CINXE.COM
Search results for: slender delta wing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: slender delta wing</title> <meta name="description" content="Search results for: slender delta wing"> <meta name="keywords" content="slender delta wing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="slender delta wing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="slender delta wing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 615</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: slender delta wing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhiyan%20Paudel">Abhiyan Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maheshwaran%20M%20Pillai"> Maheshwaran M Pillai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coefficient%20%20of%20%20Lift" title="Coefficient of Lift">Coefficient of Lift</a>, <a href="https://publications.waset.org/abstracts/search?q=Coefficient%20%20of%20%20Drag" title=" Coefficient of Drag"> Coefficient of Drag</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%3DComputational%20%20Fluid%20%20Dynamics" title=" CFD=Computational Fluid Dynamics"> CFD=Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=BWB%3DBlended%20Wing%20Body" title=" BWB=Blended Wing Body"> BWB=Blended Wing Body</a>, <a href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing" title=" slender delta wing"> slender delta wing</a> </p> <a href="https://publications.waset.org/abstracts/17417/a-review-of-blended-wing-body-and-slender-delta-wing-performance-utilizing-experimental-techniques-and-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Investigation of Flow Structure over X-45 Type Non-Slender Delta Wing Planform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Yan%C4%B1ktepe">B. Yanıktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%C3%96zalp"> C. Özalp</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20%C5%9Eahin"> B. Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delta wing planform is an essential aerodynamic configuration, which could be effectively used at relatively high angles of attack than conventional wings in subsonic flow conditions. The flow over delta wings can be characterized by a pair of leading edge vortices emanating from wing apex. Boundary layer separation causes these vortical structures formed by rolling up of viscous flow sheet. This flow separation mechanism is occurred due to angle of attack and sharp leading edges of the delta wing. Therefore, complexity and variety in planform designs rise to catch the best under abnormal flow conditions. The present experimental study investigates the near surface flow structure and aerodynamic flow characteristics of X-45 type non-slender delta wing planform using dye visualization, Stereoscopic Particle Image Velocimetry (stereo-PIV). The instantaneous images are acquired on the plan-view plane within 5o≤α≤20o to calculate the time-averaged flow data. It can be concluded that vortical flow with a pair of well-defined LEVs over X-45 develop at very low angles of attack, secondary vortex are also evident and form close to the wing surface similar to delta and lambda planforms. The stall occurs at an angle of attack α=32o. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20wing" title=" delta wing"> delta wing</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20breakdown" title=" vortex breakdown"> vortex breakdown</a> </p> <a href="https://publications.waset.org/abstracts/45231/investigation-of-flow-structure-over-x-45-type-non-slender-delta-wing-planform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Effect of a Stepwise Discontinuity on a 65 Degree Delta Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishit%20L.%20Sanil">Nishit L. Sanil</a>, <a href="https://publications.waset.org/abstracts/search?q=Raza%20M.%20Khan"> Raza M. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing lift effectively at higher angles of attack has always been a daunting challenge in aviation especially on a delta wing. These are used on military jet fighter planes and has some undesirable characteristics, notably flow separation at high angles of attack and high drag at low speeds. In order to solve this problem, a design modification is modeled on a delta wing which would increase the lift so that we can improve maneuverability. To attain an increase in the lift of a 65 degree delta wing at higher angles of attack, a step-wise discontinuity is created at the upper surface of the delta wing. A normal delta wing is validated for comparison which would thereby give us a measure of flow separation and coefficient of lift affected by the modification. The results obtained deliver a significant increase in lift at higher angles of attack thereby delaying stall. Hence the benefits of the modification would aid the potential designs of aircraft’s in the time to come. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20lift" title="coefficient of lift">coefficient of lift</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20wing" title=" delta wing"> delta wing</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=step-wise%20discontinuity" title=" step-wise discontinuity"> step-wise discontinuity</a> </p> <a href="https://publications.waset.org/abstracts/93174/effect-of-a-stepwise-discontinuity-on-a-65-degree-delta-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Leading Edge Vortex Development for a 65° Delta Wing with Varying Thickness and Maximum Thickness Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Stucke">Jana Stucke</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20Tuling"> Sean Tuling</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Toomer"> Chris Toomer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the numerical investigation of the leading edge vortex (LEV) development over a 65° swept delta wing with varying