CINXE.COM

Search results for: bioactive naturally-occrring compounds

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bioactive naturally-occrring compounds</title> <meta name="description" content="Search results for: bioactive naturally-occrring compounds"> <meta name="keywords" content="bioactive naturally-occrring compounds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bioactive naturally-occrring compounds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bioactive naturally-occrring compounds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2559</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bioactive naturally-occrring compounds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2559</span> Future Trends in Sources of Natural Antioxidants from Indigenous Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Ghorab">Ahmed El-Ghorab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indigenous foods are promising sources of various chemical bioactive compounds such as vitamins, phenolic compounds and carotenoids. Therefore, the presence o different bioactive compounds in fruits could be used to retard or prevent various diseases such as cardiovascular and cancer. This is an update report on nutritional compositions and health promoting phytochemicals of different indigenous food . This different type of fruits and/ or other sources such as spices, aromatic plants, grains by-products, which containing bioactive compounds might be used as functional foods or for nutraceutical purposes. most common bioactive compounds are vitamin C, polyphenol, β- carotene and lycopene contents. In recent years, there has been a global trend toward the use of natural phytochemical as antioxidants and functional ingredients, which are present in natural resources such as vegetables, fruits, oilseeds and herbs.. Our future trend the Use of Natural antioxidants as a promising alternative to use of synthetic antioxidants and the Production of natural antioxidant on commercial scale to maximize the value addition of indigenous food waste as a good source of bioactive compounds such as antioxidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=by-product" title=" by-product"> by-product</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20foods" title=" indigenous foods"> indigenous foods</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/16743/future-trends-in-sources-of-natural-antioxidants-from-indigenous-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2558</span> Preliminary Phytochemical Screening and Comparison of Different Extracts of Capparidaceae Family</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noshaba%20Dilbar">Noshaba Dilbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jabbar"> Maria Jabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants are considered to be the richest source of drug discovery. The main cause of medicinal properties of plants is the presence of bioactive compounds in them. Phytochemical screening is the valuable process that detects bioactive compounds(secondary metabolites) in plants. The present study was carried out to determine phytochemical profile and ethnobotanical importance of Capparidaceae species. ( Capparis spinosa and Dipterygium glaucum). The selection of plants was made on basis of traditional knowledge of their usage in ayurvedic medicines. Different type of solvents(ethanol, methanol, chloroform, benzene and petroleum ether) were used to make extracts of dry and fresh plants. Phytochemical screening was made by using various standard techniques. Results reveal the presence of large range of bioactive compounds i.e alakloids, saponins, flavonoids, terpenoids, glycosides, phenols and steroids. Methanol, petroleum ether and chloroform extracts showed high extractability of bioactive compounds. The results obtained ensure these plants a reliable source of pharmacological industry and can be used in making of various biological friendly drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=Capparidaceae" title=" Capparidaceae"> Capparidaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/122673/preliminary-phytochemical-screening-and-comparison-of-different-extracts-of-capparidaceae-family" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2557</span> Effect of Brewing on the Bioactive Compounds of Coffee</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceyda%20Dadali">Ceyda Dadali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%C5%9Fim%20Elmaci"> Yeşim Elmaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20coffee" title="bioactive compounds of coffee">bioactive compounds of coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee%20brew" title=" coffee brew"> coffee brew</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20brewing" title=" effect of brewing "> effect of brewing </a> </p> <a href="https://publications.waset.org/abstracts/81620/effect-of-brewing-on-the-bioactive-compounds-of-coffee" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2556</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2555</span> Effect of Heat Treatment on Nutrients, Bioactive Contents and Biological Activities of Red Beet (Beta Vulgaris L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amessis-Ouchemoukh%20Nadia">Amessis-Ouchemoukh Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salhi%20Rim"> Salhi Rim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouchemoukh%20Salim"> Ouchemoukh Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayad%20Rabha"> Ayad Rabha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadou%20Dyhia"> Sadou Dyhia</a>, <a href="https://publications.waset.org/abstracts/search?q=Guenaoui%20Nawel"> Guenaoui Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamouche%20Sara"> Hamouche Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Madani%20Khodir"> Madani Khodir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cooking method is a key factor influencing the quality of vegetables. In this study, the effect of the most common cooking methods on the nutritional composition, phenolic content, pigment content and antioxidant activities (evaluated by DPPH, ABTS, CUPRAC, FRAP, reducing power and phosphomolybdene method) of fresh, steamed, and boiled red beet was investigated. The fresh samples showed the highest nutritional and bioactive composition compared to the cooked ones. The boiling method didn’t lead to a significant reduction (p< 0.05) in the content of phenolics, flavonoids, flavanols and DPPH, ABTS, FRAP, CUPRAC, phosphomolybdeneum and reducing power capacities. This effect was less pronounced when steam cooking was used, and the losses of bioactive compounds were lower. As a result, steam cooking resulted in greater retention of bioactive compounds and antioxidant activity compared to boiling. Overall, this study suggests that steam cooking is a better method in terms of retention of pigments and bioactive compounds and antioxidant activity of beetroot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20vulgaris" title="beta vulgaris">beta vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20methods" title=" cooking methods"> cooking methods</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a> </p> <a href="https://publications.waset.org/abstracts/185014/effect-of-heat-treatment-on-nutrients-bioactive-contents-and-biological-activities-of-red-beet-beta-vulgaris-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2554</span> Quality Evaluation of Bread Enriched with Red Sweet Pepper Powder (Capsicum annuum)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Kaur">Ramandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaljit%20Kaur"> Kamaljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Ahluwalia"> Preeti Ahluwalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam%20A.