CINXE.COM

Search results for: swine

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: swine</title> <meta name="description" content="Search results for: swine"> <meta name="keywords" content="swine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="swine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="swine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 39</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: swine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> iCount: An Automated Swine Detection and Production Monitoring System Based on Sobel Filter and Ellipse Fitting Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jocelyn%20B.%20Barbosa">Jocelyn B. Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Angeli%20L.%20Magbaril"> Angeli L. Magbaril</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariel%20T.%20Sabanal"> Mariel T. Sabanal</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Paul%20T.%20Galario"> John Paul T. Galario</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikka%20P.%20Baldovino"> Mikka P. Baldovino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of technology has become ubiquitous in different areas of business today. With the advent of digital imaging and database technology, business owners have been motivated to integrate technology to their business operation ranging from small, medium to large enterprises. Technology has been found to have brought many benefits that can make a business grow. Hog or swine raising, for example, is a very popular enterprise in the Philippines, whose challenges in production monitoring can be addressed through technology integration. Swine production monitoring can become a tedious task as the enterprise goes larger. Specifically, problems like delayed and inconsistent reports are most likely to happen if counting of swine per pen of which building is done manually. In this study, we present iCount, which aims to ensure efficient swine detection and counting that hastens the swine production monitoring task. We develop a system that automatically detects and counts swine based on Sobel filter and ellipse fitting model, given the still photos of the group of swine captured in a pen. We improve the Sobel filter detection result through 8-neigbhorhood rule implementation. Ellipse fitting technique is then employed for proper swine detection. Furthermore, the system can generate periodic production reports and can identify the specific consumables to be served to the swine according to schedules. Experiments reveal that our algorithm provides an efficient way for detecting swine, thereby providing a significant amount of accuracy in production monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20swine%20counting" title="automatic swine counting">automatic swine counting</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20detection" title=" swine detection"> swine detection</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20production%20monitoring" title=" swine production monitoring"> swine production monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipse%20fitting%20model" title=" ellipse fitting model"> ellipse fitting model</a>, <a href="https://publications.waset.org/abstracts/search?q=sobel%20filter" title=" sobel filter"> sobel filter</a> </p> <a href="https://publications.waset.org/abstracts/62074/icount-an-automated-swine-detection-and-production-monitoring-system-based-on-sobel-filter-and-ellipse-fitting-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Detecting the Blood of Femoral and Carotid Artery of Swine Using Photoacoustic Tomography in-vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Lee">M. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Park"> S. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yu"> S. M. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Jo"> H. S. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Song"> C. G. Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging is the imaging technology that combines the optical imaging with ultrasound. It also provides the high contrast and resolution due to optical and ultrasound imaging, respectively. For these reasons, many studies take experiment in order to apply this method for many diagnoses. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer. In this study, we conduct the experiment using swine and detect the blood of carotid artery and femoral artery. We measured the blood of femoral and carotid artery of swine and reconstructed the image using 950nm due to the HbO₂ absorption coefficient. The photoacoustic image is overlaid with ultrasound image in order to match the position. In blood of artery, major composition of blood is HbO₂. In this result, we can measure the blood of artery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title="photoacoustic tomography">photoacoustic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20artery" title=" swine artery"> swine artery</a>, <a href="https://publications.waset.org/abstracts/search?q=carotid%20artery" title=" carotid artery"> carotid artery</a>, <a href="https://publications.waset.org/abstracts/search?q=femoral%20artery" title=" femoral artery"> femoral artery</a> </p> <a href="https://publications.waset.org/abstracts/92983/detecting-the-blood-of-femoral-and-carotid-artery-of-swine-using-photoacoustic-tomography-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Surveillance for African Swine Fever and Classical Swine Fever in Benue State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Asambe">A. Asambe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20B.