thickness and maximum thickness location and their impact on its overall performance. The tested configurations are defined by a 6% and 12 % thick biconvex aerofoil with maximum thickness location at 30% and 50% of the root chord. The results are compared to a flat plate delta wing configuration of 3.4% thickness. The largest differences are observed for the aerofoils of 12% thickness and are used to demonstrate the trends and aerodynamic characteristics from here on. It was found that the vortex structure changes with change with maximum thickness and overall thickness. This change leads to not only a reduction in lift but also in drag, especially when the maximum thickness is moved forward. The reduction in drag, however, outweighs the loss in lift thus increasing the overall performance of the configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20wing" title=" delta wing"> delta wing</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge%20vortices" title=" leading edge vortices"> leading edge vortices</a> </p> <a href="https://publications.waset.org/abstracts/105022/leading-edge-vortex-development-for-a-65-delta-wing-with-varying-thickness-and-maximum-thickness-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Theoretical Calculation of Wingtip Devices for Agricultural Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hashim%20Bashir">Hashim Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Vortex generated at the edges of the wing of an Aircraft are called the Wing Tip Vortex. The Wing Tip Vortices are associated with induced drag. The induced drag is responsible for nearly 50% of aircraft total drag and can be reduced through modifications to the wing tip. Some models displace wingtips vortices outwards diminishing the induced drag. Concerning agricultural aircrafts, wing tip vortex position is really important, while spreading products over a plantation. In this work, theoretical calculations were made in order to study the influence in aerodynamic characteristics and vortex position, over Sudanese agricultural aircraft, by the following types of wing tips: delta tip, winglet and down curved. The down curved tip was better for total drag reduction, but not good referring to vortex position. The delta tip gave moderate improvement on aerodynamic characteristic and on vortex position. The winglet had a better vortex position and lift increment, but caused an undesirable result referring to the wing root bending moment. However, winglet showed better development potential for agricultural aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wing%20tip%20device" title="wing tip device">wing tip device</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20tip%20vortice" title=" wing tip vortice"> wing tip vortice</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20aircaft" title=" agricultural aircaft"> agricultural aircaft</a>, <a href="https://publications.waset.org/abstracts/search?q=winglet" title=" winglet"> winglet</a> </p> <a href="https://publications.waset.org/abstracts/57169/theoretical-calculation-of-wingtip-devices-for-agricultural-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Oblique Wing: Future Generation Transonic Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mushfiqul%20Alam">Mushfiqul Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashyapa%20Narenathreyas"> Kashyapa Narenathreyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for efficient transonic transport has been growing every day and may turn out to be the most pressed innovation in coming years. Oblique wing configuration was proposed as an alternative to conventional wing configuration for supersonic and transonic passenger aircraft due to its aerodynamic advantages. This paper re-demonstrates the aerodynamic advantages of oblique wing configuration using open source CFD code. The aerodynamic data were generated using Panel Method. Results show that Oblique Wing concept with elliptical wing planform offers a significant reduction in drag at transonic and supersonic speeds and approximately twice the lift distribution compared to conventional operating aircrafts. The paper also presents a preliminary conceptual aircraft sizing which can be used for further experimental analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20sweep" title=" asymmetric sweep"> asymmetric sweep</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20wing" title=" oblique wing"> oblique wing</a>, <a href="https://publications.waset.org/abstracts/search?q=swing%20wing" title=" swing wing"> swing wing</a> </p> <a href="https://publications.waset.org/abstracts/5127/oblique-wing-future-generation-transonic-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Reliability of Slender Reinforced Concrete Columns: Part 1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Metwally%20Abdel%20Aziz%20Ahmed">Metwally Abdel Aziz Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shaban%20Abdel%20Hay%20Gabr"> Ahmed Shaban Abdel Hay Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Inas%20Mohamed%20Saleh"> Inas Mohamed Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=slender%20column" title=" slender column"> slender column</a> </p> <a href="https://publications.waset.org/abstracts/53342/reliability-of-slender-reinforced-concrete-columns-part-1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Paul">Vivek Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20Nelly"> Abel Nelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoeb%20A%20Adeel"> Shoeb A Adeel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tilak"> R. Tilak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maheshwaran"> S. Maheshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pulikeshi"> S. Pulikeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshan%20Antony"> Roshan