%20Sachdev"> Poonam A. Sachdev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bread is an ideal vehicle to impart bioactive compounds to the consumers in a convenient manner. This study evaluated bread enriched with red sweet pepper powder (RSP) at 2, 4, 6, 8, 10% and compared to control bread (without RSP). The bread crumbs were assayed for bioactive, physical, nutritional, textural, color, and sensory properties. Bread supplemented with RSP improved its color, nutritional, and bioactive properties. The low moisture content and increased hardness were observed at higher levels of RSP. Color intensity (expressed as L*, a*, b* values) of bread with 2 and 4% RSP were lower than those of high levels, and the same trend was observed for protein, fibre and ash content of bread. Significant (p < 0.05) increases were recorded for bioactive compounds such as total phenols (0.145 to 235 mg GAE/g), antioxidant activity (56% to 78%) and flavonoids (0.112 to 0.379 mg/g) as the level of powder increased. Bread enriched with 8% RSP showed improved sensory profile as compared to control, whereas a further increase in RSP decreased the sensory and textural properties. Thus, RSP act as a natural colorant and functional food that enhanced the functional and nutritional properties of bread and can be used to customize bread for specific health needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breads" title="breads">breads</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder" title=" red sweet pepper powder"> red sweet pepper powder</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20scores" title=" sensory scores"> sensory scores</a> </p> <a href="https://publications.waset.org/abstracts/109389/quality-evaluation-of-bread-enriched-with-red-sweet-pepper-powder-capsicum-annuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2553</span> Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ataa%20A.%20Said">Ataa A. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20A.%20Abuotabl"> Elsayed A. Abuotabl</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20F.%20Abdel%20Raoof"> Gehan F. Abdel Raoof</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Y.%20Mohamed"> Khaled Y. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antihyperglycaemic" title="antihyperglycaemic">antihyperglycaemic</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic" title=" phenolic"> phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleiogynium%20timorense" title=" Pleiogynium timorense"> Pleiogynium timorense</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a> </p> <a href="https://publications.waset.org/abstracts/72357/antihyperglycaemic-and-antihyperlipidemic-activities-of-pleiogynium-timorense-seeds-and-identification-of-bioactive-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2552</span> Secondary Metabolite Profiling and Antimicrobial Activity of Leaf Extract of Tecomella undulata (Sm.) Seem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richa%20Bhardwaj">Richa Bhardwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tecomella undulata (Sm.) Seem is a monotypic genus belonging to family Bignoniaceae. The plant holds tremendous potential of medicinal value and has been traditionally used in various ailments like syphilis, leukoderma, blood disorders to name a few. The plant has gained prominence due to the presence of some prominent secondary metabolites. The present study focuses on the GC-MS analysis of leaf extracts of T. undulata which revealed the presence of certain bioactive compounds like stigmasterol, sitosterol, thiazoline, phytol, pthalic acid, methyl alpha ketopalmitate and so forth. A total of about 20 bioactive compounds were identified from the leaf extract spectra. Antimicrobial activity of the leaf extract was assayed against pathogenic bacteria and fungi. The alkaloids from leaf extracts showed antimicrobial activity against E.coli and B.subtilis. The flavonoids from leaves showed positive activity against Penicillium species and Candida albicans. The study thus infers that the presence of bioactive components may be the principle behind the antimicrobial property of different plant parts and therefore Tecomella forms a potential plant for herbal drug formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tecomella%20undulata" title="Tecomella undulata">Tecomella undulata</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/99645/secondary-metabolite-profiling-and-antimicrobial-activity-of-leaf-extract-of-tecomella-undulata-sm-seem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2551</span> The Effect of Ultrasound Pretreatment on Bioactive Compounds of Freeze-Dried Carrots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcin%20Yildiz">Gulcin Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although drying is one of the most prevalent techniques applied to enhance food stability, it is a complicated method covering simultaneous coupled heat and mass transfer phenomena and the theoretical application of these phenomena to food products becomes challenging because of the complex structure and to the physical and chemical changes that happen at drying. Pretreatment of materials before drying has been shown to be effective in solving drying problems such as long drying times and poor product quality. The study was conducted to examine the effect of ultrasound (US) pre-treatment on physical and chemical/nutritional attributes of freeze-dried carrot slices. The carrots were washed, hand-peeled, and cut with dimensions of 1 cm (L) x 0.2 (W) cm x 1 cm (H). The carrot samples were treated in an ultrasonic bath in two different times, which were 15 and 30 minutes. Untreated and ultrasound pre-treated carrot samples were dried in a freeze dryer. Freeze-dried samples were analyzed in terms of bioactive compounds, including total phenols, ascorbic acid, and antioxidant capacity. Significant differences were found among dried carrot samples with and without ultrasound. The freeze-dried carrot slices treated with a US (especially 30 minutes - treatment) showed higher preservation of bioactive compounds. In overall, US pretreatment is a promising process, as demonstrated in current research by its capability to better retain freeze-dried carrot quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot" title=" carrot"> carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-pretreatment" title=" ultrasound-pretreatment"> ultrasound-pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/110034/the-effect-of-ultrasound-pretreatment-on-bioactive-compounds-of-freeze-dried-carrots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2550</span> Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lekhavat">S. Lekhavat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kajsongkram"> T. Kajsongkram</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sang-han"> S. Sang-han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a> </p> <a href="https://publications.waset.org/abstracts/53148/effect-of-ethanol-concentration-and-enzyme-pre-treatment-on-bioactive-compounds-from-ginger-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2549</span> Phytochemical