%20Sackey"> A. K. B. Sackey</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Tekdek"> L. B. Tekdek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A serosurveillance study was conducted to detect the presence of antibodies to African swine fever virus (ASFV) and Classical swine fever virus in pigs sampled from piggeries and Makurdi central slaughter slab in Benue State, Nigeria. 416 pigs from 74 piggeries across 12 LGAs and 44 pigs at the Makurdi central slaughter slab were sampled for serum. The sera collected were analysed using Indirect Enzyme Linked Immunosorbent Assay (ELISA) test kit to test for antibodies to ASFV, while competitive ELISA test kit was used to test for antibodies to CSFV. Of the 416 pigs from piggeries and 44 pigs sampled from the slaughter slab, seven (1.7%) and six (13.6%), respectively, tested positive to ASFV antibodies and was significantly associated (p &lt; 0.0001). Out of the 12 LGAs sampled, Obi LGA had the highest ASFV antibody detection rate of (4.8%) and was significantly associated (p &lt; 0.0001). None of the samples tested positive to CSFV antibodies. The study concluded that antibodies to CSFV were absent in the sampled pigs in piggeries and at the Makurdi central slaughter slab in Benue State, while antibodies to ASFV were present in both locations; hence, the need to keep an eye open for CSF too since both diseases may pose great risk in the study area. Further studies to characterise the ASFV circulating in Benue State and investigate the possible sources is recommended. Routine surveillance to provide a comprehensive and readily accessible data base to plan for the prevention of any fulminating outbreak is also recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20swine%20fever" title="African swine fever">African swine fever</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20swine%20fever" title=" classical swine fever"> classical swine fever</a>, <a href="https://publications.waset.org/abstracts/search?q=piggery" title=" piggery"> piggery</a>, <a href="https://publications.waset.org/abstracts/search?q=slaughter%20slab" title=" slaughter slab"> slaughter slab</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a> </p> <a href="https://publications.waset.org/abstracts/79428/surveillance-for-african-swine-fever-and-classical-swine-fever-in-benue-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Reliability of Swine Estrous Detector Probe in Dairy Cattle Breeding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Leigh">O. O. Leigh</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Agbugba"> L. C. Agbugba</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Oyewunmi"> A. O. Oyewunmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Ibiam"> A. E. Ibiam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassan"> A. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accuracy of insemination timing is a key determinant of high pregnancy rates in livestock breeding stations. The estrous detector probes are a recent introduction into the Nigerian livestock farming sector. Many of these probes are species-labeled and they measure changes in the vaginal mucus resistivity (VMR) during the stages of the estrous cycle. With respect to size and shaft conformation, the Draminski® swine estrous detector probe (sEDP) is quite similar to the bovine estrous detector probe. We investigated the reliability of the sEDP at insemination time on two farms designated as FM A and FM B. Cows (Bunaji, n=20 per farm) were evaluated for VMR at 16th h post standard OvSynch protocol, with concurrent insemination on FM B only. The difference in the mean VMR between FM A (221 ± 24.36) Ohms and FM B (254 ± 35.59) Ohms was not significant (p > 0.05). Sixteen cows (80%) at FM B were later (day 70) confirmed pregnant via rectal palpation and calved at term. These findings suggest consistency in VMR evaluated with sEDP at insemination as well as a high predictability for VMR associated with good pregnancy rates in dairy cattle. We conclude that Draminski® swine estrous detector probe is reliable in determining time of insemination in cattle breeding stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle" title="dairy cattle">dairy cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=insemination" title=" insemination"> insemination</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20estrous%20probe" title=" swine estrous probe"> swine estrous probe</a>, <a href="https://publications.waset.org/abstracts/search?q=vaginal%20mucus%20resistivity" title=" vaginal mucus resistivity"> vaginal mucus resistivity</a> </p> <a href="https://publications.waset.org/abstracts/108250/reliability-of-swine-estrous-detector-probe-in-dairy-cattle-breeding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanh%20Lovanh">Nanh