Antony</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Suraj"> C. S. Suraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autopilot" title="autopilot">autopilot</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20mode" title=" autonomous mode"> autonomous mode</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20testing" title=" flight testing"> flight testing</a>, <a href="https://publications.waset.org/abstracts/search?q=MAV" title=" MAV"> MAV</a>, <a href="https://publications.waset.org/abstracts/search?q=RPT" title=" RPT"> RPT</a> </p> <a href="https://publications.waset.org/abstracts/35288/design-prototyping-integration-flight-testing-of-a-20-cm-span-fully-autonomous-fixed-wing-micro-air-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Optimal Analysis of Structures by Large Wing Panel Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byeong-Sam%20Kim">Byeong-Sam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeongwoo%20Park"> Kyeongwoo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wing%20panel" title="wing panel">wing panel</a>, <a href="https://publications.waset.org/abstracts/search?q=aerostructural%20optimization" title=" aerostructural optimization"> aerostructural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/10361/optimal-analysis-of-structures-by-large-wing-panel-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Performance of Stiffened Slender Built up Steel I-Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Abou-Hashem%20El%20Dib">M. E. Abou-Hashem El Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Swailem"> M. K. Swailem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Metwally"> M. M. Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20El%20Awady"> A. I. El Awady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work illustrates a parametric study for the effect of stiffeners on the performance of slender built up steel I-columns. To achieve the desired analysis, finite element technique is used to develop nonlinear three-dimensional models representing the investigated columns. The finite element program (ANSYS 13.0) is used as a calculation tool for the necessary nonlinear analysis. A validation of the obtained numerical results is achieved. The considered parameters in the study are the column slenderness ratio and the horizontal stiffener's dimensions as well as the number of stiffeners. The dimensions of the stiffeners considered in the analysis are the stiffener width and the stiffener thickness. Numerical results signify a considerable effect of stiffeners on the performance and failure load of slender built up steel I-columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=columns" title="columns">columns</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20buckling" title=" local buckling"> local buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=slender" title=" slender"> slender</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffener" title=" stiffener"> stiffener</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20section" title=" thin walled section"> thin walled section</a> </p> <a href="https://publications.waset.org/abstracts/47374/performance-of-stiffened-slender-built-up-steel-i-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Computer Simulation Studies of Aircraft Wing Architectures on Vibration Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengyong%20Zhang">Shengyong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Mikulich"> Mike Mikulich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration is a crucial limiting consideration in the analysis and design of airplane wing structures to avoid disastrous failures due to the propagation of existing cracks in the material. In this paper, we build CAD models of aircraft wings to capture the design intent with configurations. Subsequent FEA vibration analysis is performed to study the natural vibration properties and impulsive responses of the resulting user-defined wing models. This study reveals the variations of the wing’s vibration characteristics with respect to changes in its structural configurations. Integrating CAD modelling and FEA vibration analysis enables designers to improve wing architectures for implementing design requirements in the preliminary design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20wing" title="aircraft wing">aircraft wing</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20modelling" title=" CAD modelling"> CAD modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/139170/computer-simulation-studies-of-aircraft-wing-architectures-on-vibration-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Abou-Hashem%20El%20Dib">M. E. Abou-Hashem El Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Swailem"> M. K. Swailem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Metwally"> M. M. Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20El%20Awady"> A. I. El Awady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20buckling" title=" local buckling"> local buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=slender" title=" slender"> slender</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffener" title=" stiffener"> stiffener</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20section" title=" thin walled section"> thin walled section</a> </p> <a href="https://publications.waset.org/abstracts/45085/effect-of-stiffeners-on-the-behavior-of-slender-built-up-steel-i-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Effects of Aircraft Wing Configuration on Aerodynamic Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderet%20Pantierer">Aderet Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Pantierer"> Shmuel Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20Saeed"> Atif Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Elzawawy"> Amir Elzawawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20design" title=" aircraft design"> aircraft design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20efficiency" title=" aircraft efficiency"> aircraft efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20configuration" title=" wing configuration"> wing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20design" title=" wing design"> wing design</a> </p> <a href="https://publications.waset.org/abstracts/115909/effects-of-aircraft-wing-configuration-on-aerodynamic-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Saeedi">M. Saeedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wuchner"> R. Wuchner</a>, <a href="https://publications.waset.org/abstracts/search?q=K.