Composition and Characterization of Bioactive Compounds of the Green Seaweed Ulva lactuca: A Phytotherapeutic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariame%20Taibi">Mariame Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Aouiji"> Marouane Aouiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Bengueddour"> Rachid Bengueddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Moroccan coastline is particularly rich in algae and constitutes a reserve of species with considerable economic, social and ecological potential. This work focuses on the research and characterization of algae bioactive compounds that can be used in pharmacology or phytopathology. The biochemical composition of the green alga Ulva lactuca (Ulvophyceae) was studied by determining the content of moisture, ash, phenols, flavonoids, total tannins, and chlorophyll. Seven solvents: distilled water, methanol, ethyl acetate, chloroform, benzene, petroleum ether, and hexane, were tested for their effectiveness in recovering chemical compounds. The identification of functional groupings, as well as the bioactive chemical compounds, was determined by FT-IR and GC-MS. The moisture content of the alga was 77%, while the ash content was 15%. Phenol content differed from one solvent studied to another, while chlorophyll a, b, and total chlorophyll were determined at 14%, 9.52%, and 25%, respectively. Carotenoid was present in a considerable amount (8.17%). The experimental results show that methanol is the most effective solvent for recovering bioactive compounds, followed by water. Moreover, the green alga Ulva lactuca is characterized by a high level of total polyphenols (45±3.24 mg GAE/gDM), average levels of total tannins and flavonoids (22.52±8.23 mg CE/gDM, 15.49±0.064 mg QE/gDM) respectively. The results of Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of alcohol/phenol and amide functions in Ulva lactuca. The GC-MS analysis gave precisely the compounds contained in the various extracts, such as phenolic compounds, fatty acids, terpenoids, alcohols, alkanes, hydrocarbons, and steroids. All these results represent only a first step in the search for biologically active natural substances from seaweed. Additional tests are envisaged to confirm the bioactivity of seaweed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20lactuca" title=" Ulva lactuca"> Ulva lactuca</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/156936/phytochemical-composition-and-characterization-of-bioactive-compounds-of-the-green-seaweed-ulva-lactuca-a-phytotherapeutic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2548</span> New Evaluation of the Richness of Cactus (Opuntia) in Active Biomolecules and their Use in Agri-Food, Cosmetic, and Pharmaceutical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazhar%20Zourgui">Lazhar Zourgui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Opuntia species are used as local medicinal interventions for chronic diseases and as food sources, mainly because they possess nutritional properties and biological activities. Opuntia ficus-indica (L.) Mill, commonly known as prickly pear or nopal cactus, is the most economically valuable plant in the Cactaceae family worldwide. It is a tropical or subtropical plant native to tropical and subtropical America, which can grow in arid and semi-arid climates. It belongs to the family of angiosperms dicotyledons Cactaceae of which about 1500 species of cacti are known. The Opuntia plant is distributed throughout the world and has great economic potential. There are differences in the phytochemical composition of Opuntia species between wild and domesticated species and within the same species. It is an interesting source of plant bioactive compounds. Bioactive compounds are compounds with nutritional benefits and are generally classified into phenolic and non-phenolic compounds and pigments. Opuntia species are able to grow in almost all climates, for example, arid, temperate, and tropical climates, and their bioactive compound profiles change depending on the species, cultivar, and climatic conditions. Therefore, there is an opportunity for the discovery of new compounds from different Opuntia cultivars. Health benefits of prickly pear are widely demonstrated: There is ample evidence of the health benefits of consuming prickly pear due to its source of nutrients and vitamins and its antioxidant properties due to its content of bioactive compounds. In addition, prickly pear is used in the treatment of hyperglycemia and high cholesterol levels, and its consumption is linked to a lower incidence of coronary heart disease and certain types of cancer. It may be effective in insulin-independent type 2 diabetes mellitus. Opuntia ficus-Indica seed oil has shown potent antioxidant and prophylactic effects. Industrial applications of these bioactive compounds are increasing. In addition to their application in the pharmaceutical industries, bioactive compounds are used in the food industry for the production of nutraceuticals and new food formulations (juices, drinks, jams, sweeteners). In my lecture, I will review in a comprehensive way the phytochemical, nutritional, and bioactive compound composition of the different aerial and underground parts of Opuntia species. The biological activities and applications of Opuntia compounds are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus" title=" cactus"> cactus</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia" title=" Opuntia"> Opuntia</a>, <a href="https://publications.waset.org/abstracts/search?q=actives%20biomolecules" title=" actives biomolecules"> actives biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activities" title=" biological activities"> biological activities</a> </p> <a href="https://publications.waset.org/abstracts/161262/new-evaluation-of-the-richness-of-cactus-opuntia-in-active-biomolecules-and-their-use-in-agri-food-cosmetic-and-pharmaceutical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2547</span> Effect of Roasting Treatment on Milling Quality, Physicochemical, and Bioactive Compounds of Dough Stage Rice Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chularat%20Leewuttanakul">Chularat Leewuttanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Khanitta%20Ruttarattanamongkol"> Khanitta Ruttarattanamongkol</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasivimon%20Chittrakorn"> Sasivimon Chittrakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice during grain development stage is a rich source of many bioactive compounds. Dough stage rice contains high amounts of photochemical and can be used for rice milling industries. However, rice grain at dough stage had low milling quality due to high moisture content. Thermal processing can be applied to rice grain for improving milled rice yield. This experiment was conducted to study the chemical and physic properties of dough stage rice grain after roasting treatment. Rice were roasted with two different methods including traditional pan roasting at 140 °C for 60 minutes and using the electrical roasting machine at 140 °C for 30, 40, and 50 minutes. The chemical, physical properties, and bioactive compounds of brown rice and milled rice were evaluated. The result of this experiment showed that moisture content of brown and milled rice was less than 10 % and amylose contents were in