CINXE.COM

Editing colorable knot in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Editing colorable knot in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Editing colorable knot </h1> <div id="MarkupHelp"> <h3 style="font-size: 1.1em; font-style: normal; text-align: center">Syntax tips</h3> <ol style="margin-left: 0em; padding-left: 0em"> <li style="font-size: 0.8em">The basic syntax is <a href="https://www.markdownguide.org/cheat-sheet/">extended Markdown</a>. </li> <li style="font-size: 0.8em">Links to other nLab pages should be made by surrounding the name of the page in double square brackets: [[ name of page ]]. To link to an nLab page but show a different link text, do the following: [[ name of page | link text to show ]].</li> <li style="font-size: 0.8em">LaTeX can be used inside single dollar signs (inline) or double dollar signs or \[ and \], as usual. </li> <li style="font-size: 0.8em">To create a table of contents, add \tableofcontents on its own line.</li> <li style="font-size: 0.8em">For a theorem or proof, use \begin{theorem} \end{theorem} as you would in LaTeX. Labelling and referencing is exactly as in LaTeX, with use of \label and \ref. The full list of supported environments can be found in the <a href="/nlab/show/HowTo#DefinitionTheoremProofEnvironments">HowTo</a>. </li> <li style="font-size: 0.8em">Tikz can be used for figures almost exactly as in LaTeX. Similarly, tikz-cd and xymatrix can be used for commutative diagrams. See the <a href="/nlab/show/HowTo#diagrams">HowTo</a>.</li> <li style="font-size: 0.8em">As an alternative to the Markdown syntax for sections (headings), one can use the usual LaTeX syntax \section, \subsection, etc.</li> <li style="font-size: 0.8em">For further help, see the <a href="/nlab/show/HowTo">HowTo</a>, or you are very welcome to ask at the <a href="https://nforum.ncatlab.org/">nForum</a>.</li> </ol> </div> <form accept-charset="utf-8" action="/nlab/save/colorable+knot" id="editForm" method="post"> <div style="display: none;"> <input name="see_if_human" id="see_if_human" style="tabindex: -1; autocomplete: off"/> </div> <div> <textarea name="content" id="content" style="height: 45em; width: 70%;"> # Colourability * table of contents {: toc} ## Idea The colourability of a knot tells one information about its [[knot group]] yet has a simple, and visually attractive aspect that seems almost to avoid all mention of groups, presentations, etc., except at a fairly naive level. The easiest form of colourability to examine is $3$-colourability. ## $3$-colourability +--{: .un_defn} ###### Definition A [[knot diagram]] is _$3$-colourable_ if we can assign colours to its arcs such that 1. each arc is assigned one colour; 1. _exactly_ three colours are used in the assignment; 1. at each crossing, either all the arcs have the same colour, or arcs of all three colours meet in the crossing. =-- +--{: .un_example} ###### Examples and non-examples * The usual diagram for the trefoil knot is $3$-colourable. (Just do it! Each arc is given a separate colour and it works.) * The [[figure-8 knot]] diagram +-- {: style=&quot;text align:center&quot;} [[!include figure 8 knot - SVG]] =-- is not $3$-colourable. (Try it!) =-- +--{: .un_theorem} ######Theorem $3$-colourability is a [[knot invariant]]. =-- The proof is amusing to work out oneself. You have to show that if a knot diagram $D$ is $3$-colourable and you perform a [[Reidemeister move]] on it then the result is also $3$-colourable. The thing to note is that any arcs that leave the locality of the move must be coloured the same before and after the move is done. +--{: .un_note} ###### Notes * We can now use phrases such as &#39;the trefoil knot is $3$-colourable&#39; as its validity does not depend on what diagram is used to represent it, (by the above and by [[Reidemeister moves|Reidemeister&#39;s theorem]].) * As the trefoil knot is $3$-colourable and the unknot is not, *non-trivial knots exist*. Moreover, the trefoil is $3$-colourable and the figure $8$ is not, so these are different. We also get that the [[bridge number]] of the trefoil is $2$, as this provides the missing piece of the argument found in that entry. =-- There are two comments to make here. First what does this all mean at a deeper topological level? The other is : why stop at $3$? What about $n$-colourability? We will handle the second one first. ##$n$-colourability## Let $n$ be