Lovanh</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Loughrin"> John Loughrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimberly%20Cook"> Kimberly Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Silva"> Phil Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung-Taek%20Oh"> Byung-Taek Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=windrow" title="windrow">windrow</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20manure" title=" swine manure"> swine manure</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrous%20oxide" title=" nitrous oxide"> nitrous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=fluxes" title=" fluxes"> fluxes</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/9615/effect-of-windrow-management-on-ammonia-and-nitrous-oxide-emissions-from-swine-manure-composting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Genome of Bio-Based Construction Adhesives and Complex Rheological Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellie%20Fini">Ellie Fini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahour%20Parast"> Mahour Parast</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Oldham"> Daniel Oldham</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Hosseinnezhad"> Shahrzad Hosseinnezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the relationship between molecular species of four different bio-based adhesives (made from Swine Manure, Miscanthus Pellet, Corn Stover, and Wood Pellet) and their rheological behavior before and after they undergo extensive oxidative aging. To study the effect of oxidative aging on the chemical structure of bio-adhesives, Infrared Attenuated Total Reflectance Spectroscopy (Fourier transform infrared) was utilised. In addition, a Drop Shape Analyser, Rotational Viscometer, and Dynamic Shear Rheometer were used to evaluate the surface properties and rheological behaviour of each bio-adhesive. Overall, bio-adhesives were found to be significantly different in terms of their ageing characteristics. Accordingly, their surface and rheological properties were found to be ranked differently before and after ageing. The results showed that the bio-adhesive from swine manure is less susceptible to aging compared to plant-based bio-oils. This can be further attributed to the chemical structure and the high lipid contents of the bio-adhesive from swine manure, making it less affected by oxidative ageing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesive" title="bio-adhesive">bio-adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-mass" title=" bio-mass"> bio-mass</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20genome" title=" material genome"> material genome</a> </p> <a href="https://publications.waset.org/abstracts/55277/genome-of-bio-based-construction-adhesives-and-complex-rheological-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Sanitary Measures in Piggeries, Awareness and Risk Factors of African Swine Fever in Benue State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Asambe">A. Asambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to determine the level of compliance with sanitary measures in piggeries, and awareness and risk factors of African swine fever in Benue State, Nigeria. Questionnaires were distributed to 74 respondents consisting of piggery owners and attendants in different piggeries across 12 LGAs to collect data for this study. Sanitary measures in piggeries were observed to be generally very poor, though respondents admitted being aware of ASF. Piggeries located within a 1 km radius of a slaughter slab (OR=9.2, 95% CI - 3.0-28.8), piggeries near refuse dump sites (OR=3.0, 95% CI - 1.0-9.5) and piggeries where farm workers wear their work clothes outside of the piggery premises (OR=0.2, 95% CI - 0.1-0.7) showed higher chances of ASFV infection and were significantly associated (p &lt; 0.0001), (p &lt; 0.05) and (p &lt; 0.01), and were identified as potential risk factors. The study concluded that pigs in Benue State are still at risk of an ASF outbreak. Proper sanitary and hygienic practices is advocated and emphasized in piggeries, while routine surveillance for ASFV antibodies in pigs in Benue State is strongly recommended to provide a reliable reference data base to plan for the prevention of any devastating ASF outbreak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20swine%20fever" title="African swine fever">African swine fever</a>, <a href="https://publications.waset.org/abstracts/search?q=awareness" title=" awareness"> awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=piggery" title=" piggery"> piggery</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitary%20measures" title=" sanitary measures"> sanitary measures</a> </p> <a href="https://publications.waset.org/abstracts/78718/sanitary-measures-in-piggeries-awareness-and-risk-factors-of-african-swine-fever-in-benue-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> African Swine Fewer Situation and Diagnostic Methods in Lithuania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simona%20Pileviciene">Simona Pileviciene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On 24th January 