the range of 26-28 %. Rice grains roasting for 30 min using electrical roasting machine had high head rice yield and length and breadth of grain after milling were close to traditional pan roasting (p > 0.05). The lightness (L*) of rice did not affect by roasting treatment (p > 0.05) and the a* indicated the yellowness of milled rice was lower than brown rice. The bioactive compounds of brown and milled rice significantly decreased with increasing of drying time. Brown rice roasted for 30 minutes had the highest of total phenolic content, antioxidant activity, α-tocopherol, and ɤ-oryzanol content. Volume expansion and elongation of cooked rice decreased as roasting time increased and quality of cooked rice roasted for 30 min was comparable to traditional pan roasting. Hardness of cooked rice as measured by texture analyzer increased with increasing roasting time. The results indicated that rice grains at dough stage, containing a high amount of bioactive compounds, have a great potential for rice milling industries and the electrical roasting machine can be used as an alternative to pan roasting which decreases processing time and labor costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cooked%20rice" title=" cooked rice"> cooked rice</a>, <a href="https://publications.waset.org/abstracts/search?q=dough%20stage%20rice%20grain" title=" dough stage rice grain"> dough stage rice grain</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20development" title=" grain development"> grain development</a>, <a href="https://publications.waset.org/abstracts/search?q=roasting" title=" roasting"> roasting</a> </p> <a href="https://publications.waset.org/abstracts/91670/effect-of-roasting-treatment-on-milling-quality-physicochemical-and-bioactive-compounds-of-dough-stage-rice-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2546</span> GC-MS Analysis of Bioactive Compounds in the Ethanolic Extract of Nest Material of Mud Wasp, Sceliphron caementarium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Susheela">P. Susheela</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Rosaline"> Mary Rosaline</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Radha"> R. Radha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was designed to determine the bioactive compounds present in the nest samples of the mud dauber wasp, Sceliophron caementarium. Insects and insect-based products have been used for the treatment of various ailments from a very long time. It has been found that all over the world including the western societies and the indigenous populations, the usage of insect-based medicine plays an important role in various healing practices and magic rituals. Studies on the therapeutic usage of insects are negligible when compared to plants, the. In the present scenario, it is important to explore bioactive compounds from natural sources rather than depending on synthetic drugs that have adverse effects on human body. Keeping this in view, an attempt was made to analyze and identify bioactive components from the nest sample of the mud dauber wasp, Sceliophron caementarium. The nests of the mud dauber wasp, Sceliophron caementarium were collected from Coimbatore, Tamil Nadu, India. The nest sample was extracted with ethanol for 6-8 hours using Soxhlet apparatus. The final residue was obtained by filtering the extract through Whatman filter paper No.41. The GCMS analysis of the nest sample was performed using Perkin Elmer Elite - 5 capillary column. The resultant compounds were compared with the database of National Institute Standard and Technology (NIST), WILEY8, FAME. The GC-MS analysis of the concentrated ethanol extract revealed the presence of eight constituents like Methylene chloride, Eicosanoic acid, 1, 1’:3’, 1’’-Terphenyl, 5'-Phenyl, Di-N-Decylsulfone, 1, 2-Bis (Trimethylsilyl) Benzene, Androstane-11, 17-Dione, 3-[(Trimethylsilyl) Oxy]-, 17-[O-(Phenylmethyl) O. Most of the identified compounds were reported as having biological activities viz. anti-inflammatory, antibacterial and antifungal properties that can be of pharmaceutical importance and further study of these isolated compounds may prove their medicinal importance in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sceliophron%20caementarium" title="Sceliophron caementarium">Sceliophron caementarium</a>, <a href="https://publications.waset.org/abstracts/search?q=Gas%20chromatography-mass%20spectrometry" title=" Gas chromatography-mass spectrometry"> Gas chromatography-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20extract" title=" ethanol extract"> ethanol extract</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a> </p> <a href="https://publications.waset.org/abstracts/70360/gc-ms-analysis-of-bioactive-compounds-in-the-ethanolic-extract-of-nest-material-of-mud-wasp-sceliphron-caementarium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2545</span> Preliminary Investigations on the Development and Production of Topical Skin Ointments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Igwe">C. C. Igwe</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Ogbuadike"> C. E. Ogbuadike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bryophyllum pinnatum is a tropical plant used by the indigenous people of South-East Nigeria as a medicinal plant for the treatment of skin ulcer and is being explored for the production of topical herbal skin ointments. This preliminary study involves the extraction and characterization of bioactive compounds from this plant for anti-skin ulcer, antimicrobial, and antioxidant activity, as well as formulating topical herbal medications for skin ulcer. Thus extraction, percentage yield, moisture content analysis, solvent-solvent fractionation and GC-MS has been carried out on processed leaves sample of B. pinnatum. GC-MS analysis revealed the presence of seven compounds, namely: 1-Octene, 3, 7-dimethyl, 1-Tridecene, E-14-Hexadecenal, 3-Eicosene (E)-, 11-Tricosene, 1-Tridecyn-4-ol and Butanamide. Standardized herbal products have been produced from B. pinnatum extracts. The products are being evaluated for safety and efficacy tests to ascertain their toxicity (if any), anti-ulcer, antibiotic and antioxidant properties. Further work is on-going to characterize the bioactive principles present in the plant extracts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial" title="anti-microbial">anti-microbial</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=bryophyllum%20pinnatum" title=" bryophyllum pinnatum"> bryophyllum pinnatum</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20ulcer" title=" skin ulcer"> skin ulcer</a> </p> <a href="https://publications.waset.org/abstracts/167973/preliminary-investigations-on-the-development-and-production-of-topical-skin-ointments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2544</span> Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandrs%20Kovalcuks">Aleksandrs Kovalcuks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this study was to determine which factor, laying hen housing system or hen diet, has a primary influence on bioactive compound content in egg yolk oil. The egg yolk oil was extracted from eggs obtained from 4 different hen housing systems: cage, barn and two groups of free range. All hens were fed with commercially produced compound feed except one group of free range hens which get free diet – pastured hens. Extracted egg yolk oils were analyzed for fatty acids, oil