-U.%20Bletzinger"> K.-U. Bletzinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FSI" title=" FSI"> FSI</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane%20wing" title=" Membrane wing"> Membrane wing</a>, <a href="https://publications.waset.org/abstracts/search?q=Vortex%20panel%20method" title=" Vortex panel method"> Vortex panel method</a> </p> <a href="https://publications.waset.org/abstracts/17424/multi-fidelity-fluid-structure-interaction-analysis-of-a-membrane-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Li">Yu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingwu%20He"> Jingwu He</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuexi%20Xiong"> Yuexi Xiong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20structural%20stiffness%20design%20theory" title="active structural stiffness design theory">active structural stiffness design theory</a>, <a href="https://publications.waset.org/abstracts/search?q=high-aspect-ratio%20wing" title=" high-aspect-ratio wing"> high-aspect-ratio wing</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20load%20cases" title=" flight load cases"> flight load cases</a>, <a href="https://publications.waset.org/abstracts/search?q=layout%20of%20spars" title=" layout of spars"> layout of spars</a> </p> <a href="https://publications.waset.org/abstracts/74300/layout-design-optimization-of-spars-under-multiple-load-cases-of-the-high-aspect-ratio-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Total Chromatic Number of Δ-Claw-Free 3-Degenerated Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wongsakorn%20Charoenpanitseri">Wongsakorn Charoenpanitseri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The total chromatic number χ"(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no incident or adjacent pair of elements receive the same color Let G be a graph with maximum degree Δ(G). Considering a total coloring of G and focusing on a vertex with maximum degree. A vertex with maximum degree needs a color and all Δ(G) edges incident to this vertex need more Δ(G) + 1 distinct colors. To color all vertices and all edges of G, it requires at least Δ(G) + 1 colors. That is, χ"(G) is at least Δ(G) + 1. However, no one can find a graph G with the total chromatic number which is greater than Δ(G) + 2. The Total Coloring Conjecture states that for every graph G, χ"(G) is at most Δ(G) + 2. In this paper, we prove that the Total Coloring Conjectur for a Δ-claw-free 3-degenerated graph. That is, we prove that the total chromatic number of every Δ-claw-free 3-degenerated graph is at most Δ(G) + 2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20colorings" title="total colorings">total colorings</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20total%20chromatic%20number" title=" the total chromatic number"> the total chromatic number</a>, <a href="https://publications.waset.org/abstracts/search?q=3-degenerated" title=" 3-degenerated"> 3-degenerated</a>, <a href="https://publications.waset.org/abstracts/search?q=CLAW-FREE" title=" CLAW-FREE"> CLAW-FREE</a> </p> <a href="https://publications.waset.org/abstracts/86060/total-chromatic-number-of-d-claw-free-3-degenerated-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Transformation of the Ili Delta Ecosystems Related to the Runoff Control of the Ile-Balkhash Basin Rivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruslan%20Salmurzauli">Ruslan Salmurzauli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Nurtazin"> Sabir Nurtazin</a>, <a href="https://publications.waset.org/abstracts/search?q=Buho%20Hoshino"> Buho Hoshino</a>, <a href="https://publications.waset.org/abstracts/search?q=Niels%20Thevs"> Niels Thevs</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Yeszhanov"> A. B. Yeszhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Imentai"> Aiman Imentai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the results of a research on the transformation of the diverse ecosystems of the Ili delta during the period 1979-2014 based on the analysis of the hydrological regime dynamics, weather conditions and satellite images. Conclusions have been drawn on the decisive importance of the water runoff of the Ili River in the negative changes and environmental degradation in delta areas over the past forty-five years. The increase of water consumption in the Chinese and Kazakhstan parts of the Ili-Balkhash basin caused desiccation and desertification of many hydromorphic delta ecosystems and the reduction of water flow into Lake Balkhash. We demonstrate that a significant reduction of watering of the delta areas could drastically accelerate the aridization and degradation of the hydromorphic ecosystems. Under runoff decrease, a transformation process of the delta ecosystems begins from the head part and gradually spread northward to the periphery of the delta. The desertification is most clearly expressed in the central and western parts of the delta areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ili-Balkhash%20basin" title="Ili-Balkhash basin">Ili-Balkhash basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ili%20river%20delta" title=" Ili