2014, Lithuania notified two primary cases of African swine fever (ASF) in wild boars. The animals were tested positive for ASF virus (ASFV) genome by real-time PCR at the National Reference Laboratory for ASF in Lithuania (NRL), results were confirmed by the European Union Reference Laboratory for African swine fever (CISA-INIA). Intensive wild and domestic animal monitoring program was started. During the period of 2014-2017 ASF was confirmed in two large commercial pig holding with the highest biosecurity. Pigs were killed and destroyed. Since 2014 ASF outbreak territory from east and south has expanded to the middle of Lithuania. Diagnosis by PCR is one of the highly recommended diagnostic methods by World Organization for Animal Health (OIE) for diagnosis of ASF. The aim of the present study was to compare singleplex real-time PCR assays to a duplex assay allowing the identification of ASF and internal control in a single PCR tube and to compare primers, that target the p72 gene (ASF 250 bp and ASF 75 bp) effectivity. Multiplex real-time PCR assays prove to be less time consuming and cost-efficient and therefore have a high potential to be applied in the routine analysis. It is important to have effective and fast method that allows virus detection at the beginning of disease for wild boar population and in outbreaks for domestic pigs. For experiments, we used reference samples (INIA, Spain), and positive samples from infected animals in Lithuania. Results show 100% sensitivity and specificity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20swine%20fewer" title="African swine fewer">African swine fewer</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20PCR" title=" real-time PCR"> real-time PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20boar" title=" wild boar"> wild boar</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20pig" title=" domestic pig"> domestic pig</a> </p> <a href="https://publications.waset.org/abstracts/93384/african-swine-fewer-situation-and-diagnostic-methods-in-lithuania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Salmonella enterica Typhimurium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Hyung%20Lee">Jun Hyung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20B.%20Guevarra"> Robin B. Guevarra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Ho%20Cho"> Jin Ho Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Ra%20Kim"> Bo-Ra Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Shin"> Jiwon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo%20Wan%20Kim"> Doo Wan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hwa%20Kim"> Young Hwa Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Song"> Minho Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeun%20Bum%20Kim"> Hyeun Bum Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salmonella is one of the most important swine pathogens, causing acute or chronic digestive diseases, such as enteritis. The acute form of enteritis is common in young pigs of 2-4 months of age. Salmonellosis in swine causes a huge economic burden to swine industry by reducing production. Therefore, it is necessary that swine industries should strive to decrease Salmonellosis in pigs in order to reduce economic losses. Thus, we tested three types of natural plant extracts(PEs) to evaluate antibacterial effects against Salmonella enterica Typhimurium isolated from the piglet with Salmonellosis. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour; then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.5cm, 2.7cm, and 2.8cm diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit Salmonella growth significantly after 4hours. The garlic essential oil retained the ability to inhibit Salmonella growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit Salmonella growth by all the tests. Even though further in-vivo tests will be needed to verify effects of garlic essential oil for the Salmonellosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Salmonellosis in swine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garlic%20essential%20oil" title="garlic essential oil">garlic essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pig" title=" pig"> pig</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonellosis" title=" salmonellosis"> salmonellosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enterica" title=" Salmonella enterica"> Salmonella enterica</a> </p> <a href="https://publications.waset.org/abstracts/87288/evaluation-of-the-antibacterial-effects-of-turmeric-oleoresin-capsicum-oleoresin-and-garlic-essential-oil-against-salmonella-enterica-typhimurium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Nejjari">Maria Nejjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Cloutier"> Michel Cloutier</a>, <a href="https://publications.waset.org/abstracts/search?q=Guylaine%20Talbot"> Guylaine Talbot</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Lanthier"> Martin Lanthier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaea" title="archaea">archaea</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=FISH" title=" FISH"> FISH</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/45624/fluorescence-in-situ-hybridization-fish-detection-of-bacteria-and-archaea-in-fecal-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Characterization