">Rubén Bãnos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Arcos"> José Arcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Bautista"> Oscar Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20M%C3%A9ndez"> Federico Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H&uml;uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Re&omega;, the electrokinetic parameter, &macr;&kappa;, defined as the ratio of the characteristic length scale to the Debye length, the parameter &lambda; which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Re&omega; and &macr;&kappa; are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20zeta%20potentials" title="low zeta potentials">low zeta potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=non-newtonian" title=" non-newtonian"> non-newtonian</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20electroosmotic%20flow" title=" oscillatory electroosmotic flow"> oscillatory electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20model" title=" power-law model"> power-law model</a> </p> <a href="https://publications.waset.org/abstracts/95010/oscillatory-electroosmotic-flow-of-power-law-fluids-in-a-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huei%20Chu%20Weng">Huei Chu Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Liu"> Chien-Hung Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20rarefaction" title=" gas rarefaction"> gas rarefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20boundary%20conditions" title=" second-order boundary conditions"> second-order boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/26201/second-order-slip-flow-and-heat-transfer-in-a-long-isothermal-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justo%20Rodriguez">Justo Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Daming%20Chen"> Daming Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Amador%20M.%20Guzman"> Amador M. Guzman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microchannel" title="microchannel">microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20and%20folding" title=" stretching and folding"> stretching and folding</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20kinetic%20flow%20mixing" title=" electro kinetic flow mixing"> electro kinetic flow mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-analyzer" title=" micro-analyzer"> micro-analyzer</a> </p> <a href="https://publications.waset.org/abstracts/126289/simulation-and-characterization-of-stretching-and-folding-in-microchannel-electrokinetic-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20Yimam%20Ali">Ayalew Yimam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Y-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the Y-junction microchannel can be a difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the Y-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the Y-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20fabrication" title="micro fabrication">micro fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20acoustic%20streaming%20flow%20visualization" title=" 3d acoustic streaming flow visualization"> 3d acoustic streaming flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-particle%20image%20velocimetry" title=" micro-particle image velocimetry"> micro-particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20enhancement" title=" mixing enhancement"> mixing enhancement</a> </p> <a href="https://publications.waset.org/abstracts/190153/flow-visualization-and-mixing-enhancement-in-y-junction-microchannel-with-3d-acoustic-streaming-flow-patterns-induced-by-trapezoidal-triangular-structure-using-high-viscous-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20Yimam%20Ali">Ayalew Yimam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Y-shaped microchannel system is used to mix up low or high viscosities of different fluids, and the laminar flow with high-viscous water-glycerol fluids makes the mixing at the entrance Y-junction region a challenging issue. Acoustic streaming (AS) is time-average, a steady second-order flow phenomenon that could produce rolling motion in the microchannel by oscillating low-frequency range acoustic transducer by inducing acoustic wave in the flow field is the promising strategy to enhance diffusion mass transfer and mixing performance in laminar flow phenomena. In this study, the 3D trapezoidal Structure has been manufactured with advanced CNC machine cutting tools to produce the molds of trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm spine sharp-edge tip depth from PMMA glass (Polymethylmethacrylate) and the microchannel has been fabricated using PDMS (Polydimethylsiloxane) which could be grown-up longitudinally in Y-junction microchannel mixing region top surface to visualized 3D rolling steady acoustic streaming and mixing performance evaluation using high-viscous miscible fluids. The 3D acoustic streaming flow patterns and mixing enhancement were investigated using the micro-particle image velocimetry (μPIV) technique with different spine depth lengths, channel widths, high volume flow rates, oscillation frequencies, and amplitude. The velocity and vorticity flow fields show that a pair of 3D counter-rotating streaming vortices were created around the trapezoidal spine structure and observing high vorticity maps up to 8 times more than the case without acoustic streaming in Y-junction with the high-viscosity water-glycerol mixture fluids. The mixing experiments were performed by using fluorescent green dye solution with de-ionized water on one inlet side, de-ionized water-glycerol with different mass-weight percentage ratios on the other inlet side of the Y-channel and evaluated its performance with the degree of mixing at different amplitudes, flow rates, frequencies, and spine sharp-tip edge angles using the grayscale value of pixel intensity with MATLAB Software. The degree of mixing (M) characterized was found to significantly improved to 0.96.8% with acoustic streaming from 67.42% without acoustic streaming, in the case of 0.0986 μl/min flow rate, 12kHz frequency and 40V oscillation amplitude at y = 2.26 mm. The results suggested the creation of a new 3D steady streaming rolling motion with a high volume flow rate around the entrance junction mixing region, which promotes the mixing of two similar high-viscosity fluids inside the microchannel, which is unable to mix by the laminar flow with low viscous conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20fabrication" title="nano fabrication">nano fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20acoustic%20streaming%20flow%20visualization" title=" 3D acoustic streaming flow visualization"> 3D acoustic streaming flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-particle%20image%20velocimetry" title=" micro-particle image velocimetry"> micro-particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20enhancement" title=" mixing enhancement"> mixing enhancement</a> </p> <a href="https://publications.waset.org/abstracts/188950/flow-visualization-and-mixing-enhancement-in-y-junction-microchannel-with-3d-acoustic-streaming-flow-patterns-induced-by-trapezoidal-triangular-structure-using-high-viscous-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huei%20Chu%20Weng">Huei Chu Weng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20creep" title=" thermal creep"> thermal creep</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20boundary%20conditions" title=" second-order boundary conditions"> second-order boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/7785/second-order-slip-flow-and-heat-transfer-in-a-long-isoflux-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Yagodnitsyna">Anna Yagodnitsyna</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Kovalev"> Alexander Kovalev</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Bilsky"> Artur Bilsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title="flow