river delta"> Ili river delta</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20regime" title=" hydrological regime"> hydrological regime</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20of%20ecosystems" title=" transformation of ecosystems"> transformation of ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/32225/transformation-of-the-ili-delta-ecosystems-related-to-the-runoff-control-of-the-ile-balkhash-basin-rivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Experimental Studies of Dragonfly Flight Aerodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Izmir%20Bin%20Yamin">Mohd Izmir Bin Yamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Arthur%20Ward"> Thomas Arthur Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Past aerodynamic studies of flapping wing flight have shown that it has increased aerodynamic performances compared to fixed wing steady flight. One of the dominant mechanisms that is responsible for causing this phenomenon is a leading edge vortex, generated by the flapping motion of a flexible wing. Wind tunnel experiments were conducted to observe the aerodynamic profile of a flapping wing, by measuring the lift, drag and thrust. Analysis was done to explain how unsteady aerodynamics leads towards better power performances than a fixed wing flight. The information from this study can be used as a base line for designing future Bio-mimetic Micro Air Vehicles that are based on flying insect aerodynamic mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flapping%20wing%20flight" title="flapping wing flight">flapping wing flight</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge%20vortex" title=" leading edge vortex"> leading edge vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20performances" title=" aerodynamics performances"> aerodynamics performances</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/26556/experimental-studies-of-dragonfly-flight-aerodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Dehghan">E. Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dehghan"> R. Dehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slender%20structural%20walls" title=" slender structural walls"> slender structural walls</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-curvature%20relation" title=" moment-curvature relation"> moment-curvature relation</a>, <a href="https://publications.waset.org/abstracts/search?q=bond-slip" title=" bond-slip"> bond-slip</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinge%20length" title=" plastic hinge length"> plastic hinge length</a> </p> <a href="https://publications.waset.org/abstracts/43118/moment-curvature-relation-for-nonlinear-analysis-of-slender-structural-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> Numerical Simulation of the Flow around Wing-In-Ground Effect (WIG) Craft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbatran">A. Elbatran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ahmed"> Y. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Radwan"> A. Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ishak"> M. Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of WIG craft is representing an ambitious technology that will support in reducing time, effort, and money of the conventional marine transportation in the future. This paper investigates the aerodynamic characteristic of compound wing-in-ground effect (WIG) craft model. Drag coefficient, lift coefficient and Lift and drag ratio were studied numerically with respect to the ground clearance and the wing angle of attack. The modifications of the wing has been done in order to investigate the most suitable wing configuration that can increase the wing lift-to-drag ratio at low ground clearance. A numerical investigation was carried out in this research work using finite volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX, Validation was carried out by using experiments. The experimental and the numerical results concluded that the lift to drag ratio decreased with the increasing of the ground clearance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20Coefficient" title="drag Coefficient">drag Coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20clearance" title=" ground clearance"> ground clearance</a>, <a href="https://publications.waset.org/abstracts/search?q=navier-stokes" title=" navier-stokes"> navier-stokes</a>, <a href="https://publications.waset.org/abstracts/search?q=WIG" title=" WIG"> WIG</a> </p> <a href="https://publications.waset.org/abstracts/62997/numerical-simulation-of-the-flow-around-wing-in-ground-effect-wig-craft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Sigma-Delta ADCs Converter a Study Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Brito%20Bezerra">Thiago Brito Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Lopes%20de%20Freitas"> Mauro Lopes de Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Waldir%20Sabino%20da%20Silva%20J%C3%BAnior"> Waldir Sabino da Silva Júnior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oversampling%20modulator" title=" oversampling modulator"> oversampling modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=A%2FD%20converters" title=" A/D converters"> A/D converters</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma-delta" title=" sigma-delta"> sigma-delta</a> </p> <a href="https://publications.waset.org/abstracts/12643/sigma-delta-adcs-converter-a-study-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Preliminary Design and Aerodynamic Study of Hybrid Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratyush%20Agnihotri">Pratyush Agnihotri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comprehensive overview of the conceptual design process for a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Fixed-wing