of Practices among Pig Smallholders in Cambodia and Implications for Disease Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phalla%20Miech">Phalla Miech</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Leung"> William Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ty%20Chhay"> Ty Chhay</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Vor"> Sina Vor</a>, <a href="https://publications.waset.org/abstracts/search?q=Arata%20Hidano"> Arata Hidano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smallholder pig farms (SPFs) are prevalent in Cambodia but are vulnerable to disease impacts, as evidenced by the recent incursion of African swine fever into the region. As part of the ‘PigFluCam+’ project, we sought to provide an updated picture of pig husbandry and biosecurity practices among SPFs in south-central Cambodia. A multi-stage sampling design was adopted to select study districts and villages within four provinces: Phnom Penh, Kandal, Takeo, and Kampong Speu. Structured interviews were conductedbetween October 2020 - May 2021 among all consenting households keeping pigs in 16 target villages. Recruited SPFs (n=176) kept 6.8 pigs on average (s.d.=7.7), with most (88%) keeping cross-bred varieties of sows (77%), growers/finishers (39%), piglets/weaners (22%), and few keeping boars (5%). Chickens (83%) and waterfowl (56%) were commonly raised and could usually contact pigs directly (79%). Pigs were the primary source of household income for 28% of participants. While pigs tended to be housed individually (40%) or in groups (33%), 13% kept pigs free-ranging/tethered. Pigs were commonly fed agricultural by-products (80%), commercial feed (60%), and, notably, household waste (59%). Under half of SPFs vaccinated their pigs (e.g., against classical swine fever, Aujesky’s, and pasteurellosis, although the target disease was often unknown). Among 20 SPFs who experienced pig morbidities/mortalities within the past 6 months, only 3 (15%) reported to animal health workers, and disease etiology was rarely known. Common biosecurity measures included nets covering pig pens (62%) and restricting access to the site/pens (46%). Boot dips (0.6%) and PPE (1.2%) were rarely used. Pig smallholdings remain an important contributor to rural livelihoods. Current practices and biosecurity challenges increase risk pathways for a range of disease threats of both local and global concern. Ethnographic studies are needed to better understand local determinants and develop context-appropriate strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smallholder%20production" title="smallholder production">smallholder production</a>, <a href="https://publications.waset.org/abstracts/search?q=swine" title=" swine"> swine</a>, <a href="https://publications.waset.org/abstracts/search?q=biosecurity%20practices" title=" biosecurity practices"> biosecurity practices</a>, <a href="https://publications.waset.org/abstracts/search?q=Cambodia" title=" Cambodia"> Cambodia</a>, <a href="https://publications.waset.org/abstracts/search?q=African%20swine%20fever" title=" African swine fever"> African swine fever</a> </p> <a href="https://publications.waset.org/abstracts/160825/characterization-of-practices-among-pig-smallholders-in-cambodia-and-implications-for-disease-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> The Evaluation of Adjuvant Effects of CD154 in a Subunit Vaccine against Classical Swine Fever Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chieh%20Chen">Yu-Chieh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Yun%20Wang"> Li-Yun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Chih%20Chen"> Chi-Chih Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Huy%20H%C3%B9ng%20%C4%90%C3%A0o"> Huy Hùng Đào</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Mei%20Chen"> Ya-Mei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chu%20Cheng"> Ming-Chu Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Bin%20Chung"> Wen-Bin Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hso-Chi%20Chaung"> Hso-Chi Chaung</a>, <a href="https://publications.waset.org/abstracts/search?q=Guan-Ming%20Ke"> Guan-Ming Ke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many recent researches have demonstrated that CD154, a protein primarily expressed on activated T cell molecules, has potentially acted as a molecular adjuvant to improve the immunogenicity of subunit vaccines against viral infections. Classical swine fever (CSF) affects the swine industry worldwide that is one of the most devastating and highly contagious pig diseases. It is listed by the World Organization for Animal Health (OIE) as an infectious animal disease that must be reported. Although pigs vaccinated with subunit vaccines can be differentially diagnosed from those infected animals, subunit vaccines usually need adjuvants to enhance and elicit immune responses. In this study, CD154 was linked with CSFV E2 sequences and then expressed in CHO cells to produce the fusion protein as E2-CD154. The porcine specific CpG adjuvant was also used in one of the