patterns">flow patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20flow" title=" liquid-liquid flow"> liquid-liquid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a> </p> <a href="https://publications.waset.org/abstracts/67484/liquid-liquid-plug-flow-characteristics-in-microchannel-with-t-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Viscoelastic Cell Concentration in a High Aspect Ratio Microchannel Using a Non-Powered Air Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeonghun%20Nam">Jeonghun Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonggil%20Kim"> Seonggil Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunjoo%20Choi"> Hyunjoo Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae%20Seung%20Lim"> Chae Seung Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantification and analysis of rare cells are challenging in clinical applications and cell biology due to its extremely small number in blood. In this work, we propose a viscoelastic microfluidic device for continuous cell concentration without sheath flows. Due to the viscoelastic effect on suspending cells, cells with the blockage ratio higher than 0.1 could be tightly focused at the center of the microchannel. The blockage ratio was defined as the particle diameter divided by the channel width. Finally, cells were concentrated through the center outlet and the additional suspending medium was removed to the side outlets. Since viscoelastic focusing is insensitive to the flow rate higher than 10 μl/min, the non-powered hand pump sprayer could be used with no accurate control of the flow rate, which is suitable for clinical settings in resource-limited developing countries. Using multiple concentration processes, high-throughput concentration of white blood cells in lysed blood sample was achieved by ~ 300-fold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20concentration" title="cell concentration">cell concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=high-throughput" title=" high-throughput"> high-throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=non-powered" title=" non-powered"> non-powered</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20fluid" title=" viscoelastic fluid"> viscoelastic fluid</a> </p> <a href="https://publications.waset.org/abstracts/90893/viscoelastic-cell-concentration-in-a-high-aspect-ratio-microchannel-using-a-non-powered-air-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20Yimam%20%20Ali">Ayalew Yimam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20fabrication" title="micro fabrication">micro fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20acoustic%20streaming%20flow%20visualization" title=" 3d acoustic streaming flow visualization"> 3d acoustic streaming flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-particle%20image%20velocimetry" title=" micro-particle image velocimetry"> micro-particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20enhancement." title=" mixing enhancement."> mixing enhancement.</a> </p> <a href="https://publications.waset.org/abstracts/190156/mixing-enhancement-with-3d-acoustic-streaming-flow-patterns-induced-by-trapezoidal-triangular-structure-micromixer-using-different-mixing-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Dalili">Arash Dalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20%20Tahmouressi"> Hamed Tahmouressi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20%20Hoorfar"> Mina Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20Multiphysics" title="COMSOL Multiphysics">COMSOL Multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=Dielectrophoresis" title=" Dielectrophoresis"> Dielectrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=Microfluidics" title=" Microfluidics"> Microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=Particle%20separation" title=" Particle separation"> Particle separation</a> </p> <a href="https://publications.waset.org/abstracts/124656/multi-size-continuous-particle-separation-on-a-dielectrophoresis-based-microfluidics-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang">Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Wang"> Xiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20generation" title="droplet generation">droplet generation</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20size" title=" droplet size"> droplet size</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20flied" title=" flow flied"> flow flied</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20fluctuation" title=" forced fluctuation"> forced fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/65282/the-droplet-generation-and-flow-in-the-t-shape-microchannel-with-the-side-wall-fluctuation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuohan%20Li">Zhuohan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Yang"> Jing Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaoyuan%20Cui"> Yaoyuan Cui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decellularized%20matrix" title="decellularized matrix">decellularized matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=gut-brain%20axis" title=" gut-brain axis"> gut-brain axis</a>, <a href="https://publications.waset.org/abstracts/search?q=organ-on-chip" title=" organ-on-chip"> organ-on-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20printing." title=" three-dimensional printing."> three-dimensional printing.</a> </p> <a href="https://publications.waset.org/abstracts/188857/development-and-evaluation-of-a-gut-brain-axis-chip-based-on-3d-printing-interconnecting-microchannel-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Microfluidic Manipulation for Biomedical and Biohealth Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Givtaj"> Sevda Givtaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%2Fmicro%20actuator" title=" nano/micro actuator"> nano/micro actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20electrothermal" title=" AC electrothermal"> AC electrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a> </p> <a href="https://publications.waset.org/abstracts/182063/microfluidic-manipulation-for-biomedical-and-biohealth-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Control and Automation of Fluid at Micro/Nano Scale for Bio-Analysis Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Givtaj"> Sevda Givtaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%2Fmicro%20actuator" title=" nano/micro actuator"> nano/micro actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20electrothermal" title=" AC electrothermal"> AC electrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a> </p> <a href="https://publications.waset.org/abstracts/168486/control-and-automation-of-fluid-at-micronano-scale-for-bio-analysis-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Consumption and Diffusion Based Model of Tissue Organoid Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Petersen">Elena Petersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Inna%20Kornienko"> Inna Kornienko</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Guryeva"> Svetlana Guryeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Simakov"> Sergey Simakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title="3D model">3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption%20model" title=" consumption model"> consumption model</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=spheroid" title=" spheroid"> spheroid</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20organoid" title=" tissue organoid"> tissue organoid</a> </p> <a href="https://publications.waset.org/abstracts/65657/consumption-and-diffusion-based-model-of-tissue-organoid-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microchannel&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microchannel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microchannel&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10