CINXE.COM

Addressing the antibody germline bias and its effect on language models for improved antibody design | bioRxiv

<!DOCTYPE html> <html lang="en" dir="ltr" xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <head prefix="og: http://ogp.me/ns# article: http://ogp.me/ns/article# book: http://ogp.me/ns/book#" > <!--[if IE]><![endif]--> <link rel="dns-prefetch" href="//d33xdlntwy0kbs.cloudfront.net" /> <link rel="dns-prefetch" href="//www.google.com" /> <link rel="dns-prefetch" href="//scholar.google.com" /> <link rel="dns-prefetch" href="//www.googletagmanager.com" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="shortcut icon" href="https://www.biorxiv.org/sites/default/files/images/favicon.ico" type="image/vnd.microsoft.icon" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link rel="alternate" type="application/pdf" title="Full Text (PDF)" href="/content/10.1101/2024.02.02.578678v1.full.pdf" /> <link rel="alternate" type="text/plain" title="Full Text (Plain)" href="/content/10.1101/2024.02.02.578678v1.full.txt" /> <meta name="type" content="article" /> <meta name="category" content="article" /> <meta name="HW.identifier" content="/biorxiv/early/2024/02/07/2024.02.02.578678.atom" /> <meta name="HW.pisa" content="biorxiv;2024.02.02.578678v1" /> <meta name="DC.Format" content="text/html" /> <meta name="DC.Language" content="en" /> <meta name="DC.Title" content="Addressing the antibody germline bias and its effect on language models for improved antibody design" /> <meta name="DC.Identifier" content="10.1101/2024.02.02.578678" /> <meta name="DC.Date" content="2024-02-07" /> <meta name="DC.Publisher" content="Cold Spring Harbor Laboratory" /> <meta name="DC.Rights" content="© 2024, Posted by Cold Spring Harbor Laboratory. This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0/" /> <meta name="DC.AccessRights" content="restricted" /> <meta name="DC.Description" content="The versatile binding properties of antibodies have made them an extremely important class of biotherapeutics. However, therapeutic antibody development is a complex, expensive and time-consuming task, with the final antibody needing to not only have strong and specific binding, but also be minimally impacted by any developability issues. The success of transformer-based language models in protein sequence space and the availability of vast amounts of antibody sequences, has led to the development of many antibody-specific language models to help guide antibody discovery and design. Antibody diversity primarily arises from V(D)J recombination, mutations within the CDRs, and/or from a small number of mutations away from the germline outside the CDRs. Consequently, a significant portion of the variable domain of all natural antibody sequences remains germline. This affects the pre-training of antibody-specific language models, where this facet of the sequence data introduces a prevailing bias towards germline residues. This poses a challenge, as mutations away from the germline are often vital for generating specific and potent binding to a target, meaning that language models need be able to suggest key mutations away from germline. In this study, we explore the implications of the germline bias, examining its impact on both general-protein and antibody-specific language models. We develop and train a series of new antibody-specific language models optimised for predicting non-germline residues. We then compare our final model, AbLang-2, with current models and show how it suggests a diverse set of valid mutations with high cumulative probability. AbLang-2 is trained on both unpaired and paired data, and is freely available (&lt;https://github.com/oxpig/AbLang2.git&gt;). ### Competing Interest Statement Author IM is employed by GlaxoSmithKline plc. All authors declare no other competing interests." /> <meta name="DC.Contributor" content="Tobias H. Olsen" /> <meta name="DC.Contributor" content="Iain H. Moal" /> <meta name="DC.Contributor" content="Charlotte M. Deane" /> <meta name="article:published_time" content="2024-02-07" /> <meta name="article:section" content="New Results" /> <meta name="citation_title" content="Addressing the antibody germline bias and its effect on language models for improved antibody design" /> <meta name="citation_abstract" lang="en" content="&lt;h3&gt;Abstract&lt;/h3&gt; &lt;p&gt;The versatile binding properties of antibodies have made them an extremely important class of biotherapeutics. However, therapeutic antibody development is a complex, expensive and time-consuming task, with the final antibody needing to not only have strong and specific binding, but also be minimally impacted by any developability issues. The success of transformer-based language models in protein sequence space and the availability of vast amounts of antibody sequences, has led to the development of many antibody-specific language models to help guide antibody discovery and design. Antibody diversity primarily arises from V(D)J recombination, mutations within the CDRs, and/or from a small number of mutations away from the germline outside the CDRs. Consequently, a significant portion of the variable domain of all natural antibody sequences remains germline. This affects the pre-training of antibody-specific language models, where this facet of the sequence data introduces a prevailing bias towards germline residues. This poses a challenge, as mutations away from the germline are often vital for generating specific and potent binding to a target, meaning that language models need be able to suggest key mutations away from germline.&lt;/p&gt;&lt;p&gt;In this study, we explore the implications of the germline bias, examining its impact on both general-protein and antibody-specific language models. We develop and train a series of new antibody-specific language models optimised for predicting non-germline residues. We then compare our final model, AbLang-2, with current models and show how it suggests a diverse set of valid mutations with high cumulative probability. AbLang-2 is trained on both unpaired and paired data, and is freely available (https://github.com/oxpig/AbLang2.git).&lt;/p&gt;" /> <meta name="citation_journal_title" content="bioRxiv" /> <meta name="citation_publisher" content="Cold Spring Harbor Laboratory" /> <meta name="citation_publication_date" content="2024/01/01" /> <meta name="citation_mjid" content="biorxiv;2024.02.02.578678v1" /> <meta name="citation_id" content="2024.02.02.578678v1" /> <meta name="citation_public_url" content="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1" /> <meta name="citation_abstract_html_url" content="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1.abstract" /> <meta name="citation_full_html_url" content="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1.full" /> <meta name="citation_pdf_url" content="https://www.biorxiv.org/content/biorxiv/early/2024/02/07/2024.02.02.578678.full.pdf" /> <meta name="citation_doi" content="10.1101/2024.02.02.578678" /> <meta name="citation_num_pages" content="14" /> <meta name="citation_article_type" content="Article" /> <meta name="citation_section" content="New Results" /> <meta name="citation_firstpage" content="2024.02.02.578678" /> <meta name="citation_author" content="Tobias H. Olsen" /> <meta name="citation_author_institution" content="GSK Medicines Research Centre, GSK" /> <meta name="citation_author_institution" content="Department of Statistics, University of Oxford" /> <meta name="citation_author_orcid" content="http://orcid.org/0000-0002-6348-4650" /> <meta name="citation_author" content="Iain H. Moal" /> <meta name="citation_author_institution" content="GSK Medicines Research Centre, GSK" /> <meta name="citation_author" content="Charlotte M. Deane" /> <meta name="citation_author_institution" content="Department of Statistics, University of Oxford" /> <meta name="citation_author_email" content="deane@stats.ox.ac.uk" /> <meta name="citation_author_orcid" content="http://orcid.org/0000-0003-1388-2252" /> <meta name="citation_reference" content="Lenette L Lu, Todd J Suscovich, Sarah M Fortune, and Galit Alter. Beyond binding: antibody effector functions in infectious diseases. Nature Reviews Immunology, 18(1):46–61, 2018." /> <meta name="citation_reference" content="Claire Marks and Charlotte M Deane. How repertoire data are changing antibody science, 7 2020." /> <meta name="citation_reference" content="Richard A Norman, Francesco Ambrosetti, Alexandre M J J Bonvin, Lucy J Colwell, Sebastian Kelm, Sandeep Kumar, and Konrad Krawczyk. Computational approaches to therapeutic antibody design: established methods and emerging trends. Briefings in Bioinformatics, 21(5):1549–1567, 10 2019." /> <meta name="citation_reference" content="Andrea P Espejo, Yamac Akgun, Abdulaziz F Al Mana, Youley Tjendra, Nicolas C Millan, Carmen Gomez-Fernandez, and Carolyn Cray. Review of current advances in serologic testing for COVID-19. Am J Clin Pathol, 154(3):293–304, 2020." /> <meta name="citation_reference" content="Hélène Kaplon, Silvia Crescioli, Alicia Chenoweth, Jyothsna Visweswaraiah, and Janice M Reichert. Antibodies to watch in 2023. mAbs, 15(1):2153410, 2023." /> <meta name="citation_reference" content="Matthew I J Raybould, Claire Marks, Alan P Lewis, Jiye Shi, Alexander Bujotzek, Bruck Taddese, and Charlotte M Deane. Thera-SAbDab: the Therapeutic Structural Antibody Database. Nucleic Acids Research, 48(D1):D383– D388, 1 2020." /> <meta name="citation_reference" content="Rob van der Kant, Anne R Karow-Zwick, Joost Van Durme, Michaela Blech, Rodrigo Gallardo, Daniel Seeliger, Kerstin Aßfalg, Pieter Baatsen, Griet Compernolle, Ann Gils, Joey M Studts, Patrick Schulz, Patrick Garidel, Joost Schymkowitz, and Frederic Rousseau. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. Journal of molecular biology, 429(8):1244–1261, 4 2017." /> <meta name="citation_reference" content="Shabdita Vatsa. In silico prediction of post-translational modifications in therapeutic antibodies. mAbs, 14(1):2023938, 2022." /> <meta name="citation_reference" content="Ruei-Min Lu, Yu-Chyi Hwang, I-Ju Liu, Chi-Chiu Lee, Han-Zen Tsai, Hsin-Jung Li, and Han-Chung Wu. Development of therapeutic antibodies for the treatment of diseases. Journal of biomedical science, 27(1):1–30, 2020." /> <meta name="citation_reference" content="Brian Kelley. Developing therapeutic monoclonal antibodies at pandemic pace. Nature Biotechnology, 38(5):540–545, 2020." /> <meta name="citation_reference" content="Matthew I.J. Raybould, Claire Marks, Konrad Krawczyk, Bruck Taddese, Jaroslaw Nowak, Alan P. Lewis, Alexander Bujotzek, Jiye Shi, and Charlotte M. Deane. Five computational developability guidelines for therapeutic antibody profiling. Proceedings of the National Academy of Sciences of the United States of America, 116(10):4025–4030, 3 2019." /> <meta name="citation_reference" content="Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR, abs/1810.0, 2018." /> <meta name="citation_reference" content="Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR, abs/1907.1, 2019." /> <meta name="citation_reference" content="Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. 2019." /> <meta name="citation_reference" content="Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. CoRR, abs/2005.1, 2020." /> <meta name="citation_reference" content="Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard Rost. ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, page 1, 2021." /> <meta name="citation_reference" content="Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling unsu-pervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15), 2021." /> <meta name="citation_reference" content="Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637):1123–1130, 2023." /> <meta name="citation_reference" content="Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised language model for protein design. Nature Communications, 13(1):4348, 2022." /> <meta name="citation_reference" content="Erik Nijkamp, Jeffrey Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. ProGen2: Exploring the Boundaries of Protein Language Models, 2022." /> <meta name="citation_reference" content="David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman, Daniel Svozil, and Danny A Bitton. BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. mAbs, 14(1):2020203, 2022." /> <meta name="citation_reference" content="Jeffrey A Ruffolo, Jeffrey J Gray, and Jeremias Sulam. Deciphering antibody affinity maturation with language models and weakly supervised learning, 2021." /> <meta name="citation_reference" content="Jinwoo Leem, Laura S Mitchell, James H R Farmery, Justin Barton, and Jacob D Galson. Deciphering the language of antibodies using self-supervised learning. Patterns, 3(7):100513, 2022." /> <meta name="citation_reference" content="Tobias H Olsen, Iain H Moal, and Charlotte M Deane. AbLang: an antibody language model for completing antibody sequences. Bioinformatics Advances, 2(1):vbac046, 1 2022." /> <meta name="citation_reference" content="Brian L Hie, Varun R Shanker, Duo Xu, Theodora U J Bruun, Payton A Weidenbacher, Shaogeng Tang, Wesley Wu, John E Pak, and Peter S Kim. Efficient evolution of human antibodies from general protein language models. Nature Biotechnology, 2023." /> <meta name="citation_reference" content="Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Observed Antibody Space: A diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci, 31(1):141–146, 10 2022." /> <meta name="citation_reference" content="Bryan Briney, Anne Inderbitzin, Collin Joyce, and Dennis R Burton. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature, 566(7744):393–397, 2019." /> <meta name="citation_reference" content="Daeun Kim and Daechan Park. Deep sequencing of B cell receptor repertoire. BMB reports, 52(9):540–547, 2019." /> <meta name="citation_reference" content="David B Jaffe, Payam Shahi, Bruce A Adams, Ashley M Chrisman, Peter M Finnegan, Nandhini Raman, Ariel E Royall, FuNien Tsai, Thomas Vollbrecht, Daniel S Reyes, N Lance Hepler, and Wyatt J McDonnell. Functional antibodies exhibit light chain coherence. Nature, 611(7935):352–357, 2022." /> <meta name="citation_reference" content="Sarah M Burbach and Bryan Briney. Improving antibody language models with native pairing, 2023." /> <meta name="citation_reference" content="Kazutaka Kitaura, Hiroshi Yamashita, Hitomi Ayabe, Tadasu Shini, Takaji Matsutani, and Ryuji Suzuki. Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis. Frontiers in Immunology, 8, 2017." /> <meta name="citation_reference" content="Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding, Kai-Wei Chang, and William Yang Wang. Mitigating Gender Bias in Natural Language Processing: Literature Review. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1630–1640, Florence, Italy, 7 2019. Association for Computational Linguistics." /> <meta name="citation_reference" content="Ada Shaw, Hansen Spinner, June Shin, Sarah Gurev, Nathan Rollins, and Debora Marks. Removing bias in sequence models of protein fitness. bioRxiv, 2023." /> <meta name="citation_reference" content="Michael Gira, Ruisu Zhang, and Kangwook Lee. Debiasing Pre-Trained Language Models via Efficient Fine-Tuning. In Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion, pages 59–69, Dublin, Ireland, 5 2022. Association for Computational Linguistics." /> <meta name="citation_reference" content="Paula Branco, Luis Torgo, and Rita P Ribeiro. A Survey of Predictive Modelling under Imbalanced Distributions. CoRR, abs/1505.0, 2015." /> <meta name="citation_reference" content="Tsung-Yi Lin, Priya Goyal, Ross B Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object Detection. CoRR, abs/1708.0, 2017." /> <meta name="citation_reference" content="Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear time. Nature Communi-cations, 9(1):2542, 2018." /> <meta name="citation_reference" content="Jian Ye, Ning Ma, Thomas L Madden, and James M Ostell. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic acids research, 41(Web Server issue):34–40, 7 2013." /> <meta name="citation_reference" content="James Dunbar and Charlotte M Deane. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics, 32(2):298–300, 1 2016." /> <meta name="citation_reference" content="Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Pseudolikelihood Reranking with Masked Language Models. CoRR, abs/1910.1, 2019." /> <meta name="citation_reference" content="citation_title=rAdvances in Neural Information Processing Systems;citation_author=Adam. Paszke;citation_author=Sam. Gross;citation_author=Francisco. Massa;citation_author=Adam. Lerer;citation_author=James. Bradbury;citation_author=Gregory. Chanan;citation_author=Trevor. Killeen;citation_author=Zeming. Lin;citation_author=Natalia. Gimelshein;citation_author=Luca. Antiga;citation_author=Alban. Desmaison;citation_author=Andreas. Kopf;citation_author=Edward. Yang;citation_author=Zachary. De-Vito;citation_author=Martin. Raison;citation_author=Alykhan. Tejani;citation_author=Sasank. Chilamkurthy;citation_author=Benoit. Steiner;citation_author=Lu. Fang;citation_author=Junjie. Bai;citation_author=Soumith. Chintala;citation_pages=8024-8035;citation_volume=32;citation_year=2019" /> <meta name="citation_reference" content="William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019." /> <meta name="citation_reference" content="Noam Shazeer. GLU Variants Improve Transformer. CoRR, abs/2002.0, 2020." /> <meta name="citation_reference" content="Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won Chung, Siamak Shakeri, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny Zhou, Neil Houlsby, and Donald Metzler. UL2: Unifying Language Learning Paradigms, 2023." /> <meta name="citation_reference" content="Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, and Cathy H Wu. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6):926– 932, 3 2015." /> <meta name="citation_reference" content="Bo Zheng, Li Dong, Shaohan Huang, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, and Furu Wei. Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training. CoRR, abs/2109.0, 2021." /> <meta name="twitter:title" content="Addressing the antibody germline bias and its effect on language models for improved antibody design" /> <meta name="twitter:site" content="@biorxivpreprint" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:image" content="https://www.biorxiv.org/sites/default/files/images/biorxiv_logo_homepage7-5-small.png" /> <meta name="twitter:description" content="The versatile binding properties of antibodies have made them an extremely important class of biotherapeutics. However, therapeutic antibody development is a complex, expensive and time-consuming task, with the final antibody needing to not only have strong and specific binding, but also be minimally impacted by any developability issues. The success of transformer-based language models in protein sequence space and the availability of vast amounts of antibody sequences, has led to the development of many antibody-specific language models to help guide antibody discovery and design. Antibody diversity primarily arises from V(D)J recombination, mutations within the CDRs, and/or from a small number of mutations away from the germline outside the CDRs. Consequently, a significant portion of the variable domain of all natural antibody sequences remains germline. This affects the pre-training of antibody-specific language models, where this facet of the sequence data introduces a prevailing bias towards germline residues. This poses a challenge, as mutations away from the germline are often vital for generating specific and potent binding to a target, meaning that language models need be able to suggest key mutations away from germline. In this study, we explore the implications of the germline bias, examining its impact