an integer - in practice $n = 1$ or 2 are not that interesting, so usually $n \geq 3$. Let $\mathbb{Z}_n$ be the additive group of integers modulo $n$. +--{: .un_defn} ###### Definition An _$n$-colouring_ of a knot diagram, $D$, is an assignment to each arc of an element of $\mathbb{Z}_n$ in such a way that, at each crossing, the sum of the values assigned on the underpass arcs is twice that on the overpass, and such that in the assignment at least two elements of $\mathbb{Z}_n$ are used. =-- &lt;svg xmlns:dc=&quot;http://purl.org/dc/elements/1.1/&quot; xmlns:cc=&quot;http://creativecommons.org/ns#&quot; xmlns:rdf=&quot;http://www.w3.org/1999/02/22-rdf-syntax-ns#&quot; xmlns:svg=&quot;http://www.w3.org/2000/svg&quot; xmlns=&quot;http://www.w3.org/2000/svg&quot; xmlns:sodipodi=&quot;http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd&quot; xmlns:inkscape=&quot;http://www.inkscape.org/namespaces/inkscape&quot; width=&quot;89.928581&quot; height=&quot;101.35714&quot; id=&quot;svg2&quot; sodipodi:version=&quot;0.32&quot; inkscape:version=&quot;0.46&quot; version=&quot;1.0&quot; sodipodi:docname=&quot;labelled-crossing.svg&quot; inkscape:output_extension=&quot;org.inkscape.output.svg.inkscape&quot;&gt; &lt;defs id=&quot;defs4&quot;&gt; &lt;inkscape:perspective sodipodi:type=&quot;inkscape:persp3d&quot; inkscape:vp_x=&quot;0 : 526.18109 : 1&quot; inkscape:vp_y=&quot;0 : 1000 : 0&quot; inkscape:vp_z=&quot;744.09448 : 526.18109 : 1&quot; inkscape:persp3d-origin=&quot;372.04724 : 350.78739 : 1&quot; id=&quot;perspective10&quot; /&gt; &lt;/defs&gt; &lt;sodipodi:namedview id=&quot;base&quot; pagecolor=&quot;#ffffff&quot; bordercolor=&quot;#666666&quot; borderopacity=&quot;1.0&quot; gridtolerance=&quot;10000&quot; guidetolerance=&quot;10&quot; objecttolerance=&quot;10&quot; inkscape:pageopacity=&quot;0.0&quot; inkscape:pageshadow=&quot;2&quot; inkscape:zoom=&quot;2.8&quot; inkscape:cx=&quot;47.132334&quot; inkscape:cy=&quot;42.148486&quot; inkscape:document-units=&quot;px&quot; inkscape:current-layer=&quot;layer1&quot; showgrid=&quot;false&quot; inkscape:window-width=&quot;640&quot; inkscape:window-height=&quot;701&quot; inkscape:window-x=&quot;0&quot; inkscape:window-y=&quot;22&quot; /&gt; &lt;metadata id=&quot;metadata7&quot;&gt; &lt;rdf:RDF&gt; &lt;cc:Work rdf:about=&quot;&quot;&gt; &lt;dc:format&gt;image/svg+xml&lt;/dc:format&gt; &lt;dc:type rdf:resource=&quot;http://purl.org/dc/dcmitype/StillImage&quot; /&gt; &lt;/cc:Work&gt; &lt;/rdf:RDF&gt; &lt;/metadata&gt; &lt;g inkscape:label=&quot;Layer 1&quot; inkscape:groupmode=&quot;layer&quot; id=&quot;layer1&quot; transform=&quot;translate(-116.28571,-149.30877)&quot;&gt; &lt;path style=&quot;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1&quot; d=&quot;M 117.14286,149.80877 C 202.85714,258.3802 205.71429,249.80877 205.71429,249.80877&quot; id=&quot;path2383&quot; /&gt; &lt;path style=&quot;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1&quot; d=&quot;M 116.78571,250.16591 L 156.78571,206.23734&quot; id=&quot;path2385&quot; /&gt; &lt;path style=&quot;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1&quot; d=&quot;M 163.21429,200.8802 L 203.92857,153.02305&quot; id=&quot;path2387&quot; /&gt; &lt;text xml:space=&quot;preserve&quot; style=&quot;font-size:14px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:start;line-height:125%;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Times New Roman;-inkscape-font-specification:Times New Roman&quot; x=&quot;129.64285&quot; y=&quot;222.66591&quot; id=&quot;text2389&quot; sodipodi:linespacing=&quot;125%&quot;&gt;&lt;tspan sodipodi:role=&quot;line&quot; id=&quot;tspan2391&quot; x=&quot;129.64285&quot; y=&quot;222.66591&quot;&gt;a&lt;/tspan&gt;&lt;/text&gt; &lt;text xml:space=&quot;preserve&quot; style=&quot;font-size:14px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:start;line-height:125%;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Times New Roman;-inkscape-font-specification:Times New Roman&quot; x=&quot;176.42857&quot; y=&quot;175.52306&quot; id=&quot;text2393&quot; sodipodi:linespacing=&quot;125%&quot;&gt;&lt;tspan sodipodi:role=&quot;line&quot; id=&quot;tspan2395&quot; x=&quot;176.42857&quot; y=&quot;175.52306&quot;&gt;c&lt;/tspan&gt;&lt;/text&gt; &lt;text xml:space=&quot;preserve&quot; style=&quot;font-size:14px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:start;line-height:125%;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Times