soluble vitamins and β-carotene content. α-tocopherol, ergocalcipherol and polyunsaturated fatty acid content in egg yolk oil was higher from eggs obtained from all housing systems where hens were fed with commercial compound feed. β-carotene and retinol content in egg yolk oils from free range free diet eggs was significantly (p>0.05) higher that from other eggs because hens have access to green forage. Hen physical activity in free range housing systems decreases content of some bioactive compound in egg yolk oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20yolk%20oil" title="egg yolk oil">egg yolk oil</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamins" title=" vitamins"> vitamins</a>, <a href="https://publications.waset.org/abstracts/search?q=caged%20eggs" title=" caged eggs"> caged eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20range" title=" free range"> free range</a> </p> <a href="https://publications.waset.org/abstracts/21132/comparison-of-bioactive-compound-content-in-egg-yolk-oil-extracted-from-eggs-obtained-from-different-laying-hen-housing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2543</span> Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20M.%20Abouzeed%20A.%20Elfahem">Yousef M. Abouzeed A. Elfahem</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zgheel"> F. Zgheel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Saad"> M. A. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20O.%20Ahmed"> Mohamed O. Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera%20raisin" title="Vitis vinifera raisin">Vitis vinifera raisin</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity "> antibacterial activity </a> </p> <a href="https://publications.waset.org/abstracts/18882/identification-of-phenolic-compounds-with-antibacterial-activity-in-raisin-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2542</span> Enhancement of Biomass and Bioactive Compounds in Kale Subjected to UV-A LED Lights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Hui%20Lee">Jin-Hui Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Min%20Oh"> Myung-Min Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of temporary abiotic stresses before crop harvest is a potential strategy to enhance phytochemical content. The objective of this study was to determine the effect of various UV-A LED lights on the growth and content of bioactive compounds in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were cultivated in a plant factory with artificial lighting (air temperature of 20℃, relative humidity of 60%, photosynthesis photon flux density (PPFD) of 125 µmol·m⁻²·s⁻¹) for 3 weeks. Kale plants were irradiated by four types of UV-A LEDs (peak wavelength; 365, 375, 385, and 395 nm) with 30 W/m² for 7 days. As a result, image chlorophyll fluorescence (Fv/Fm) value of kale leaves was lower as the UV-A LEDs peak wavelength was shorter. Fresh and dry weights of shoots and roots of kale plants were significantly higher in the plants under UV-A than the control at 7 days of treatment. In particular, the growth was significantly increased with a longer peak wavelength of the UV-A LEDs. The results of leaf area and specific leaf weight showed a similar pattern with those of growth characteristics. Chlorophyll content was highest in kale leaves subjected to UV-A LEDs with the peak wavelength of 395 nm at 3 days of treatment compared with the control. Total phenolic contents of UV-A LEDs with the peak wavelength of 395 nm at 5 and 6 days of treatment were 44% and 47% higher than those of the control, respectively. Antioxidant capacity showed almost the same pattern as the results of total phenol content. The activity of phenylalanine ammonia-lyase was approximately 11% and 8% higher in the UV-A LEDs with the peak wavelength of 395 nm compared to the control at 5 and 6 days of treatment, respectively. Our results imply that the UV-A LEDs with relative longer peak wavelength were effective to improve growth as well as the content of bioactive compounds of kale plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=Kale" title=" Kale"> Kale</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-A%20LEDs" title=" UV-A LEDs"> UV-A LEDs</a> </p> <a href="https://publications.waset.org/abstracts/93190/enhancement-of-biomass-and-bioactive-compounds-in-kale-subjected-to-uv-a-led-lights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2541</span> Antioxidant and Anti-Inflammatory Activities of Bioactive Compounds Derived from Thunbergia laurifolia Aqueous Leave Extract </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marasri%20Junsi">Marasri Junsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunisa%20Siripongvutikorn"> Sunisa Siripongvutikorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chutha%20Takahashi%20Yupanqui"> Chutha Takahashi Yupanqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Worrapong%20Usawakesmanee"> Worrapong Usawakesmanee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thunbergia laurifolia has been used for folklore medicine purposes and consumed in the form of herbal tea in Thailand since ancient times. To evaluate the bioactive compounds of aqueous leave extract possessed antioxidant and anti-inflammatory activities. The antioxidant activities were examined by total extractable phenolic content (TPC), total extractable flavonoid content (TFC), ABTS radical scavenging, DPPH radical scavenging, FRAP reducing antioxidant power expressed as mg of gallic acid trolox and caffeic acid for the equivalents. Results indicated that the extract had high TPC and antioxidant activities. In addition, the HPLC-DAD analysis of phenolics and flavonoids indicated the presence of caffeic acid and rutin as bioactive compounds. Exposure of cells with the extract using nitric oxide (NO) production in RAW 264.7 murine macrophage cell line induced by lipopolysaccharide (LPS) was significantly reduced NO production and increased cell proliferation. The obtained results demonstrated that the extract contains a high potential to be used as anti-inflammatory and antioxidant substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thunbergia%20laurifolia" title="Thunbergia laurifolia">Thunbergia laurifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a>, <a href="https://publications.waset.org/abstracts/search?q=RAW264.7" title=" RAW264.7"> RAW264.7</a> </p> <a href="https://publications.waset.org/abstracts/51185/antioxidant-and-anti-inflammatory-activities-of-bioactive-compounds-derived-from-thunbergia-laurifolia-aqueous-leave-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2540</span> Antibiotic Potential of Bioactive Compounds from a Marine Streptomyces Isolated from South Pacific Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilaisa%20Kacivakanadina">Ilaisa Kacivakanadina</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20Viulu"> Samson Viulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Carte"> Brad Carte</a>, <a href="https://publications.waset.org/abstracts/search?q=Katy%20Soapi"> Katy Soapi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two bioactive compounds namely Vulgamycin (also known as enterocin A) and 5-deoxyenterocin were purified from a marine bacterial strain 1903. Strain 1903 was isolated from marine sediments collected from the Solomon Islands. Morphological features of strain 1903 showed that it belongs to the genus Streptomyces. The two secondary metabolites were extracted using EtOAc and purified by chromatographic methods using EtOAc and hexane solvents. Mass spectrum and NMR data of pure compounds were used to elucidate the chemical structures. In this study, results showed that both compounds were strongly active against Wild Type Staphylococcus aureus (WTSA) (MIC < 1 µg/mL) and in Brine shrimp assays (BSA) (MIC < 1 µg/mL). 