on both general-protein and antibody-specific language models. We develop and train a series of new antibody-specific language models optimised for predicting non-germline residues. We then compare our final model, AbLang-2, with current models and show how it suggests a diverse set of valid mutations with high cumulative probability. AbLang-2 is trained on both unpaired and paired data, and is freely available (&lt;https://github.com/oxpig/AbLang2.git&gt;). ### Competing Interest Statement Author IM is employed by GlaxoSmithKline plc. All authors declare no other competing interests." /> <meta name="og-title" property="og:title" content="Addressing the antibody germline bias and its effect on language models for improved antibody design" /> <meta name="og-url" property="og:url" content="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1" /> <meta name="og-site-name" property="og:site_name" content="bioRxiv" /> <meta name="og-description" property="og:description" content="The versatile binding properties of antibodies have made them an extremely important class of biotherapeutics. However, therapeutic antibody development is a complex, expensive and time-consuming task, with the final antibody needing to not only have strong and specific binding, but also be minimally impacted by any developability issues. The success of transformer-based language models in protein sequence space and the availability of vast amounts of antibody sequences, has led to the development of many antibody-specific language models to help guide antibody discovery and design. Antibody diversity primarily arises from V(D)J recombination, mutations within the CDRs, and/or from a small number of mutations away from the germline outside the CDRs. Consequently, a significant portion of the variable domain of all natural antibody sequences remains germline. This affects the pre-training of antibody-specific language models, where this facet of the sequence data introduces a prevailing bias towards germline residues. This poses a challenge, as mutations away from the germline are often vital for generating specific and potent binding to a target, meaning that language models need be able to suggest key mutations away from germline. In this study, we explore the implications of the germline bias, examining its impact on both general-protein and antibody-specific language models. We develop and train a series of new antibody-specific language models optimised for predicting non-germline residues. We then compare our final model, AbLang-2, with current models and show how it suggests a diverse set of valid mutations with high cumulative probability. AbLang-2 is trained on both unpaired and paired data, and is freely available (&lt;https://github.com/oxpig/AbLang2.git&gt;). ### Competing Interest Statement Author IM is employed by GlaxoSmithKline plc. All authors declare no other competing interests." /> <meta name="og-type" property="og:type" content="article" /> <meta name="og-image" property="og:image" content="https://www.biorxiv.org/sites/default/files/images/biorxiv_logo_homepage7-5-small.png" /> <meta name="citation_date" content="2024-02-07" /> <link rel="alternate" type="application/vnd.ms-powerpoint" title="Powerpoint" href="/content/10.1101/2024.02.02.578678v1.ppt" /> <meta name="description" content="bioRxiv - the preprint server for biology, operated by Cold Spring Harbor Laboratory, a research and educational institution" /> <meta name="generator" content="Drupal 7 (http://drupal.org)" /> <link rel="canonical" href="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1" /> <link rel="shortlink" href="https://www.biorxiv.org/node/3641427" /> <title>Addressing the antibody germline bias and its effect on language models for improved antibody design | bioRxiv</title> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__7SC0i-kTgUlQGKuqbmyS18Sez8FDO-aG9FSHkGrLGl8__EBUojqg5W_1M2-aUl2Y1w9JxEEauoJ0pj29wOb-7Vz4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <link type="text/css" rel="stylesheet" href="//cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__UufzdoKtMhzTNiAJfsa_0bYn78zz-bBHwNEqMQ0UIXk__1-Opexvnkee5dlO1d6qLW5_7DT6gOdNGKRcC-FxT6QU__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <style type="text/css" media="all"> /* <![CDATA[ */ .panels-flexible-new .panels-flexible-region{padding:0}.panels-flexible-new .panels-flexible-region-inside{padding-right:.5em;padding-left:.5em}.panels-flexible-new .panels-flexible-region-inside-first{padding-left:0}.panels-flexible-new .panels-flexible-region-inside-last{padding-right:0}.panels-flexible-new .panels-flexible-column{padding:0}.panels-flexible-new .panels-flexible-column-inside{padding-right:.5em;padding-left:.5em}.panels-flexible-new .panels-flexible-column-inside-first{padding-left:0}.panels-flexible-new .panels-flexible-column-inside-last{padding-right:0}.panels-flexible-new .panels-flexible-row{padding:0 0 .5em;margin:0}.panels-flexible-new .panels-flexible-row-last{padding-bottom:0}.panels-flexible-column-new-main{float:left;width:99.0000%}.panels-flexible-new-inside{padding-right:0}.panels-flexible-new{width:auto}.panels-flexible-region-new-center{float:left;width:99.0000%}.panels-flexible-row-new-main-row-inside{padding-right:0} /* ]]> */ </style> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__PWuQ_RYRTJ4BLEKsbWQeHysPg0gOQ3571ruQa_rXvAo__pWyBeQHtoijrNnOoDz9ZPdiNPirDrSCPOz0Q1CDCeno__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <style type="text/css" media="all"> /* <![CDATA[ */ #sliding-popup.sliding-popup-bottom,#sliding-popup.sliding-popup-bottom .eu-cookie-withdraw-banner,.eu-cookie-withdraw-tab{background:gray}#sliding-popup.sliding-popup-bottom.eu-cookie-withdraw-wrapper{background:transparent}#sliding-popup .popup-content #popup-text h1,#sliding-popup .popup-content #popup-text h2,#sliding-popup .popup-content #popup-text h3,#sliding-popup .popup-content #popup-text p,.eu-cookie-compliance-secondary-button,.eu-cookie-withdraw-tab{color:#fff !important}.eu-cookie-withdraw-tab{border-color:#fff}.eu-cookie-compliance-more-button{color:#fff !important} /* ]]> */ </style> <!--[if lte IE 7]> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__ElJr3PIJEvw3qLXc1cnYiLj2G4KgDPSXFOfm6Phf8hw__JdWGm15cDWjsK6KrFlQVXQix9YgNeYysf22XZHj-Y-c__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <![endif]--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__Wnlyen9qEpwh_Qaf9okEu4QdVGM0BDothxeqA6Nbvo8__EJmw6SZD9bYoS8jocCpPYS3JFRURpdzmuvJoAUNiI-g__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__AWaUjB_CJFqdCLsTWh7_WG-W7zo3fP_0gXCzZa32v_g__igagZiGB2PktJMjUpZ2u3tnc56saoUGIrD5N0KSRmI4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <!--[if (lt IE 9)&(!IEMobile)]> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__XH6bpcI0f2dImc-p674DLCZtWBGb-QwxJK1YexVGtno__vUceGprdo5nIhV6DH93X7fI3r8RcTJbChbas9TQXeW4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <![endif]--> <!--[if gte IE 9]><!--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__2WBMox6sOrN42ss5lCnH7WWVRdFdJCxtTKnQJYRwTE4__yqNvNYLvMpjy3ffuJrjjm9uW2i-Me1c23KLYuWHaqio__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <!--<![endif]--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__5MZAvuGF3rUWh72Qvpop9cdPSWpqBpEVThJVpbjFJZU__5c1ZiN_pM9tjxvpyA9VpEacScF0S_W4R222pC-s_-Pk__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://d33xdlntwy0kbs.cloudfront.net/cshl_custom.css" media="all" /> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__BKYqkKToQ7EjirB7eIdMEH5521EU3da9IpoOs8Ex2XI__aSjVoX8giBmLhN2EbCgIGQJNu89Mh5aVu1LvI_gkJ7Y__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" src="//cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.js"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__4Cn2dxvNlsJ-sHe6QOTLREaQvcqb0Yh0Zm9tTOHtQow__JeZEUjzbaj_yX6UjCI8eBbXy_J64ZVuoWmc2fSpLZHo__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" src="https://www.google.com/recaptcha/api.js?hl=en&amp;render=explicit&amp;onload=drupalRecaptchaOnload"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__dGWpV57YWu3sX6UOe04RMH-iP9jSkEP7Ajt0caYXZZk__1l8Wa0iuIek7SEVmMuU0Y9TlAvRR-XZVfl1u9ezOPes__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" async="async" src="https://scholar.google.com/scholar_js/casa.js"></script> <script type="text/javascript" async="async" src="https://www.googletagmanager.com/gtag/js?id=G-RZD586MC3Q"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- /*! * yepnope1.5.4 * (c) WTFPL, GPLv2 */ (function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f<d;f++)g=a[f].split("="),(e=z[g.shift()])&&(c=e(c,g));for(f=0;f<b;f++)c=x[f](c);return c}function g(a,e,f,g,h){var i=b(a),j=i.autoCallback;i.url.split(".").pop().split("?").shift(),i.bypass||(e&&(e=d(e)?e:e[a]||e[g]||e[a.split("/").pop().split("?")[0]]),i.instead?i.instead(a,e,f,g,h):(y[i.url]?i.noexec=!0:y[i.url]=1,f.load(i.url,i.forceCSS||!i.forceJS&&"css"==i.url.split(".").pop().split("?").shift()?"c":c,i.noexec,i.attrs,i.timeout),(d(e)||d(j))&&f.load(function(){k(),e&&e(i.origUrl,h,g),j&&j(i.origUrl,h,g),y[i.url]=2})))}function h(a,b){function c(a,c){if(a){if(e(a))c||(j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}),g(a,j,b,0,h);else if(Object(a)===a)for(n in m=function(){var b=0,c;for(c in a)a.hasOwnProperty(c)&&b++;return b}(),a)a.hasOwnProperty(n)&&(!c&&!