VTOL UAVs combine the advantages of rotary-wing aircraft, such as vertical take-off and landing capabilities, with the efficiency and speed of fixed-wing flight. The primary objective of this study is to explore the aerodynamic design principles that optimize performance parameters, including range, endurance, and stability while maintaining the VTOL capability. The design process involves selecting appropriate airfoils, optimizing wing configurations, and integrating propulsion systems suitable for both hovering and forward flight. Analytical methods are employed to evaluate aerodynamic performance, with a focus on lift-to-drag ratio, power requirements, and control strategies. The results highlight the challenges and trade-offs inherent in designing such hybrid aircraft, particularly in balancing the conflicting requirements of VTOL and fixed-wing flight. This study contributes to the development of efficient, versatile UAVs capable of operating in diverse environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixed%20wing" title="fixed wing">fixed wing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL" title=" VTOL"> VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/192215/preliminary-design-and-aerodynamic-study-of-hybrid-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> Digital and Social Media as Tools for Legitimising Conflict: A Study of the Niger Delta Avengers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shola%20Abidemi%20Olabode">Shola Abidemi Olabode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria as a country has been plagued by numerous conflicts since the British colonialists gave in to the advocacy of Nigerian dissents for independence and relinquished power in 1960. These conflicts are often motivated by different issues, from socio-political and economic issues to struggles of ethnic and religious orientation. The Niger Delta region which accounts for the country’s economic mainstay has been at the epicentre of such conflicts. Over the years, peaceful protests, and radical insurgency and resistance movements too numerous to mention have emerged in the region. The Niger Delta Avengers is an example of a recent conflict movement in the region. Using a case study approach, and looking through a cyberconflict perspective, this paper offers a discussion on the intersection between digital and social media and framing in the Niger Delta Avengers conflict. It advocates that the Niger Delta Avengers use digital and social media to legitimise and give credence to their struggle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20and%20social%20media" title="digital and social media">digital and social media</a>, <a href="https://publications.waset.org/abstracts/search?q=framing" title=" framing"> framing</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20delta%20avengers" title=" Niger delta avengers"> Niger delta avengers</a>, <a href="https://publications.waset.org/abstracts/search?q=cyberconflict" title=" cyberconflict"> cyberconflict</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict" title=" conflict"> conflict</a> </p> <a href="https://publications.waset.org/abstracts/66458/digital-and-social-media-as-tools-for-legitimising-conflict-a-study-of-the-niger-delta-avengers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> Concept and Design of a Biomimetic Single-Wing Micro Aerial Vehicle (MAV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thomas">S. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ho"> D. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kerroux"> A. Kerroux</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lixi"> L. Lixi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Rackham"> N. Rackham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rosenfeld"> S. Rosenfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this first paper, the different concepts and designs to build a single-wing MAV are discussed. Six scratch-building prototypes using three different designs have been tested regarding sufficient lift and weight distribution, of which various configurations were explored. Samare prototypes achieved wireless control over the motor and flap whilst obtaining data from the IMU, though obtaining an increase in lift was the key issue due to insufficient thrust. The final prototype was able to demonstrate an improvement in weight distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAMARE" title="SAMARE">SAMARE</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20aerial%20vehicle%20%28MAV%29" title=" micro aerial vehicle (MAV)"> micro aerial vehicle (MAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title=" unmanned aerial vehicle (UAV)"> unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-copter" title=" mono-copter"> mono-copter</a>, <a href="https://publications.waset.org/abstracts/search?q=single-wing" title=" single-wing"> single-wing</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-wing" title=" mono-wing"> mono-wing</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control" title=" flight control"> flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=aerofoil" title=" aerofoil"> aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a> </p> <a href="https://publications.waset.org/abstracts/12820/concept-and-design-of-a-biomimetic-single-wing-micro-aerial-vehicle-mav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Blended Wing Body (BWB) Vertical Takeoff and Landing (VTOL) Hybrids: Bridging Urban Gaps Through Computational Design and Optimization, A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Siddharth%20S.">Sai Siddharth S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20G.%20M."> Prasanna Kumar G. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alagarsamy%20R."