formulations. The specific pathogen-free pigs (SPF) at the age of 4-week-old were randomly separated into four groups, vaccinated with E2-CpG, E2-CD154, E2-CD154-CpG or the commercial Bayovac® CSF-E2 vaccine and boosted two weeks after primary vaccination. The results showed that the percentages of CD4+ and CD4+IL2+ in peripheral blood mononuclear cells (PBMC) in E2-CD154 vaccinated piglets seven days after primary vaccination were gained by 1-5% relative to the control group. In addition, the percentages of CD4+IFNγ+ T cells had slightly edged up 0.1-0.3% compared with the control group. Also, increased E2-specific IFNγ levels had edged up CD4+CD8+ T cells found in E2-CD154 and E2-CD154-CpG groups, particularly in the E2-CD154-CpG group. These results implicate that CD154 may enhance cellular immunity and synergistically act with species-specific CpG adjuvant as a dual-phase adjuvant. Therefore, the CD154 may be beneficial as a promising adjuvant in subunit vaccines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD154" title="CD154">CD154</a>, <a href="https://publications.waset.org/abstracts/search?q=CpG%20adjuvant" title=" CpG adjuvant"> CpG adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20immunity" title=" cellular immunity"> cellular immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=subunit%20vaccine" title=" subunit vaccine"> subunit vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=pig" title=" pig"> pig</a> </p> <a href="https://publications.waset.org/abstracts/177660/the-evaluation-of-adjuvant-effects-of-cd154-in-a-subunit-vaccine-against-classical-swine-fever-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Safety Evaluation of Intramuscular Administration of Zuprevo® Compared to Draxxin® in the Treatment of Swine Respiratory Disease at Weaning Age</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josine%20Beek">Josine Beek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Agten"> S. Agten</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Del%20Pozo"> R. Del Pozo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Balis"> B. Balis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study was to compare the safety of intramuscular administration of Zuprevo® (tildipirosin, 40 mg/mL) with Draxxin® (tulathromycin, 100 mg/mL) in the treatment of swine respiratory disease at weaning age. The trial was carried out in two farrow-to-finish farms with 300 sows (farm A) and 500 sows (farm B) in a batch-production system. Farm A had no history of respiratory problems, whereas farm B had a history of respiratory outbreaks with increased mortality ( > 2%) in the nursery. Both farms were positive to Pasteurella multocida, Bordetella bronchiseptica, Actinobacillus pleuropneumoniae and Haemophilus parasuis. From each farm, one batch of piglets was included (farm A: 644 piglets; farm B: 963 piglets). One day before weaning (day 0; 18-21 days of age), piglets were identified by an individual ear tag and randomly assigned to a treatment group. At day 0, Group 1 was treated with a single intramuscular injection with Zuprevo® (tildipirosin, 40 mg/mL; 1 mL/10 kg) and group 2 with Draxxin® (tulathromycin, 100 mg/mL; 1 mL/40 kg). For practical reasons, dosage of the product was adjusted according to three weight categories: < 4 kg, 4-6 kg and > 6 kg. Within each farm, piglets of both groups were comingled at weaning and subsequently managed and located in the same facilities and with identical environmental conditions. Our study involved the period from day 0 until 10 weeks of age. Safety of treatment was evaluated by 1) visual examination for signs of discomfort directly after treatment and after 15 min, 1 h and 24 h and 2) mortality rate within 24 h after treatment. Efficacy of treatment was evaluated based on mortality rate from day 0 until 10 weeks of age. Each piglet that died during the study period was necropsied by the herd veterinarian to determine the probable cause of death. Data were analyzed using binary logistic regression and differences were considered significant if p < 0.05. The pig was the experimental unit. In total, 848 piglets were treated with tildipirosin and 759 piglets with tulathromycin. In farm A, one piglet with retarded growth ( < 1 kg at 18 days of age) showed an adverse reaction after injection of tildipirosin: lateral recumbence and dullness for ± 30 sec. The piglet recovered after 1-2 min. This adverse reaction was probably due to overdosing (12 mg/kg). No adverse effect of treatment was observed in any other piglet. There was no mortality within 24 h after treatment. No significant difference was found in mortality rate between both groups from day 0 until 10 weeks of age. In farm A, overall mortality rate was 0.3% (2/644). In farm B, mortality rate was 0.2% (1/502) in group 1 (tildipirosin) and 0.9% (4/461) in group 2 (tulathromycin)(p=0.60). The necropsy of piglets that died during the study period revealed no macroscopic lesions of the respiratory tract. In conclusion, Zuprevo® (tildipirosin, 40 mg/mL) was shown to be a safe and efficacious alternative to Draxxin® (tulathromycin, 100 mg/mL) for the early treatment of swine respiratory disease at weaning age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20treatment" title="antibiotic treatment">antibiotic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=swine%20respiratory%20disease" title=" swine respiratory disease"> swine respiratory disease</a>, <a href="https://publications.waset.org/abstracts/search?q=tildipirosin" title=" tildipirosin"> tildipirosin</a> </p> <a href="https://publications.waset.org/abstracts/33364/safety-evaluation-of-intramuscular-administration-of-zuprevo-compared-to-draxxin-in-the-treatment-of-swine-respiratory-disease-at-weaning-age" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Occurrence of Porcine circovirus Type 2 in Pigs of Eastern Cape Province South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20O.