--m&&(d(j)?j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}:j[n]=function(a){return function(){var b=[].slice.call(arguments);a&&a.apply(this,b),l()}}(k[n])),g(a[n],j,b,n,h))}else!c&&l()}var h=!!a.test,i=a.load||a.both,j=a.callback||f,k=j,l=a.complete||f,m,n;c(h?a.yep:a.nope,!!i),i&&c(i)}var i,j,l=this.yepnope.loader;if(e(a))g(a,0,l,0);else if(w(a))for(i=0;i<a.length;i++)j=a[i],e(j)?g(j,0,l,0):w(j)?B(j):Object(j)===j&&h(j,l);else Object(a)===a&&h(a,l)},B.addPrefix=function(a,b){z[a]=b},B.addFilter=function(a){x.push(a)},B.errorTimeout=1e4,null==b.readyState&&b.addEventListener&&(b.readyState="loading",b.addEventListener("DOMContentLoaded",A=function(){b.removeEventListener("DOMContentLoaded",A,0),b.readyState="complete"},0)),a.yepnope=k(),a.yepnope.executeStack=h,a.yepnope.injectJs=function(a,c,d,e,i,j){var k=b.createElement("script"),l,o,e=e||B.errorTimeout;k.src=a;for(o in d)k.setAttribute(o,d[o]);c=j?h:c||f,k.onreadystatechange=k.onload=function(){!l&&g(k.readyState)&&(l=1,c(),k.onload=k.onreadystatechange=null)},m(function(){l||(l=1,c(1))},e),i?k.onload():n.parentNode.insertBefore(k,n)},a.yepnope.injectCss=function(a,c,d,e,g,i){var e=b.createElement("link"),j,c=i?h:c||f;e.href=a,e.rel="stylesheet",e.type="text/css";for(j in d)e.setAttribute(j,d[j]);g||(n.parentNode.insertBefore(e,n),m(c,0))}})(this,document); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- yepnope({ test: Modernizr.matchmedia, nope: '/sites/all/libraries/media-match/media.match.min.js' }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- var _prum=[['id', '612e3d94173350001100005d'], ['mark', 'firstbyte', (new Date()).getTime()]]; (function() { var s=document.getElementsByTagName('script')[0], p=document.createElement('script'); p.async='async'; p.src='//rum-static.pingdom.net/prum.min.js';s.parentNode.insertBefore(p,s);})(); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- if(typeof window.MathJax === "undefined") window.MathJax = { menuSettings: { zoom: "Click" } }; //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.dataLayer = window.dataLayer || [];function gtag(){dataLayer.push(arguments)};gtag("js", new Date());gtag("set", "developer_id.dMDhkMT", true);gtag("config", "G-RZD586MC3Q", {"groups":"default","anonymize_ip":true}); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- jQuery.extend(Drupal.settings,{"basePath":"\/","pathPrefix":"","ajaxPageState":{"theme":"jcore_1","theme_token":"O05GPCSGr9weR9fCXnV1fhVj2tu4kOuw2rPJBxXEiUk"},"colorbox":{"opacity":"0.85","current":"{current} of {total}","previous":"\u00ab Prev","next":"Next \u00bb","close":"Close","maxWidth":"98%","maxHeight":"98%","fixed":true,"mobiledetect":true,"mobiledevicewidth":"480px"},"highwire":{"nid":"3641427","apath":"\/biorxiv\/early\/2024\/02\/07\/2024.02.02.578678.atom","pisa":"biorxiv;2024.02.02.578678v1","ac":{"\/biorxiv\/early\/2024\/02\/07\/2024.02.02.578678.atom":{"access":{"full":true},"pisa_id":"","apath":"\/biorxiv\/early\/2024\/02\/07\/2024.02.02.578678.atom","jcode":"biorxiv"}},"processed":["highwire_math"],"markup":[{"requested":"abstract","variant":"abstract","view":"abstract","pisa":"biorxiv;2024.02.02.578678v1"}],"modal_window_width":"560","share_modal_width":"560","share_modal_title":"Share this Article"},"jcarousel":{"ajaxPath":"\/jcarousel\/ajax\/views"},"instances":"{\u0022highwire_abstract_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:20,\u0022height\u0022:20,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-abstract-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-abstract-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022right center\u0022,\u0022my\u0022:\u0022left center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022shift\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter click \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_author_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-author-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-author-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022top center\u0022,\u0022my\u0022:\u0022bottom center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_reflinks_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022mimic\u0022:\u0022top center\u0022,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-ref-link-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-ref-link-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022bottom left\u0022,\u0022my\u0022:\u0022top left\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022flip\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}}}","qtipDebug":"{\u0022leaveElement\u0022:0}","panel_ajax_tab":{"path":"sites\/all\/modules\/contrib\/panels_ajax_tab"},"disqus":{"domain":"biorxivstage","url":"https:\/\/www.biorxiv.org\/content\/10.1101\/2024.02.02.578678v1","title":"Addressing the antibody germline bias and its effect on language models for improved antibody design","identifier":"node\/3641427"},"panels_ajax_pane":{"new-28877068-b9cb-4641-830b-b6b4638c98bb":"{\u0022encrypted\u0022:\u0022{\\\u0022encrypted\\\u0022:\\\u00224o8XD+has\\\\\\\/3DyjXSw2mgMrlvtsdnGGUFNmnI+3m6G8FL9RDqOYxuHk1KfPtMQJPDpNmcbKRSJDPRXVgT7HMHgGi5LdMb+qgsVywvI8\\\\\\\/\\\\\\\/X1ZKuLZXuy2o8TpKZW+p9noCT14Pcdo4m4FEAP4yr5L\\\\\\\/xvtjmxjQRuxKBchbsaZomknCAEVINoucI404opDZNjr1h8fR8cmCIP8W1SuYnSeAeHisOgn3sEs9sRfWoqmo+L6c8+EOJTnv6G5xtd7kx5Zp0hvSfqITxtOoYmgiCAddlgX++ZmdbXC6uAMIuiJ5m1kvuQltdwHm1zKzvuQtYN244KJbSneGka9c8f67hb20aH0ytQKkvxv7BoBivbt135RLzTZ7g2w49e+lkNMUwwrbwGl3\\\\\\\/4r+csbWrwxSlrbjODQCeNpBbOevH8PZmNulcPrQ2msz7DSVS3\\\\\\\/DMrNrFBM67KrabxyFkDU8V7m4pbDpf7NWfnGdRSEI0C+s8sKlH3zxZhEkRQWBsQ6OP4e2r6+hf8xN1r5rCX3cWBlF3X6belPHMtBZ2OTTmviPer6r+ctzTWKYWmJp15RW2a3prPC\\\\\\\/SRpuzsV\\\\\\\/fdOgfzMODt9j7BmqMKsiw7eb689+E7GyU6mptRGXvncHIrzX\\\\\\\/mSP0IE3ES7u85Ecm4jSyAts5M5MBcFkbqKfj0VLKSZWelWBXhbq3tuS+Y0I3owiqaBF1TNohlJOZsDPmVziOK0Nhtto+xXFXwukoFGCrl\\\\\\\/ilfm0k8wM4i\\\\\\\/YT59S8if9a\\\\\\\/Myy\\\\\\\/edWif1OFCgrEoy5amb92VmyXOTfAeKSw51kzDzc3ZBqsgOujAjFUKMhjblgx+kw9DGE0t4SawqJZgqCJhF8qCqDHFxsBciaP9TL7q7xmb9jsb6j\\\\\\\/SSqnWD63wf1JQKMiFQCIVzkSHYALG73DBYN3nqj1D3WYxjbjh\\\\\\\/ItTGtsim7BoLCbFCCgj+NSIOhW5u\\\\\\\/l2yznOrJFN4EvfhFeJm0SOoV5nJt9tRcU5KvEg6JLBrGwxpfAv9WaVvmhLFrYeK2jfJAc+HRCNCt8\\\\\\\/rWHsR39uu4HbXob62ey6Bh64javtSdbVHUL8qye9H3zI3KJWheqIkSVDZtbweNPbK357QgH5s0CcbAInBo4go92nCYRoMP+1Db8nTEStAr633SR1RMm1DSfZQj1rXION9BTQqsNXTVwehY9Uo5yCxBA68Mt7VIGNcOXT4xlTfig+D+xaxyc1th4WIRHnZ4q2nv6hFKy8Mgc1+rL6TaUGwDsDoD9dbQWjEa6BnnnNkUYmKS76aUOb1nFZhBRkHhSE18qabliUlz5btouqR8qxJlAQb9buVbJybEuMPxP5OvcCjwD2N5kXv\\\u0022,\\\u0022iv\\\u0022:\\\u0022cabIUHBi2YW5K72nXcYwiw==\\\u0022,\\\u0022salt\\\u0022:\\\u0022f9d8845712f72c9fee5db7d9ff111eab\\\u0022}\u0022,\u0022hmac\u0022:\u002291fa360f4ff37ac031b24b3740afdf41fd6cfd8958fc13376b9aaf23995c420b\u0022}"},"urlIsAjaxTrusted":{"\/content\/10.1101\/2024.02.02.578678v1":true},"ws_fl":{"width":100,"height":21},"ws_gpo":{"size":"","annotation":"","lang":"","callback":"","width":300},"color":{"logo":"https:\/\/www.biorxiv.org\/sites\/default\/files\/biorxiv_article.jpg"},"highwire_list_expand":{"is_collapsed":"1"},"highwireResponsive":{"enquire_enabled":1,"breakpoints_configured":1,"breakpoints":{"zero":"all and (min-width: 0px)","xsmall":"all and (min-width: 380px)","narrow":"all and (min-width: 768px) and (min-device-width: 768px), (max-device-width: 800px) and (min-width: 768px) and (orientation:landscape)","normal":"all and (min-width: 980px) and (min-device-width: 980px), all and (max-device-width: 1024px) and (min-width: 1024px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}},"eu_cookie_compliance":{"popup_enabled":1,"popup_agreed_enabled":0,"popup_hide_agreed":0,"popup_clicking_confirmation":1,"popup_scrolling_confirmation":false,"popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003EWe use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies.\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Continue\u0022\n class=\u0022agree-button eu-cookie-compliance-default-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Find out more\u0022\n class=\u0022find-more-button eu-cookie-compliance-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","use_mobile_message":false,"mobile_popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Continue\u0022\n class=\u0022agree-button eu-cookie-compliance-default-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Find out more\u0022\n class=\u0022find-more-button eu-cookie-compliance-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","mobile_breakpoint":"768","popup_html_agreed":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content agreed\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Ch2\u003EThank you for accepting cookies\u003C\/h2\u003E\u003Cp\u003EYou can now hide this message or find out more about cookies.\u003C\/p\u003E \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022hide-popup-button eu-cookie-compliance-hide-button\u0022\u003EHide\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022find-more-button eu-cookie-compliance-more-button-thank-you\u0022 \u003EMore info\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","popup_use_bare_css":false,"popup_height":"auto","popup_width":"100%","popup_delay":1000,"popup_link":"\/help\/cookie-policy","popup_link_new_window":1,"popup_position":null,"popup_language":"en","store_consent":false,"better_support_for_screen_readers":0,"reload_page":0,"domain":"","popup_eu_only_js":0,"cookie_lifetime":"365","cookie_session":false,"disagree_do_not_show_popup":0,"method":"default","whitelisted_cookies":"","withdraw_markup":"\u003Cbutton type=\u0022button\u0022 class=\u0022eu-cookie-withdraw-tab\u0022\u003EPrivacy settings\u003C\/button\u003E\n\u003Cdiv class=\u0022eu-cookie-withdraw-banner\u0022\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003E\u0026lt;h2\u0026gt;We use cookies on this site to enhance your user experience\u0026lt;\/h2\u0026gt;\u0026lt;p\u0026gt;You have given your consent for us to set cookies.\u0026lt;\/p\u0026gt;\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022eu-cookie-withdraw-button\u0022\u003EWithdraw consent\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E\n","withdraw_enabled":false},"googleanalytics":{"account":["G-RZD586MC3Q"],"trackOutbound":1,"trackMailto":1,"trackDownload":1,"trackDownloadExtensions":"7z|aac|arc|arj|asf|asx|avi|bin|csv|doc(x|m)?|dot(x|m)?|exe|flv|gif|gz|gzip|hqx|jar|jpe?g|js|mp(2|3|4|e?g)|mov(ie)?|msi|msp|pdf|phps|png|ppt(x|m)?|pot(x|m)?|pps(x|m)?|ppam|sld(x|m)?|thmx|qtm?|ra(m|r)?|sea|sit|tar|tgz|torrent|txt|wav|wma|wmv|wpd|xls(x|m|b)?