5-deoxyenterocin was also active against Rifamycin resistant Staphylococcus aureus (RRSA) (MIC, 250 µg/mL) while vulgamycin showed bioactivity against Methicillin resistant Staphylococcus aureus (MRSA) (MIC 250 µg/mL). To the best of our knowledge, this is the first study that showed the bio-activity of 5-deoxyenterocin. This is also the first time that Vulgamycin has been reported to be active in a BSA. There has not been any mechanism of action studies for these two compounds against pathogens. This warrants further studies on their mechanism of action against microbial pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5-deoxyenterocin" title="5-deoxyenterocin">5-deoxyenterocin</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=brine%20shrimp%20assay%20%28BSA%29" title=" brine shrimp assay (BSA)"> brine shrimp assay (BSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=vulgamycin" title=" vulgamycin"> vulgamycin</a> </p> <a href="https://publications.waset.org/abstracts/79050/antibiotic-potential-of-bioactive-compounds-from-a-marine-streptomyces-isolated-from-south-pacific-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2539</span> Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandrs%20Kovalcuks">Aleksandrs Kovalcuks</a>, <a href="https://publications.waset.org/abstracts/search?q=Mara%20Duma"> Mara Duma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and &beta;-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol&rsquo;s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and &beta;-carotene, which became the main pigments of egg yolk oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title="cholesterol">cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20yolk%20oil" title=" egg yolk oil"> egg yolk oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lutein" title=" lutein"> lutein</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipids" title=" phospholipids"> phospholipids</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/41935/distribution-of-phospholipids-cholesterol-and-carotenoids-in-two-solvent-system-during-egg-yolk-oil-solvent-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2538</span> The Collagen and Glycosaminoglycnas Isolated from Salmo Salar Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beata%20Kaczmarek-Szczepa%C5%84ska">Beata Kaczmarek-Szczepańska</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidia%20Zasada"> Lidia Zasada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine collagens such as fish skin, bone, cartilage, and scales, including both marine vertebrates and invertebrates sources, are more bioavailable compared to bovine or porcine collagen and have a higher absorption capability and more rapid bloodstream circulation due to their low molecular weight and small particle size. Fish skin may be used as a source of bioactive compounds. The advantage is that fish skin is a by-product of the food industry. The subject of the study is a lyophilizate consisting of a mixture of compounds from the group of glycosaminoglycans and collagen obtained as a result of processing fish skins. Bioactive compounds may find biomedical use in the production of dressing materials for wounds or in tissue engineering for the production of scaffolds for cells. Collagen and glycosaminoglycans were isolated from Salmo salar skin. The final mixture was obtained by the freeze-drying method. In the obtained lyophilizate, the content of amino acids was studied as well as the presence of polysaccharides. The studies showed the presence of glycine, proline, and hydroxyproline, which are the main amino acids of collagen. The HPLC analysis showed the presence of glucose which is a product of polysaccharides hydrolyzation and then reduction of glucuronic acid. It may be assumed that the lyophilizate contains both collagen and polysaccharide, which is probably hyaluronic acid. Acknowledgment: This work was carried out as a result of research project no. TANGO-V-A/0020/2021 financed by the National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosaminoglycans" title=" glycosaminoglycans"> glycosaminoglycans</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20skin" title=" fish skin"> fish skin</a> </p> <a href="https://publications.waset.org/abstracts/153105/the-collagen-and-glycosaminoglycnas-isolated-from-salmo-salar-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2537</span> Investigating Selected Traditional African Medicinal Plants for Anti-fibrotic Potential: Identification and Characterization of Bioactive Compounds Through Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20V.%20Manzane">G. V. Manzane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Modise"> S. J. Modise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uterine fibroids, also known as leiomyomas or myomas, are non-cancerous growths that develop in the muscular wall of the uterus during the reproductive years. The cause of uterine fibroids includes hormonal, genetic, growth factors, and extracellular matrix factors. Common symptoms of uterine fibroids include heavy and prolonged menstrual bleeding which can lead to a high risk of anemia, lower abdominal pains, pelvic pressure, infertility, and pregnancy loss. The growth of this tumor is a concern because of its negative impact on women’s health and the increase in their economic burden. Traditional medicinal plants have long been used in Africa for their potential therapeutic effects against various ailments. In this study, we aimed to identify and characterize bioactive compounds from selected African medicinal plants with potential anti-fibrotic properties using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. Two medicinal plant species known for their traditional use in fibrosis-related conditions were selected for investigation. Aqueous extracts were prepared from the plant materials, and FTIR analysis was conducted to determine the functional groups present in the extracts. GCMS analysis was performed to identify the chemical constituents of the extracts. The FTIR analysis revealed the presence of various functional groups, such as phenols, flavonoids, terpenoids, and alkaloids, known for their potential therapeutic activities. These functional groups are associated with antioxidant, anti-inflammatory, and anti-fibrotic properties. The GCMS analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic compounds, which are known for their pharmacological activities. The discovery of bioactive compounds in African medicinal plants that exhibit anti-fibrotic effects, opens up promising avenues for further research and development of potential treatments for fibrosis. This suggests the potential of these plants as a valuable source of novel therapeutic agents for treating fibrosis-related conditions. In conclusion, our study identified and characterized bioactive compounds from selected African medicinal plants using FTIR and GCMS analysis. The presence of compounds with known antifibrotic properties suggests that these plants hold promise as a potential source of natural products for the development of