New Roman;-inkscape-font-specification:Times New Roman&quot; x=&quot;146.42857&quot; y=&quot;178.73734&quot; id=&quot;text2397&quot; sodipodi:linespacing=&quot;125%&quot;&gt;&lt;tspan sodipodi:role=&quot;line&quot; id=&quot;tspan2399&quot; x=&quot;146.42857&quot; y=&quot;178.73734&quot;&gt;b&lt;/tspan&gt;&lt;/text&gt; &lt;/g&gt; &lt;/svg&gt; with $a+c \equiv_n 2b$. What, of course, needs to be checked (left to &#39;the reader&#39;) is * this notion is a generalisation of 3-colourability (i.e. coincides in the case of $n = 3$); * $n$-colourability is preserved under [[Reidemeister moves]] so can be applied to a knot, not just to a knot diagram; and then to find some examples of, say, 5-colourability. What knots are 5-colourable? Which $(2,k)$-[[torus knots]] are 5-colorable, and so on. This is not important mathematically, but is quite fun and, in fact, does give insight and experience in working with the Reidemeister moves. ## Coloring by a quandle There is an even more general notion of coloring a knot $K$ by the elements of a [[quandle]] $(Q,\rhd : Q \times Q \to Q)$. Formally, a coloring of $K$ by $Q$ corresponds to a quandle homomorphism from the fundamental quandle $Q(K)$ of $K$ to $Q$. Concretely, this says that at each crossing with arcs labelled $a$, $b$, and $c$ (as in the above diagram), the identity $c = a \rhd b$ must be respected. In particular, $n$-coloring corresponds to coloring by the set $\mathbb{Z}_n$ equipped with the quandle operation $a \rhd b = 2b - a\,(mod\,n)$, known as the dihedral quandle. ## References * [[Ralph Fox]], _A quick trip through Knot theory_ [pdf file]( (http://homepages.math.uic.edu/~kauffman/QuickTrip.pdf) * Wikipedia articles on [tricolorability](http://en.wikipedia.org/wiki/Tricolorability) and [Fox n-coloring](http://en.wikipedia.org/wiki/Fox_n-coloring) [[!redirects colorable knot]] [[!redirects colorable knots]] [[!redirects colourable knot]] [[!redirects colourable knots]] [[!redirects colorability]] [[!redirects colourability]] [[!redirects coloring knots]] [[!redirects knot coloring]] category: knot theory</textarea> <p> <input id="alter_title" name="alter_title" onchange="toggleVisibility();" type="checkbox" value="1" /> <label for="alter_title">Change page name.</label><br/> <span id="title_change" style="display:none"><label for="new_name">New name:</label> <input id="new_name" name="new_name" onblur="addRedirect();" type="text" value="colorable knot" /></span> </p> <div> <p style="font-size: 0.8em; width: 70%;"> For non-trivial edits, please briefly describe your changes below. A discussion thread for this page does not yet exist at the <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">nForum</a>, but will be created upon submission of your changes, and your comments will be added to it. This discussion thread can also be used for further discussion related to this page. For trivial edits, such as correcting typos, please leave the box below empty; feel free to ask for advice at the nForum if you are unsure. </p> </div> <div> <textarea name="announcement" id="announcement" style="height: 10em; width: 70%"></textarea> </div> <div id="editFormButtons"> <input type="submit" value="Submit" accesskey="s"/> as <input id="author" name="author" onblur="this.value == '' ? this.value = 'Anonymous' : true" onfocus="this.value == 'Anonymous' ? this.value = '' : true;" type="text" value="Anonymous" /> | <span> <a href="/nlab/cancel_edit/colorable+knot" accesskey="c">Cancel</a> <span class="unlock">(unlocks page)</span> </span> </div> </div> </form> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function toggleVisibility() { var span = document.getElementById('title_change'); if (span.style.display =='inline') { span.style.display ='none'; document.getElementById('new_name').value = "colorable knot"; var content = document.getElementById('content').value document.getElementById('content').value = content.replace(/\[\[!redirects colorable\ knot\]\]\n/, '') } else span.style.display ='inline' } function addRedirect(){ var e = document.getElementById('new_name').value; if ( e != "colorable knot" && e != '') { var content = document.getElementById('content'); content.value = '[[!redirects colorable knot]]\n' + content.value } } document.forms["editForm"].elements["content"].focus(); //--><!]]> </script> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10