|xlt(x|m)|xlam|xml|z|zip","trackColorbox":1},"jnl_biorxiv_styles":{"defaultJCode":"biorxiv"},"omega":{"layouts":{"primary":"normal","order":["narrow","normal","wide"],"queries":{"narrow":"all and (min-width: 768px) and (min-device-width: 768px), (max-device-width: 800px) and (min-width: 768px) and (orientation:landscape)","normal":"all and (min-width: 980px) and (min-device-width: 980px), all and (max-device-width: 1024px) and (min-width: 1024px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}}}}); //--><!]]> </script> <!--[if lt IE 9]><script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script><![endif]--> </head> <body class="html not-front not-logged-in page-node page-node- page-node-3641427 node-type-highwire-article context-content hw-default-jcode-biorxiv hw-article-type-article hw-article-category-new-results"> <!-- Google Tag Manager --> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-M677548" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script type="text/javascript">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0];var j=d.createElement(s);var dl=l!='dataLayer'?'&l='+l:'';j.src='//www.googletagmanager.com/gtm.js?id='+i+dl;j.type='text/javascript';j.async=true;f.parentNode.insertBefore(j,f);})(window,document,'script','dataLayer','GTM-M677548');</script> <!-- End Google Tag Manager --> <div id="skip-link"> <a href="#main-content" class="element-invisible element-focusable">Skip to main content</a> </div> <div class="page clearfix page-box-shadows footer-borders panels-page panels-layout-jcore_2col" id="page"> <header id="section-header" class="section section-header"> <div id="zone-branding" class="zone zone-branding clearfix print-display-block container-30"> <div class="grid-15 prefix-1 region region-branding print-display-block" id="region-branding"> <div class="region-inner region-branding-inner"> <div class="branding-data clearfix"> <div class="logo-img"> <a href="/" rel="home" class="" data-icon-position="" data-hide-link-title="0"><img alt="bioRxiv" src="https://www.biorxiv.org/sites/default/files/biorxiv_article.jpg" /></a> </div> </div> </div> </div><div class="grid-11 suffix-1 region region-branding-second print-hidden" id="region-branding-second"> <div class="region-inner region-branding-second-inner"> <div class="block block-system block-menu block-main-menu block-system-main-menu odd block-without-title" id="block-system-main-menu"> <div class="block-inner clearfix"> <div class="content clearfix"> <nav class="menubar-nav"><ul class="menu" role="menu"><li class="first leaf" role="menuitem"><a href="/" title="" class="" data-icon-position="" data-hide-link-title="0">Home</a></li> <li class="leaf" role="menuitem"><a href="/about-biorxiv" class="" data-icon-position="" data-hide-link-title="0">About</a></li> <li class="leaf" role="menuitem"><a href="/submit-a-manuscript" class="" data-icon-position="" data-hide-link-title="0">Submit</a></li> <li class="last leaf" role="menuitem"><a href="/alertsrss" title="" class="" data-icon-position="" data-hide-link-title="0">ALERTS / RSS</a></li> </ul></nav> </div> </div> </div><div class="block block-panels-mini block-biorxiv-search-box block-panels-mini-biorxiv-search-box even block-without-title" id="block-panels-mini-biorxiv-search-box"> <div class="block-inner clearfix"> <div class="content clearfix"> <div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_search_box"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-seach-quicksearch" > <div class="pane-content"> <form class="highwire-quicksearch button-style-mini button-style-mini" action="/content/10.1101/2024.02.02.578678v1" method="post" id="highwire-search-quicksearch-form-0" accept-charset="UTF-8"><div><div class="form-item form-item-label-invisible form-type-textfield form-item-keywords"> <label class="element-invisible" for="search_rightsidebar_keywords_1689036472">Search for this keyword </label> <input placeholder="Search" type="text" id="search_rightsidebar_keywords_1689036472" name="keywords" value="" size="60" maxlength="128" class="form-text" /> </div> <div class="button-wrapper button-mini"><span class="icon-search"></span><input data-icon-only="1" data-font-icon="icon-search" data-icon-position="after" type="submit" id="search_rightsidebar_submit_1833872430" name="op" value="Search" class="form-submit" /></div><input type="hidden" name="form_build_id" value="form-ILdYYgWCdXj2gkZgRom50DqrqW4xxbcBMctKYCk9gDE" /> <input type="hidden" name="form_id" value="highwire_search_quicksearch_form_0" /> </div></form> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-2 advanced-search-link" > <div class="pane-content"> <a href="/search">Advanced Search</a> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div id="zone-header" class="zone zone-header clearfix container-30"> </div> </header> <section id="section-content" class="section section-content"> <div id="zone-content" class="zone zone-content clearfix container-30"> <div class="grid-28 suffix-1 prefix-1 region region-content" id="region-content"> <div class="region-inner region-content-inner"> <a id="main-content"></a> <div class="block block-system block-main block-system-main odd block-without-title" id="block-system-main"> <div class="block-inner clearfix"> <div class="content clearfix"> <div class="panel-display panels-960-layout jcore-2col-layout" > <div class="panel-row-wrapper clearfix"> <div class="main-content-wrapper grid-17 suffix-1 alpha"> <div class="panel-panel panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-citation" > <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article node3641427" data-node-nid="3641427" id="node-3641427--21454912402" data-pisa="biorxiv;2024.02.02.578678v1" data-pisa-master="biorxiv;2024.02.02.578678" data-apath="/biorxiv/early/2024/02/07/2024.02.02.578678.atom" data-hw-author-tooltip-instance="highwire_author_tooltip"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-top clearfix has-author-tooltip" > <span class="biorxiv-article-type"> New Results </span> <h1 class="highwire-cite-title" id="page-title">Addressing the antibody germline bias and its effect on language models for improved antibody design</h1> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first hw-author-orcid-logo-wrapper" data-delta="0"><a href="http://orcid.org/0000-0002-6348-4650" target="_blank" class="hw-author-orcid-logo link-icon-only link-icon"><span class="hw-icon-orcid hw-icon-color-orcid"></span> <span class="title element-invisible">View ORCID Profile</span></a><span class="nlm-given-names">Tobias H.</span> <span class="nlm-surname">Olsen</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Iain H.</span> <span class="nlm-surname">Moal</span></span>, <span class="highwire-citation-author hw-author-orcid-logo-wrapper" data-delta="2"><a href="http://orcid.org/0000-0003-1388-2252" target="_blank" class="hw-author-orcid-logo link-icon-only link-icon"><span class="hw-icon-orcid hw-icon-color-orcid"></span> <span class="title element-invisible">View ORCID Profile</span></a><span class="nlm-given-names">Charlotte M.</span> <span class="nlm-surname">Deane</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="label">doi:</span> https://doi.org/10.1101/2024.02.02.578678 </span></div> </div> <div id="hw-article-author-popups-node-3641427--21454912402" style="display: none;"><div class="author-tooltip-0"><div class="author-tooltip-name">Tobias H. Olsen </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>1</span><span class='nlm-institution'>GSK Medicines Research Centre, GSK</span>, Stevenage SG1 2NY, <span class='nlm-country'>United Kingdom</span></div><div class='author-affiliation'><span class='nlm-sup'>2</span><span class='nlm-institution'>Department of Statistics, University of Oxford</span>, Oxford OX1 3LB, <span class='nlm-country'>United Kingdom</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&amp;gs_type=author&amp;author%5B0%5D=Tobias%2BH.%2BOlsen%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Olsen%20TH&amp;link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link"><a href="/search/author1%3ATobias%2BH.%2BOlsen%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li><li class="author-orcid-link last"><a href="http://orcid.org/0000-0002-6348-4650" target="_blank" class="" data-icon-position="" data-hide-link-title="0">ORCID record for Tobias H. Olsen</a></li></ul></div><div class="author-tooltip-1"><div class="author-tooltip-name">Iain H. Moal </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>1</span><span class='nlm-institution'>GSK Medicines Research Centre, GSK</span>, Stevenage SG1 2NY, <span class='nlm-country'>United Kingdom</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&amp;gs_type=author&amp;author%5B0%5D=Iain%2BH.%2BMoal%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Moal%20IH&amp;link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link last"><a href="/search/author1%3AIain%2BH.%2BMoal%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li></ul></div><div class="author-tooltip-2"><div class="author-tooltip-name">Charlotte M. Deane </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>2</span><span class='nlm-institution'>Department of Statistics, University of Oxford</span>, Oxford OX1 3LB, <span class='nlm-country'>United Kingdom</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&amp;gs_type=author&amp;author%5B0%5D=Charlotte%2BM.%2BDeane%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Deane%20CM&amp;link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link"><a href="/search/author1%3ACharlotte%2BM.