novel anti-fibrotic therapies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uterine%20fibroids" title="uterine fibroids">uterine fibroids</a>, <a href="https://publications.waset.org/abstracts/search?q=african%20medicinal%20plants" title=" african medicinal plants"> african medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=identify%20and%20characterized" title=" identify and characterized"> identify and characterized</a> </p> <a href="https://publications.waset.org/abstracts/168625/investigating-selected-traditional-african-medicinal-plants-for-anti-fibrotic-potential-identification-and-characterization-of-bioactive-compounds-through-fourier-transform-infrared-spectroscopy-and-gas-chromatography-mass-spectrometry-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2536</span> Quantitative Analysis of the High-Value Bioactive Components of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lara%20Marie%20Pangan%20Lo">Lara Marie Pangan Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Im%20Chung"> Soo Im Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Cheng%20Zhang"> Yao Cheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyue%20Jin"> Xingyue Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Young%20Kang"> Mi Young Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being the world’s most consumed grain crop, rice (Oryza sativa L.) demands’ have increase and this prompted the development of new rice cultivars with high bio-functional properties than the commonly used white rice. Ordinary rice variety is already known to be a potential source for a number of nutritional as well as bioactive compounds. To further enhance the rice’s nutritive values, germination is done in addition to making it more tasty and palatable when cooked. Pigmented rice, on the other hand, has become increasingly popular in the recent years for their greater antioxidant potential and other nutraceutical properties which can help alleviate the occurrence of the increasing incidence of metabolic diseases. Combining these two (2) parameters, this research study is sought to quantitatively determine the pre-germinated and germinated quantities of the major bioactive compounds of South Korea’s newly developed purplish pigmented rice grain cultivar Superjami (SJ) and red pigmented rice grain Superhongmi (SH) and compare them against the non-pigmented Normal Brown (NB) rice variety. Powdered rice grain cultivars were subjected to 72-hour germination period and the quantities of GABA, γ-oryzanol, ferulic acid, tocopherol and tocotrienol homologues were compared against their pre-germinated condition using γ- amino butyric acid (GABA) analysis and High Performance Liquid Chromatography (HPLC). Results revealed the effectiveness of germination in enhancing the bioactive components in all rice samples. GABA contents in germinated rice cultivars increased by more than 10-fold following the order: SJ >SH >NB. In addition, purple rice variety (SJ) has higher total γ-oryzanol and ferulic acid contents which increased by > 2-fold after germination followed by the red cultivar SH then the control, NB. Germinated varieties also possess higher total tocotrienol content than their pre-germinated state. As for the total tocopherol content, SJ has higher quantity, but the red-pigmented SH (0.16 mg/kg) is shown to have lower total tocopherol content than the control rice NB (0.86 mg/kg). However, all tocopherol and tocotrienol homologues were present only in small amounts ( < 3.0 mg/kg) in all pre-germinated and germinated samples. In general, all of the analyzed pigmented rice cultivars were found to possess higher bioactive compounds than the control NB rice variety. Also, regardless of their strain, germinated rice samples have higher bioactive compounds than their pre-germinated counterparts. This only shows the effectiveness of germinating rice in enhancing bioactive constituents. Overall, these results suggest the potential of the pigmented rice varieties as natural source of nutraceuticals in bio-functional food development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated%20rice" title=" germinated rice"> germinated rice</a>, <a href="https://publications.waset.org/abstracts/search?q=superhongmi" title=" superhongmi"> superhongmi</a>, <a href="https://publications.waset.org/abstracts/search?q=superjami" title=" superjami"> superjami</a> </p> <a href="https://publications.waset.org/abstracts/31151/quantitative-analysis-of-the-high-value-bioactive-components-of-pre-germinated-and-germinated-pigmented-rice-oryza-sativa-l-cv-superjami-and-superhongmi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2535</span> Bioactive Compounds Characterization of Cereal-Based Porridge Enriched with Cirina forda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunle%20Oni">Kunle Oni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the bioactivity potentials of porridge from yellow maize and malted sorghum enriched with Cirinaforda.All the samples were analyzed using standard methods.Results showed that the highest value 217.03μmolTEAC/100g, 43.3 mmol Fe2+ /100g, and 35.56% for DPPH, FRAP and TBARS respectively were reported in sample 50FYM+20MS+30CF, while the lowest value 146.10μmolTEAC/100, 20.18±0.11 mmol Fe2+/100g and 13.25% for DPPH, FRAP and TBARS were reported in the control sample.The oxalate and tannin contents were lowest in sample 50FYM+20MS+30CFbutOxalate was highest in the control sample while tannin was highest in sample 60FYM+20MS+20CF.The phytate content was highest in the 60FYM+20MS+20CF mixture (2.32 mg/100g) and lowest in the control (100% FYM) porridge (2.20 mg/100g).The result also showed that the total phenolic content was highest in the 60FYM+20MS+20CF mixture (318.28 mg GAE/100g) and lowest in the50FYM+30MS+20CF mixture (264.18mg GAE/100g).The total flavonoid content had the50FYM+20MS+30CFmixture having the highest content (189.31mg RE/100g) and the 60FYM+20MS+20CF mixture having the lowest (90.10mg RE/100g). The enrichment of the porridge with C. fordaincreased the concentration of various bioactive compounds compared to the control sample. The identified compounds cinnamic acid, methyl ester, 10-Methyl-E-11-tridecen-1-ol propionate, methaqualone,3-(2-Hydroxy-6-methylphenyl)-4(3H)-quinazolinone, and oleic acid <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cereal-based%20porridge" title=" cereal-based porridge"> cereal-based porridge</a>, <a href="https://publications.waset.org/abstracts/search?q=Cirina%20forda" title=" Cirina forda"> Cirina forda</a> </p> <a href="https://publications.waset.org/abstracts/183185/bioactive-compounds-characterization-of-cereal-based-porridge-enriched-with-cirina-forda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2534</span> Isolation and Identification of Cytotoxic Compounds from Fruticose Lichen Roccella montagnei, and It’s in Silico Docking Study against CDK-10</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Mishra">Tripti Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipra%20Shukla"> Shipra Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Meena"> Sanjeev Meena</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Ruchi%20Singh"> Ruchi Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Pal"> Mahesh Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Upreti"> D. K. Upreti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipak%20Datta"> Dipak Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roccella