CINXE.COM
Search results for: Sandor Kokenyesi
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sandor Kokenyesi</title> <meta name="description" content="Search results for: Sandor Kokenyesi"> <meta name="keywords" content="Sandor Kokenyesi"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sandor Kokenyesi" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sandor Kokenyesi"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sandor Kokenyesi</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Light Sensitive Plasmonic Nanostructures for Photonic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Istvan%20Csarnovics">Istvan Csarnovics</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Bonyar"> Attila Bonyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Miklos%20Veres"> Miklos Veres</a>, <a href="https://publications.waset.org/abstracts/search?q=Laszlo%20Himics"> Laszlo Himics</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Csik"> Attila Csik</a>, <a href="https://publications.waset.org/abstracts/search?q=Judit%20Kaman"> Judit Kaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20%20Burunkova"> Julia Burunkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Geza%20Szanto"> Geza Szanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Laszlo%20Balazs"> Laszlo Balazs</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Kokenyesi"> Sandor Kokenyesi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20sensitive%20nanocomposites" title="light sensitive nanocomposites">light sensitive nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20nanoparticles" title=" metallic nanoparticles"> metallic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20application" title=" photonic application"> photonic application</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20nanostructures" title=" plasmonic nanostructures"> plasmonic nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/89303/light-sensitive-plasmonic-nanostructures-for-photonic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Tanos">Péter Tanos</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zsef%20Kov%C3%A1cs"> József Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9la%20Anda"> Angéla Anda</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20V%C3%A1rb%C3%ADr%C3%B3"> Gábor Várbíró</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A1ndor%20Moln%C3%A1r"> Sándor Molnár</a>, <a href="https://publications.waset.org/abstracts/search?q=Istv%C3%A1n%20G%C3%A1bor%20Hatvani"> István Gábor Hatvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20periodicity%20water%20quality" title="annual periodicity water quality">annual periodicity water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20variability%20of%20periodic%20behavior" title=" spatiotemporal variability of periodic behavior"> spatiotemporal variability of periodic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Morlet%20wavelet%20spectrum%20analysis" title=" Morlet wavelet spectrum analysis"> Morlet wavelet spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=River%20Tisza" title=" River Tisza"> River Tisza</a> </p> <a href="https://publications.waset.org/abstracts/60822/periodicity-analysis-of-long-term-waterquality-data-series-of-the-hungarian-section-of-the-river-tisza-using-morlet-wavelet-spectrum-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Building Scalable and Accurate Hybrid Kernel Mapping Recommender</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hina%20Iqbal">Hina Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustansar%20Ali%20Ghazanfar"> Mustansar Ali Ghazanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Szedmak"> Sandor Szedmak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recommender systems uses artificial intelligence practices for filtering obscure information and can predict if a user likes a specified item. Kernel mapping Recommender systems have been proposed which are accurate and state-of-the-art algorithms and resolve recommender system’s design objectives such as; long tail, cold-start, and sparsity. The aim of research is to propose hybrid framework that can efficiently integrate different versions— namely item-based and user-based KMR— of KMR algorithm. We have proposed various heuristic algorithms that integrate different versions of KMR (into a unified framework) resulting in improved accuracy and elimination of problems associated with conventional recommender system. We have tested our system on publically available movies dataset and benchmark with KMR. The results (in terms of accuracy, precision, recall, F1 measure and ROC metrics) reveal that the proposed algorithm is quite accurate especially under cold-start and sparse scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kernel%20Mapping%20Recommender%20Systems" title="Kernel Mapping Recommender Systems">Kernel Mapping Recommender Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20recommender%20systems" title=" hybrid recommender systems"> hybrid recommender systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20start" title=" cold start"> cold start</a>, <a href="https://publications.waset.org/abstracts/search?q=sparsity" title=" sparsity"> sparsity</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20tail" title=" long tail"> long tail</a> </p> <a href="https://publications.waset.org/abstracts/59766/building-scalable-and-accurate-hybrid-kernel-mapping-recommender" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Temperament and Character Dimensions as Personality Predictors of Relationship Quality: An Actor-Partner Interdependence Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dora%20Vajda">Dora