> Alagarsamy R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research introduces an alternative approach to urban road maintenance by utilizing Blended Wing Body (BWB) design and Vertical Takeoff and Landing (VTOL) drones. The integration of this aerospace innovation, combining blended wing efficiency with VTOL maneuverability, aims to optimize fuel consumption and explore versatile applications in solving urban problems. A few problems are discussed along with optimization of the design and comparative study with other drone configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title="design optimization">design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL" title=" VTOL"> VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body" title=" blended wing body"> blended wing body</a> </p> <a href="https://publications.waset.org/abstracts/179315/blended-wing-body-bwb-vertical-takeoff-and-landing-vtol-hybrids-bridging-urban-gaps-through-computational-design-and-optimization-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Design and Stability Analysis of Fixed Wing – VTOL UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Eldenali">Omar Eldenali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Bufares"> Ahmed M. Bufares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are primarily two types of Unmanned Aerial Vehicle (UAVs), namely, multirotor and fixed wing. Each type has its own advantages. This study introduces a design of a fixed wing vertical take-off and landing (VTOL) UAV. The design is classified as ready-to-fly (RTF) fixed wing UAV. This means that the UAV is capable of not only taking off, landing, or hovering like a multirotor aircraft but also cruising like a fixed wing UAV. In this study, the conceptual design of 15 kg takeoff weight twin-tail boom configuration FW-VTOL plane is carried out, the initial sizing of the plane is conducted, and both the horizontal and vertical tail configurations are estimated. Moreover, the power required for each stage of flight is determined. Finally, the stability analysis of the plane based on this design is performed, the results shows that this design based on the suggested flight mission is stable and can be utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FW-VTOL" title="FW-VTOL">FW-VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20sizing" title=" initial sizing"> initial sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=constrain%20analysis" title=" constrain analysis"> constrain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/173709/design-and-stability-analysis-of-fixed-wing-vtol-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sakhaei">Ehsan Sakhaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Taherabadi"> Ali Taherabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aft%20sweep%20wing" title="aft sweep wing">aft sweep wing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20method" title=" CFD method"> CFD method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Roskam" title=" Roskam"> Roskam</a>, <a href="https://publications.waset.org/abstracts/search?q=Spalart-Allmaras%20model" title=" Spalart-Allmaras model"> Spalart-Allmaras model</a> </p> <a href="https://publications.waset.org/abstracts/33671/cfd-analysis-of-an-aft-sweep-wing-in-subsonic-flow-and-making-analogy-with-roskam-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Nur%20Syazwani">C. M. Nur Syazwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Ahmad%20Imran"> M. K. Ahmad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizal%20E.%20M.%20Nasir"> Rizal E. M. Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20wing-body" title="blended wing-body">blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=bird-inspired%20blended%20wing-body" title=" bird-inspired blended wing-body"> bird-inspired blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/24050/aerodynamic-investigation-of-baseline-iv-bird-inspired-bwb-aircraft-design-improvements-over-baseline-iii-bwb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Computational Analysis of Cavity Effect over Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Booma%20Devi">P. Booma Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20A.%20Shah"> Dilip A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lift" title="lift">lift</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduce" title=" drag reduce"> drag reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20dimple" title=" square dimple"> square dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=triangle%20dimple" title=" triangle dimple"> triangle dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20of%20stall%20angle" title=" enhancement of stall angle"> enhancement of stall angle</a> </p> <a href="https://publications.waset.org/abstracts/51224/computational-analysis-of-cavity-effect-over-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbahuddin%20Mahammad">Misbahuddin Mahammad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chandra%20Sekhar"> P. Chandra Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Metuku%20Shyamsunder"> Metuku Shyamsunder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sigma%20delta%20modulator" title="sigma delta modulator">sigma delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=CIC%20filter" title=" CIC filter"> CIC filter</a>, <a href="https://publications.waset.org/abstracts/search?q=decimation%20filter" title=" decimation filter"> decimation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=compensation%20filter" title=" compensation filter"> compensation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20shaping" title=" noise shaping"> noise shaping</a> </p> <a href="https://publications.waset.org/abstracts/15366/design-of-decimation-filter-using-cascade-structure-for-sigma-delta-adc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>