%2BDeane%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li><li class="author-orcid-link"><a href="http://orcid.org/0000-0003-1388-2252" target="_blank" class="" data-icon-position="" data-hide-link-title="0">ORCID record for Charlotte M. Deane</a></li><li class="author-corresp-email-link last"><span>For correspondence: <a href="mailto:deane@stats.ox.ac.uk" class="" data-icon-position="" data-hide-link-title="0">deane@stats.ox.ac.uk</a></span></li></ul></div></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs pane-panels-ajax-tab-tabs" > <div class="pane-content"> <div class="item-list"><ul class="tabs inline panels-ajax-tab"><li class="first"><a href="/content/10.1101/2024.02.02.578678v1" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_art" data-target-id="highwire_article_tabs" data-entity-context="node:3641427" data-trigger="" data-url-enabled="1">Abstract</a><a href="/panels_ajax_tab/biorxiv_tab_art/node:3641427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/2024.02.02.578678v1.full-text" class="panels-ajax-tab-tab" data-panel-name="article_tab_full_text" data-target-id="highwire_article_tabs" data-entity-context="node:3641427" data-trigger="full-text" data-url-enabled="1">Full Text</a><a href="/panels_ajax_tab/article_tab_full_text/node:3641427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/2024.02.02.578678v1.article-info" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_info" data-target-id="highwire_article_tabs" data-entity-context="node:3641427" data-trigger="article-info" data-url-enabled="1">Info/History</a><a href="/panels_ajax_tab/biorxiv_tab_info/node:3641427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/2024.02.02.578678v1.article-metrics" class="panels-ajax-tab-tab" data-panel-name="article_tab_metrics" data-target-id="highwire_article_tabs" data-entity-context="node:3641427" data-trigger="article-metrics" data-url-enabled="1">Metrics</a><a href="/panels_ajax_tab/article_tab_metrics/node:3641427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li class="last"><a href="/content/10.1101/2024.02.02.578678v1.full.pdf+html" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_pdf" data-target-id="highwire_article_tabs" data-entity-context="node:3641427" data-trigger="full.pdf+html" data-url-enabled="1"><i class="icon-file-alt"></i> Preview PDF</a><a href="/panels_ajax_tab/biorxiv_tab_pdf/node:3641427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li></ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs-container" > <div class="pane-content"> <div data-panels-ajax-tab-preloaded="biorxiv_tab_art" id="panels-ajax-tab-container-highwire_article_tabs" class="panels-ajax-tab-container"><div class="panels-ajax-tab-loading" style ="display:none"><img class="loading" src="https://www.biorxiv.org/sites/all/modules/contrib/panels_ajax_tab/images/loading.gif" alt="Loading" title="Loading" /></div><div class="panels-ajax-tab-wrap-biorxiv_tab_art"><div class="panel-display panel-1col clearfix" > <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-markup" > <div class="pane-content"> <div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" data-highwire-cite-ref-tooltip-instance="highwire_reflinks_tooltip" class="content-block-markup" xmlns:xhtml="http://www.w3.org/1999/xhtml"><div class="article abstract-view "><span class="highwire-journal-article-marker-start"></span><div class="section abstract" id="abstract-1"><h2 class="">A<span class="sc">bstract</span></h2><p id="p-2">The versatile binding properties of antibodies have made them an extremely important class of biotherapeutics. However, therapeutic antibody development is a complex, expensive and time-consuming task, with the final antibody needing to not only have strong and specific binding, but also be minimally impacted by any developability issues. The success of transformer-based language models in protein sequence space and the availability of vast amounts of antibody sequences, has led to the development of many antibody-specific language models to help guide antibody discovery and design. Antibody diversity primarily arises from V(D)J recombination, mutations within the CDRs, and/or from a small number of mutations away from the germline outside the CDRs. Consequently, a significant portion of the variable domain of all natural antibody sequences remains germline. This affects the pre-training of antibody-specific language models, where this facet of the sequence data introduces a prevailing bias towards germline residues. This poses a challenge, as mutations away from the germline are often vital for generating specific and potent binding to a target, meaning that language models need be able to suggest key mutations away from germline.</p><p id="p-3">In this study, we explore the implications of the germline bias, examining its impact on both general-protein and antibody-specific language models. We develop and train a series of new antibody-specific language models optimised for predicting non-germline residues. We then compare our final model, AbLang-2, with current models and show how it suggests a diverse set of valid mutations with high cumulative probability. AbLang-2 is trained on both unpaired and paired data, and is freely available (<a href="https://github.com/oxpig/AbLang2.git">https://github.com/oxpig/AbLang2.git</a>).</p></div><h3>Competing Interest Statement</h3><p id="p-4">Author IM is employed by GlaxoSmithKline plc. All authors declare no other competing interests.</p><span class="highwire-journal-article-marker-end"></span></div><span class="related-urls"></span></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-biorxiv-copyright" > <div class="pane-content"> <div class="field field-name-field-highwire-copyright field-type-text field-label-inline clearfix"><div class="field-label">Copyright&nbsp;</div><div class="field-items"><div class="field-item even">The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.<span class="license-type"> It is made available under a <a href="http://creativecommons.org/licenses/by/4.0/" class="" data-icon-position="" data-hide-link-title="0">CC-BY 4.0 International license</a>.</span></div></div></div> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-disqus-comment" > <div class="pane-content"> <div id="disqus_thread"><noscript><p><a href="http://biorxivstage.disqus.com/?url=https%3A%2F%2Fwww.biorxiv.org%2Fcontent%2F10.1101%2F2024.02.02.578678v1" class="" data-icon-position="" data-hide-link-title="0">View the discussion thread.</a></p></noscript></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-back-to-top" > <div class="pane-content"> <a href="#page" class="back-to-top" data-icon-position="" data-hide-link-title="0"><span class="icon-chevron-up"></span> Back to top</a> </div> </div> </div> </div> </div> <div class="sidebar-right-wrapper grid-10 omega"> <div class="panel-panel panel-region-sidebar-right"> <div class="inside"><div class="panel-pane pane-highwire-node-pager" > <div class="pane-content"> <div class="pager highwire-pager pager-mini clearfix highwire-node-pager highwire-article-pager"><span class="pager-prev"><a href="/content/10.1101/2024.02.07.579306v1" title="Neuronal potassium channel activity triggers initiation of mRNA translation through binding of translation regulators" rel="prev" class="pager-link-prev link-icon"><span class="icon-circle-arrow-left"></span> <span class="title">Previous</span></a></span><span class="pager-next"><a href="/content/10.1101/2024.02.02.578679v1" title="Intermittent energy restriction inhibits tumor growth and enhances paclitaxel response in a transgenic mouse model of endometrial cancer" rel="next" class="pager-link-next link-icon-right link-icon"><span class="title">Next</span> <span class="icon-circle-arrow-right"></span></a></span></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-1" > <div class="pane-content"> Posted&nbsp;February 07, 2024. </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-art-tools" > <div class="pane-content"> <div id="mini-panel-biorxiv_art_tools" class="highwire-2col-stacked panel-display"> <div class="panel-row-wrapper clearfix"> <div class="content-left-wrapper content-column"> <div class="panel-panel panel-region-content-left"> <div class="inside"><div class="panel-pane pane-highwire-variant-link" > <div class="pane-content"> <a href="/content/10.1101/2024.02.02.578678v1.full.pdf" target="_self" class="article-dl-pdf-link link-icon"><span class="icon-external-link-sign"></span> <span class="title">Download PDF</span></a> </div> </div> </div> </div> </div> <div class="content-right-wrapper content-column"> <div class="panel-panel panel-region-content-right"> <div class="inside"><div class="panel-pane pane-minipanel-dialog-link pane-biorxiv-art-email" > <div class="pane-content"> <div class='minipanel-dialog-wrapper'><div class='minipanel-dialog-link-link'><a href="/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger" title="Email this Article" data-icon-position="" data-hide-link-title="0"><i class = 'icon-envelope'></i> Email</a></div><div class='minipanel-dialog-link-mini' style='display:none'><div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_art_email"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-block pane-forward-form pane-forward" > <div class="pane-content"> <form action="/content/10.1101/2024.02.02.578678v1" method="post" id="forward-form" accept-charset="UTF-8"><div><div id="edit-instructions" class="form-item form-item-label-before form-type-item"> <p>Thank you for your interest in spreading the word about bioRxiv.</p><p>NOTE: Your email address is requested solely to identify you as the sender of this article.</p> </div> <div class="form-item form-item-label-before form-type-textfield form-item-email"> <label for="edit-email">Your Email <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-email" name="email" value="" size="58" maxlength="256" class="form-text required" /> </div> <div class="form-item form-item-label-before form-type-textfield form-item-name"> <label for="edit-name">Your Name <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-name" name="name" value="" size="58" maxlength="256" class="form-text required" /> </div> <div class="form-item form-item-label-before form-type-textarea form-item-recipients"> <label for="edit-recipients">Send To <span class="form-required" title="This field is required.">*</span></label> <div class="form-textarea-wrapper resizable"><textarea id="edit-recipients" name="recipients" cols="50" rows="5" class="form-textarea required"></textarea></div> <div class="description">Enter multiple addresses on separate lines or separate them with commas.