Vajda</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayyeh%20Mohammadi"> Somayyeh Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Rozsa"> Sandor Rozsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting the relationship satisfaction based on the personality characteristics of both partners has a long history. The association between relationship quality and personality traits has been previously demonstrated. Personality traits are most commonly assessed using the Five-Factor Model. The present study has focused on Cloninger's psychobiological model of personality that accounts for dimensions of both temperament and character. The goal of this study was to examine the actor and partner effect of couple's personality on relationship outcomes. In total, 184 heterosexual couples completed the Temperament and Character Inventory (TCI) and the Dyadic Adjustment Scale. The analysis was based on Actor-Partner Interdependence Model (APIM) using multilevel modeling (MLwiN). Results showed that character dimensions Self-Directedness and Cooperativeness had a statistically meaningful actor and partner effect on both partner's relationship quality. However, male's personality temperament dimension Reward Dependence had an only actor effect on his relationship quality. The findings contribute to the literature by highlighting the role of character dimensions of personality in romantic relationships. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APIM%20%28actor-partner%20interdependence%20model%29" title="APIM (actor-partner interdependence model)">APIM (actor-partner interdependence model)</a>, <a href="https://publications.waset.org/abstracts/search?q=MLwiN" title=" MLwiN"> MLwiN</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship%20quality" title=" relationship quality"> relationship quality</a> </p> <a href="https://publications.waset.org/abstracts/50712/temperament-and-character-dimensions-as-personality-predictors-of-relationship-quality-an-actor-partner-interdependence-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Levai">Sandor Levai</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Juhasz"> Valentin Juhasz</a>, <a href="https://publications.waset.org/abstracts/search?q=Miklos%20Gasz"> Miklos Gasz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20masonry" title="brick masonry">brick masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20phenomena%20in%20damp%20brickwork" title=" electrical phenomena in damp brickwork"> electrical phenomena in damp brickwork</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20building%20materials" title=" porous building materials"> porous building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=rising%20damp" title=" rising damp"> rising damp</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20electrical%20potential" title=" spontaneous electrical potential"> spontaneous electrical potential</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting-drying%20cycle" title=" wetting-drying cycle"> wetting-drying cycle</a> </p> <a href="https://publications.waset.org/abstracts/127541/electrical-effects-during-the-wetting-drying-cycle-of-porous-brickwork-electrical-aspects-of-rising-damp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janos%20Juhasz">Janos Juhasz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Pongor"> Sandor Pongor</a>, <a href="https://publications.waset.org/abstracts/search?q=Balazs%20Ligeti"> Balazs Ligeti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title="metagenomics">metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy%20binning" title=" taxonomy binning"> taxonomy binning</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20anthracis" title=" B. anthracis"> B. anthracis</a> </p> <a href="https://publications.waset.org/abstracts/99150/scalable-and-accurate-detection-of-pathogens-from-whole-genome-shotgun-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%B3ra%20Pom%C3%A1zi">Flóra Pomázi</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A1ndor%20Baranya"> Sándor Baranya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Szalai"> Zoltán Szalai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20particle%20characterisation" title="advanced particle characterisation">advanced particle characterisation</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20imaging" title=" automated imaging"> automated imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20methods" title=" indirect methods"> indirect methods</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diffraction" title=" laser diffraction"> laser diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediment" title=" suspended sediment"> suspended sediment</a> </p> <a href="https://publications.waset.org/abstracts/118731/advanced-particle-characterisation-of-suspended-sediment-in-the-danube-river-using-automated-imaging-and-laser-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Overcoming Barriers to Improve HIV Education and Public Health Outcomes in the Democratic Republic of Congo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danielle%20A.%20Walker">Danielle A. Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20L.%20Johnson"> Kyle L. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Tara%20B.%20Thomas"> Tara B. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandor%20Dorgo"> Sandor Dorgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacen%20S.