montagnei belongs to lichen family Roccelleceae growing luxuriantly along the coastal regions of India. As Roccella has been shown to be bioactive, we prepared methanolic extract and assessed its anticancer potential. The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as Colon (DLD-1, SW-620), Breast (MCF-7), Head and Neck (FaDu). This prompted us to isolate bioactive compounds through column chromatography. Two compounds Roccellic acid and Everninic acid have been isolated, out of which Everninic acid is reported for the first time. Both the compounds have been tested for in vitro cytotoxic activity in which Roccellic acid showed strong anticancer activity as compared to the Everninic acid. CDK-10 (Cyclin-dependent kinase) contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases, therefore, constitute biomarkers of proliferation and attractive pharmacological targets for the development of anticancer therapeutics. Therefore both the isolated compounds were tested for in silico molecular docking study against CDK-10 isomer enzyme to support the cytotoxic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=everninic%20acid" title=" everninic acid"> everninic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=roccellic%20acid" title=" roccellic acid"> roccellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20montagnei" title=" R. montagnei"> R. montagnei</a> </p> <a href="https://publications.waset.org/abstracts/56792/isolation-and-identification-of-cytotoxic-compounds-from-fruticose-lichen-roccella-montagnei-and-its-in-silico-docking-study-against-cdk-10" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2533</span> Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Bahar%20Hashemi">Seyedeh Bahar Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rahimi"> Alireza Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Arjmand"> Mehdi Arjmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20deep%20eutectic%20solvents" title="natural deep eutectic solvents">natural deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a> </p> <a href="https://publications.waset.org/abstracts/162294/extraction-of-nutraceutical-bioactive-compounds-from-the-native-algae-using-solvents-with-a-deep-natural-eutectic-point-and-ultrasonic-assisted-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2532</span> Hybrid Molecules: A Promising Approach to Design Potent Antimicrobial and Anticancer Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blessing%20Atim%20Aderibigbe">Blessing Atim Aderibigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of amine/ester-linked hybrid compounds containing pharmacophores, such as ursolic acid, oleanolic acid, ferrocene and bisphosphonates, were synthesized in an attempt to develop potent antibacterial and anticancer agents. Their structures were analyzed and confirmed using Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, and mass spectroscopy. All the synthesized hybrid compounds were evaluated for their antibacterial activities against eleven selected bacterial strains using a serial dilution method. Some of the compounds displayed significant antibacterial activity against most of the bacterial and fungal strains. In addition, the in vitro cytotoxicity of these compounds was also performed against selected cancer cell lines. Some of the compounds were also found to be more active than their parent compounds, revealing the efficacy of designing hybrid molecules using plant-based bioactive agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title="ursolic acid">ursolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20drugs" title=" hybrid drugs"> hybrid drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanolic%20acid" title=" oleanolic acid"> oleanolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=bisphosphonates" title=" bisphosphonates"> bisphosphonates</a> </p> <a href="https://publications.waset.org/abstracts/168291/hybrid-molecules-a-promising-approach-to-design-potent-antimicrobial-and-anticancer-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2531</span> Antimicrobial Activity of Sour Cherry Pomace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonja%20Djilas">Sonja Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Veli%C4%87anski"> Aleksandra Velićanski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragoljub%20Cvetkovi%C4%87"> Dragoljub Cvetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sini%C5%A1a%20Markov"> Siniša Markov</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Lon%C4%8Dar"> Eva Lončar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20Vin%C4%8Di%C4%87"> Milica Vinčić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to high content of bioactive compounds, sour cherry possesses antioxidant and antimicrobial activity. Additionally, waste material from industrial processing of sour cherry is also a good source of bioactive compounds. The aim of this study was to screen the antimicrobial activity and determine the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) of sour cherry pomace extract. Tested strains were Gram-negative bacteria (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028 and wild isolates Escherichia coli and Salmonella sp.), Gram-positive bacteria (Staphylococcus aureus ATCC 11632, Bacillus cereus ATCC 10876 and wild isolates Staphylococcus saprophyticus and Bacillus sp.) and yeasts (Saccharomyces cerevisiae 112, Hefebank Weihenstephan and Candida albicans ATCC 10231). Antimicrobial activity was tested by disc-diffusion method and agar-well diffusion method. MIC and MBC were determined by microdilution method. Screening tests showed that Gram-negative bacteria were resistant to tested extract, with exception of Salmonella typhimurium and Salmonella sp. for which only zones of reduced growth appeared. However, Gram-positive bacteria were more sensitive where the highest clear zones appeared with 100 µl of extract applied. There was no activity against tested yeasts. MIC and MBC values were in the range 3.125-37.5 mg/ml and 6.25-100 mg/ml, respectively. The most susceptible strain was Staphylococcus aureus while the most resistant was Bacillus sp. where MBC was not found in tested concentration range. Sour cherry pomace possesses high antibacterial potential, which indicates that this waste material is a promising source of bioactive compounds and could be used as a functional food ingredient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=sour%20cherry" title=" sour cherry"> sour cherry</a>, <a href="https://publications.waset.org/abstracts/search?q=pomace" title=" pomace"> pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a> </p> <a href="https://publications.waset.org/abstracts/74750/antimicrobial-activity-of-sour-cherry-pomace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2530</span> Recovery and Εncapsulation of Μarine Derived Antifouling Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Stramarkou">Marina Stramarkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Papadaki"> Sofia Papadaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kaloupi"> Maria Kaloupi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Batzakas"> Ioannis Batzakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/69052/recovery-and-encapsulation-of-marine-derived-antifouling-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bioactive%20naturally-occrring%20compounds&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10