</div> </div> <div id="edit-page" class="form-item form-item-label-before form-type-item"> <label for="edit-page">You are going to email the following </label> <a href="/content/10.1101/2024.02.02.578678v1" class="active" data-icon-position="" data-hide-link-title="0">Addressing the antibody germline bias and its effect on language models for improved antibody design</a> </div> <div id="edit-subject" class="form-item form-item-label-before form-type-item"> <label for="edit-subject">Message Subject </label> (Your Name) has forwarded a page to you from bioRxiv </div> <div id="edit-body" class="form-item form-item-label-before form-type-item"> <label for="edit-body">Message Body </label> (Your Name) thought you would like to see this page from the bioRxiv website. </div> <div class="form-item form-item-label-before form-type-textarea form-item-message"> <label for="edit-message--2">Your Personal Message </label> <div class="form-textarea-wrapper resizable"><textarea id="edit-message--2" name="message" cols="50" rows="10" class="form-textarea"></textarea></div> </div> <input type="hidden" name="path" value="node/3641427" /> <input type="hidden" name="path_cid" value="" /> <input type="hidden" name="forward_footer" value=" " /> <input type="hidden" name="form_build_id" value="form-lxHmYVoSZZ8EPIBIp40sjpLoIoYfxKCL674hjWm99-4" /> <input type="hidden" name="form_id" value="forward_form" /> <fieldset class="captcha form-wrapper"><legend><span class="fieldset-legend">CAPTCHA</span></legend><div class="fieldset-wrapper"><div class="fieldset-description">This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.</div><input type="hidden" name="captcha_sid" value="838442409" /> <input type="hidden" name="captcha_token" value="f5b7688d9d8860de74a71784a2631c59" /> <input type="hidden" name="captcha_response" value="Google no captcha" /> <div class="g-recaptcha" data-sitekey="6LfnJVIUAAAAAE-bUOMg0MJGki4lqSvDmhJp19fN" data-theme="light" data-type="image"></div></div></fieldset> <div class="form-actions form-wrapper" id="edit-actions"><input type="submit" id="edit-submit" name="op" value="Send Message" class="form-submit" /></div></div></form> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-share-link highwire_clipboard_link_ajax" id="shareit"> <div class="pane-content"> <a href="/" class="link-icon"><span class="icon-share-alt"></span> <span class="title">Share</span></a> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-share highwire_clipboard_form_ajax_shareit" > <div class="pane-content"> <div class="panel-display omega-12-onecol" id="mini-panel-biorxiv_share"> <div class="panel-panel grid-12 panel-region-preface"> <div class="inside"><div class="panel-pane pane-highwire-article-citation" > <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article node3641427--3" data-node-nid="3641427" id="node-3641427--4863726610" data-pisa="biorxiv;2024.02.02.578678v1" data-pisa-master="biorxiv;2024.02.02.578678" data-seqnum="3641427" data-apath="/biorxiv/early/2024/02/07/2024.02.02.578678.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix" > <div class="highwire-cite-title" > <div class="highwire-cite-title">Addressing the antibody germline bias and its effect on language models for improved antibody design</div> </div> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Tobias H.</span> <span class="nlm-surname">Olsen</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Iain H.</span> <span class="nlm-surname">Moal</span></span>, <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Charlotte M.</span> <span class="nlm-surname">Deane</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-journal highwire-cite-metadata">bioRxiv </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2024.02.02.578678; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="doi_label">doi:</span> https://doi.org/10.1101/2024.02.02.578678 </span></div> </div> </div> </div> </div> </div> </div> <div class="panel-panel grid-12 panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-clipboard-copy" > <div class="pane-content"> <div class = "clipboard-copy"> <span class="label-url"> <label for="dynamic">Share This Article:</label> </span> <span class="input-text-url"> <input type="text" id="dynamic" value="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1" size="50"/> </span> <span class="copy-button button"> <button id="copy-dynamic" class="clipboardjs-button" data-clipboard-target="#dynamic" data-clipboard-alert-style="tooltip" data-clipboard-alert-text="Copied!">Copy</button> </span> </div> </div> </div> </div> </div> <div class="panel-panel grid-12 panel-region-postscript"> <div class="inside"><div class="panel-pane pane-service-links text-center" > <div class="pane-content"> <div class="service-links"><a href="http://twitter.com/share?url=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1&amp;text=Addressing%20the%20antibody%20germline%20bias%20and%20its%20effect%20on%20language%20models%20for%20improved%20antibody%20design" id="twitter" title="Share this on Twitter" class="service-links-twitter" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/twitter.png" alt="Twitter logo" /></a> <a href="http://www.facebook.com/sharer.php?u=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1&amp;t=Addressing%20the%20antibody%20germline%20bias%20and%20its%20effect%20on%20language%20models%20for%20improved%20antibody%20design" id="facebook" title="Share on Facebook" class="service-links-facebook" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/fb-blue.png" alt="Facebook logo" /></a> <a href="http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1&amp;title=Addressing%20the%20antibody%20germline%20bias%20and%20its%20effect%20on%20language%20models%20for%20improved%20antibody%20design&amp;summary=&amp;source=bioRxiv" id="linkedin" title="Publish this post to LinkedIn" class="service-links-linkedin" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/linkedin-32px.png" alt="LinkedIn logo" /></a> <a href="http://www.mendeley.com/import/?url=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1&amp;title=Addressing%20the%20antibody%20germline%20bias%20and%20its%20effect%20on%20language%20models%20for%20improved%20antibody%20design" id="mendeley" title="Share on Mendeley" class="service-links-mendeley" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/mendeley.png" alt="Mendeley logo" /></a></div> </div> </div> </div> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-minipanel-dialog-link pane-biorxiv-cite-tool" > <div class="pane-content"> <div class='minipanel-dialog-wrapper'><div class='minipanel-dialog-link-link'><a href="/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger link-icon" title="Citation Tools"><span class="icon-globe"></span> <span class="title">Citation Tools</span></a></div><div class='minipanel-dialog-link-mini' style='display:none'><div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_cite_tool"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-citation-export" > <div class="pane-content"> <div class="highwire-citation-export"> <div class="highwire-citation-info"> <div class="highwire-article-citation highwire-citation-type-highwire-article cite-tool-node3641427--3" data-node-nid="3641427" id="citation-node-3641427--42121955138" data-pisa="biorxiv;2024.02.02.578678v1" data-pisa-master="biorxiv;2024.02.02.578678" data-seqnum="3641427" data-apath="/biorxiv/early/2024/02/07/2024.02.02.578678.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix" > <div class="highwire-cite-title" > <div class="highwire-cite-title">Addressing the antibody germline bias and its effect on language models for improved antibody design</div> </div> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Tobias H.</span> <span class="nlm-surname">Olsen</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Iain H.</span> <span class="nlm-surname">Moal</span></span>, <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Charlotte M.</span> <span class="nlm-surname">Deane</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-journal highwire-cite-metadata">bioRxiv </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2024.02.02.578678; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="doi_label">doi:</span> https://doi.org/10.1101/2024.02.02.578678 </span></div> </div> </div> </div> <div class="highwire-citation-formats"> <h2>Citation Manager Formats</h2> <div class="highwire-citation-formats-links"> <span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.spage&amp;rft.epage&amp;rft.atitle=Addressing%20the%20antibody%20germline%20bias%20and%20its%20effect%20on%20language%20models%20for%20improved%20antibody%20design&amp;rft.volume&amp;rft.issue&amp;rft.date=2024-01-01%2000%3A00%3A00&amp;rft.stitle&amp;rft.jtitle=bioRxiv&amp;rft.au=Olsen%2C+Tobias+H.&amp;rft.au=Moal%2C+Iain+H.&amp;rft.au=Deane%2C+Charlotte+M."