%20Moore"> Jacen S. Moore </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approximately 37 million people worldwide are infected with the Human Immunodeficiency Virus (HIV), with the majority located in sub-Saharan Africa. The relationship existing between HIV incidence and socioeconomic inequity confirms the critical need for programs promoting HIV education, prevention and treatment access. This literature review analyzed 36 sources with a specific focus on the Democratic Republic of Congo, whose critically low socioeconomic status and education rate have resulted in a drastically high HIV rates. Relationships between HIV testing and treatment and barriers to care were explored. Cultural and religious considerations were found to be vital when creating and implementing HIV education and testing programs. Partnerships encouraging active support from community-based spiritual leaders to implement HIV educational programs were also key mechanisms to reach communities and individuals. Gender roles were highlighted as a key component for implementation of effective community trust-building and successful HIV education programs. The efficacy of added support by hospitals and clinics in rural areas to facilitate access to HIV testing and care for people living with HIV/AIDS (PLWHA) was discussed. This review highlighted the need for healthcare providers to provide a network of continued education for PLWHA in clinical settings during disclosure and throughout the course of treatment to increase retention in care and promote medication adherence for viral load suppression. Implementation of culturally sensitive models that rely on community familiarity with HIV educators such as ‘train-the-trainer’ were also proposed as efficacious tools for educating rural communities about HIV. Further research is needed to promote community partnerships for HIV education, understand the cultural context of gender roles as barriers to care, and empower local health care providers to be successful within the HIV Continuum of Care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20sensitivity" title="cultural sensitivity">cultural sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Democratic%20Republic%20of%20the%20Congo" title=" Democratic Republic of the Congo"> Democratic Republic of the Congo</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a> </p> <a href="https://publications.waset.org/abstracts/77687/overcoming-barriers-to-improve-hiv-education-and-public-health-outcomes-in-the-democratic-republic-of-congo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Effect of Relocating a Red Deer Stag on the Size of Its Home Range and Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erika%20Csanyi">Erika Csanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyula%20Sandor"> Gyula Sandor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the course of the examination, we sought to answer the question of how and to what extent the home range and daily activity of a deer stag relocated from its habitual surroundings changes. We conducted the examination in two hunting areas in Hungary, about 50 km from one another. The control area was in the north of Somogy County, while the sample area was an area of similar features in terms of forest cover, tree stock, agricultural structure, altitude above sea level, climate, etc. in the south of Somogy County. Three middle-aged red deer stags were captured with rocket nets, immobilized and marked with GPS-Plus Collars manufactured by Vectronic Aerospace Gesellschaft mit beschränkter Haftung. One captured species was relocated. We monitored deer movements over 24-hour periods at 3 months. In the course of the examination, we analysed the behaviour of the relocated species and those that remained in their original habitat, as well as the temporal evolution of their behaviour. We examined the characteristics of the marked species’ daily activities and the hourly distance they covered. We intended to find out the difference between the behaviour of the species remaining in their original habitat and of those relocated to a more distant, but similar habitat. In summary, based on our findings, it can be established that such enforced relocations to a different habitat (e.g., game relocation) significantly increases the home range of the species in the months following relocation. Home ranges were calculated using the full data set and the minimum convex polygon (MCP) method. Relocation did not increase the nocturnal and diurnal movement activity of the animal in question. Our research found that the home range of the relocated species proved to be significantly higher than that of those species that were not relocated. The results have been presented in tabular form and have also been displayed on a map. Based on the results, it can be established that relocation inherently includes the risk of falling victim to poaching, vehicle collision. It was only in the third month following relocation that the home range of the relocated species subsided to the level of those species that were not relocated. It is advisable to take these observations into consideration in relocating red deer for nature conservation or game management purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cervus%20elaphus" title="Cervus elaphus">Cervus elaphus</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20range" title=" home range"> home range</a>, <a href="https://publications.waset.org/abstracts/search?q=relocation" title=" relocation"> relocation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20deer%20stag" title=" red deer stag "> red deer stag </a> </p> <a href="https://publications.waset.org/abstracts/110137/the-effect-of-relocating-a-red-deer-stag-on-the-size-of-its-home-range-and-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>