></span><ul class="hw-citation-links inline button button-alt button-grid clearfix"><li class="bibtext first"><a href="/highwire/citation/3641427/bibtext" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">BibTeX</a></li><li class="bookends"><a href="/highwire/citation/3641427/bookends" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Bookends</a></li><li class="easybib"><a href="/highwire/citation/3641427/easybib" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EasyBib</a></li><li class="endnote-tagged"><a href="/highwire/citation/3641427/endnote-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote (tagged)</a></li><li class="endnote-8-xml"><a href="/highwire/citation/3641427/endnote-8-xml" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote 8 (xml)</a></li><li class="medlars"><a href="/highwire/citation/3641427/medlars" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Medlars</a></li><li class="mendeley"><a href="/highwire/citation/3641427/mendeley" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Mendeley</a></li><li class="papers"><a href="/highwire/citation/3641427/papers" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Papers</a></li><li class="refworks-tagged"><a href="/highwire/citation/3641427/refworks-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RefWorks Tagged</a></li><li class="reference-manager"><a href="/highwire/citation/3641427/reference-manager" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Ref Manager</a></li><li class="ris"><a href="/highwire/citation/3641427/ris" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RIS</a></li><li class="zotero last"><a href="/highwire/citation/3641427/zotero" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Zotero</a></li></ul> </div> </div> </div> </div> </div> </div> </div> </div> </div></div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-service-links" > <div class="pane-content"> <div class="service-links"><div class="item-list"><ul><li class="first"><a href="http://twitter.com/share?url=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1&amp;count=horizontal&amp;via=&amp;text=Addressing%20the%20antibody%20germline%20bias%20and%20its%20effect%20on%20language%20models%20for%20improved%20antibody%20design&amp;counturl=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1" class="twitter-share-button service-links-twitter-widget" id="twitter_widget" title="Tweet This" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Tweet Widget</span></a></li><li><a href="http://www.facebook.com/plugins/like.php?href=https%3A//www.biorxiv.org/content/10.1101/2024.02.02.578678v1&amp;layout=button_count&amp;show_faces=false&amp;action=like&amp;colorscheme=light&amp;width=100&amp;height=21&amp;font=&amp;locale=" id="facebook_like" title="I Like it" class="service-links-facebook-like" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Facebook Like</span></a></li><li class="last"><a href="https://www.biorxiv.org/content/10.1101/2024.02.02.578678v1" id="google_plus_one" title="Plus it" class="service-links-google-plus-one" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Google Plus One</span></a></li></ul></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-collections" > <h2 class="pane-title">Subject Area</h2> <div class="pane-content"> <div class="highwire-list-wrapper highwire-article-collections"><div class="highwire-list"><ul class="highwire-article-collection-term-list"><li class="first last odd"><span class="highwire-article-collection-term"><a href="/collection/bioinformatics" class="highlight" data-icon-position="" data-hide-link-title="0">Bioinformatics<i class="icon-caret-right"></i> </a></span></li></ul></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-subject-collections block-style-col2" > <div class="pane-content"> <div class="panel-flexible panels-flexible-new clearfix" id="mini-panel-biorxiv_subject_collections"> <div class="panel-flexible-inside panels-flexible-new-inside"> <div class="panels-flexible-region panels-flexible-region-new-center panels-flexible-region-first panels-flexible-region-last"> <div class="inside panels-flexible-region-inside panels-flexible-region-new-center-inside panels-flexible-region-inside-first panels-flexible-region-inside-last"> <div class="panel-pane pane-snippet" > <div class="pane-content"> <div class="snippet biorxiv-subject-areas-table-title" id="biorxiv-subject-areas-table-title"> <div class="snippet-content"> <b>Subject Areas</b> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-snippet" > <div class="pane-content"> <div class="snippet biorxiv-subject-areas-view-papers" id="biorxiv-subject-areas-view-papers"> <div class="snippet-content"> <a href="/content/early/recent"><strong>All Articles</strong></a> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-subject-collections" > <div class="pane-content"> <ul id="collection" class="collection highwire-list-expand"><li class="outer collection depth-2 child first"><div class = "data-wrapper"><a href="/collection/animal-behavior-and-cognition" class="" data-icon-position="" data-hide-link-title="0">Animal Behavior and Cognition</a> <span class = "article-count">(5842)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/biochemistry" class="" data-icon-position="" data-hide-link-title="0">Biochemistry</a> <span class = "article-count">(13243)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/bioengineering" class="" data-icon-position="" data-hide-link-title="0">Bioengineering</a> <span class = "article-count">(10085)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/bioinformatics" class="" data-icon-position="" data-hide-link-title="0">Bioinformatics</a> <span class = "article-count">(32325)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/biophysics" class="" data-icon-position="" data-hide-link-title="0">Biophysics</a> <span class = "article-count">(16624)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/cancer-biology" class="" data-icon-position="" data-hide-link-title="0">Cancer Biology</a> <span class = "article-count">(13703)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/cell-biology" class="" data-icon-position="" data-hide-link-title="0">Cell Biology</a> <span class = "article-count">(19485)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/clinical-trials" class="" data-icon-position="" data-hide-link-title="0">Clinical Trials</a> <span class = "article-count">(138)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/developmental-biology" class="" data-icon-position="" data-hide-link-title="0">Developmental Biology</a> <span class = "article-count">(10532)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/ecology" class="" data-icon-position="" data-hide-link-title="0">Ecology</a> <span class = "article-count">(15615)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/epidemiology" class="" data-icon-position="" data-hide-link-title="0">Epidemiology</a> <span class = "article-count">(2067)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/evolutionary-biology" class="" data-icon-position="" data-hide-link-title="0">Evolutionary Biology</a> <span class = "article-count">(19921)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/genetics" class="" data-icon-position="" data-hide-link-title="0">Genetics</a> <span class = "article-count">(13164)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/genomics" class="" data-icon-position="" data-hide-link-title="0">Genomics</a> <span class = "article-count">(18231)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/immunology" class="" data-icon-position="" data-hide-link-title="0">Immunology</a> <span class = "article-count">(13344)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/microbiology" class="" data-icon-position="" data-hide-link-title="0">Microbiology</a> <span class = "article-count">(31241)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/molecular-biology" class="" data-icon-position="" data-hide-link-title="0">Molecular Biology</a> <span class = "article-count">(13013)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/neuroscience" class="" data-icon-position="" data-hide-link-title="0">Neuroscience</a> <span class = "article-count">(68156)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/paleontology" class="" data-icon-position="" data-hide-link-title="0">Paleontology</a> <span class = "article-count">(501)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/pathology" class="" data-icon-position="" data-hide-link-title="0">Pathology</a> <span class = "article-count">(2103)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/pharmacology-and-toxicology" class="" data-icon-position="" data-hide-link-title="0">Pharmacology and Toxicology</a> <span class = "article-count">(3640)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/physiology" class="" data-icon-position="" data-hide-link-title="0">Physiology</a> <span class = "article-count">(5680)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/plant-biology" class="" data-icon-position="" data-hide-link-title="0">Plant Biology</a> <span class = "article-count">(11682)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/scientific-communication-and-education" class="" data-icon-position="" data-hide-link-title="0">Scientific Communication and Education</a> <span class = "article-count">(1780)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/synthetic-biology" class="" data-icon-position="" data-hide-link-title="0">Synthetic Biology</a> <span class = "article-count">(3272)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/systems-biology" class="" data-icon-position="" data-hide-link-title="0">Systems Biology</a> <span class = "article-count">(7975)</span></div></li> <li class="outer collection depth-2 child last"><div class = "data-wrapper"><a href="/collection/zoology" class="" data-icon-position="" data-hide-link-title="0">Zoology</a> <span class = "article-count">(1800)</span></div></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> </div> </div> </div> </div> </section> </div> <div class="region region-page-bottom" id="region-page-bottom"> <div class="region-inner region-page-bottom-inner"> </div> </div><script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__Vh5BcRYb6VtLoN3uam6O4DIKltYUVMjVDWtakoysPq0__Wed8jsPTirEozek7dWSCS8970Cp7a9xKKgFk6FPuSVM__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" src="//d33xdlntwy0kbs.cloudfront.net/cshl_custom.js"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__BmqjBnkz3MgYCAoc25s1lDRMEjLhC3mEPVonUFIHi08__Unwv5-ZIuHBfFwytsjEx1niBVJ7n1T4lPws7VrkHXM4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function euCookieComplianceLoadScripts() {} //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- var eu_cookie_compliance_cookie_name = ""; //--><!]]> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10