%20Afolabi">Kayode O. Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Benson%20C.%20Iweriebor"> Benson C. Iweriebor</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20I.%20Okoh"> Anthony I. Okoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Larry%20C.%20Obi"> Larry C. Obi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porcine circovirus type 2 (PCV2) is the major etiological viral agent of porcine multisystemic wasting syndrome (PWMS) and other porcine circovirus-associated diseases (PCVAD) of great economic importance in pig industry globally. In an effort to determine the status of swine herds in the Province as regarding the ‘small but powerful’ viral pathogen; a total of 375 blood, faecal and nasal swab samples were obtained from seven pig farms (commercial and communal) in Amathole, O.R. Tambo and Chris-Hani District Municipalities of Eastern Cape Province between the year 2015 and 2016. Three hundred and thirty nine (339) samples out of the total sample were subjected to molecular screening using PCV2 specific primers by conventional polymerase chain reaction (PCR). Selected sequences were further analyzed and confirmed through genome sequencing and phylogenetic analyses. The data obtained revealed that 15.93% of the screened samples (54/339) from the swine herds of the studied areas were positive for PCV2; while the severity of occurrence of the viral pathogen as observed at farm level ranges from approximately 5.6% to 60% in the studied farms. The Majority, precisely 15 out of 17 (88%) analyzed sequences were found clustering with other PCV2b reference strains in the phylogenetic analysis. More interestingly, two other sequences obtained were also found clustering within PCV2d genogroup, which is presently another fast-spreading genotype with observable higher virulence in global swine herds. This finding confirmed the presence of this all-important viral pathogen in pigs of the region; which could result in a serious outbreak of PCVAD and huge economic loss at the instances of triggering factors if no appropriate measures are taken to curb its spread effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pigs" title="pigs">pigs</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerase%20chain%20reaction" title=" polymerase chain reaction"> polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20circovirus%20type%202" title=" porcine circovirus type 2"> porcine circovirus type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/76707/occurrence-of-porcine-circovirus-type-2-in-pigs-of-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Shiga Toxin-Producing Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Hyung%20Lee">Jun Hyung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20B.%20Guevarra"> Robin B. Guevarra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Ho%20Cho"> Jin Ho Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Ra%20Kim"> Bo-Ra Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Shin"> Jiwon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo%20Wan%20Kim"> Doo Wan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hwa%20Kim"> Young Hwa Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Song"> Minho Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeun%20Bum%20Kim"> Hyeun Bum Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colibacillosis is one of the major health problems in young piglets ultimately resulting in their death, and it is common especially in young piglets. For the swine industry, colibacillosis is one of the important economic burdens. Therefore, it is necessary for the swine industries to prevent Colibacillosis in piglets in order to reduce economic losses. Thus, we tested three types of natural plant extracts (PEs) to evaluate antibacterial effects against Shiga toxin-producing Escherichia coli (STEC) isolated from the piglet. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour, then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.1cm, 3.0cm, and 3.6 cm in diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit STEC growth significantly after 4 hours. The garlic essential oil retained the ability to inhibit STEC growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit STEC growth by all the tests. Even though further tests using the piglets will be required to evaluate effects of garlic essential oil for the Colibacillosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Colibacillosis in swine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garlic%20essential%20oil" title="garlic essential oil">garlic essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pig" title=" pig"> pig</a>, <a href="https://publications.waset.org/abstracts/search?q=Colibacillosis" title=" Colibacillosis"> Colibacillosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/87274/evaluation-of-the-antibacterial-effects-of-turmeric-oleoresin-capsicum-oleoresin-and-garlic-essential-oil-against-shiga-toxin-producing-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Campylobacteriosis as a Zoonotic Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jafarzadeh">A. Jafarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20Hashemi%20Tabar"> G. R. Hashemi Tabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Campylobacteriosis is caused by Campylobacter organisms. This is most commonly caused by C. jejuni, It is among the most common bacterial infections of humans, often a foodborne illness. It produces an inflammatory, sometimes bloody, diarrhea or dysentery syndrome, mostly including cramps, fever and pain. It is found in cattle, swine, and birds, where it is non-pathogenic. But the illness can also be caused by C. coli (also found in cattle, swine, and birds) C. upsaliensis (found in cats and dogs) and C. lari (present in seabirds in particular). Infection with a Campylobacter species is one of the most common causes of human bacterial gastroenteritis. For instance, an estimated 2 million cases of Campylobacter enteritis occur annually in the U.S., accounting for 5-7% of cases of gastroenteritis. Furthermore, in the United Kingdom during 2000 Campylobacter jejuni was involved in 77.3% in all cases of foodborne illness. 15 out of every 100,000 people are diagnosed with campylobacteriosis every year, and with many cases going unreported, up to 0.5% of the general population may unknowingly harbor Campylobacter in their gut annually. A large animal reservoir is present as well, with up to 100% of poultry, including chickens, turkeys, and waterfowl, having asymptomatic infections in their intestinal tracts. An infected chicken may contain up to 109 bacteria per 25 grams, and due to the installations, the bacteria is rapidly spread to other chicken. This vastly exceeds the infectious dose of 1000-10,000 bacteria for humans. In this article this disease is fully discussed in human and animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=campylobacteriosis" title="campylobacteriosis">campylobacteriosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human" title=" human"> human</a>, <a href="https://publications.waset.org/abstracts/search?q=animal" title=" animal"> animal</a>, <a href="https://publications.waset.org/abstracts/search?q=zoonosis" title=" zoonosis"> zoonosis</a> </p> <a href="https://publications.waset.org/abstracts/35731/campylobacteriosis-as-a-zoonotic-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghebremedhin%20Tsegay">Ghebremedhin Tsegay</a>, <a href="https://publications.waset.org/abstracts/search?q=Weldu%20Tesfagaber"> Weldu Tesfagaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanmao%20Zhu"> Yuanmao Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xijun%20He"> Xijun He</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Wang"> Wan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenjiang%20Zhang"> Zhenjiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Encheng%20Sun"> Encheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinya%20Zhang"> Jinya Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuntao%20Guan"> Yuntao Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Li"> Fang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Renqiang%20Liu"> Renqiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhigao%20Bu"> Zhigao Bu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongming%20Zhao%2A"> Dongming Zhao*</a> </p> <p class="card-text"><strong>Abstract:</strong></p> African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASFV" title="ASFV">ASFV</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking%20ELISA" title=" blocking ELISA"> blocking ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibodies" title=" monoclonal antibodies"> monoclonal antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=specificity" title=" specificity"> specificity</a> </p> <a href="https://publications.waset.org/abstracts/164212/novel-p22-monoclonal-antibody-based-blocking-elisa-for-the-detection-of-african-swine-fever-virus-antibodies-in-serum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karina%20Santos%20Silv%C3%A9rio">Karina Santos Silvério</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1tima%20Carvalho"> Fátima Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Adelaide%20Almeida"> Maria Adelaide Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroindustry%20wastewater" title="agroindustry wastewater">agroindustry wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20wastewater" title=" urban wastewater"> urban wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20carbonatation" title=" natural carbonatation"> natural carbonatation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation%20technique" title=" chemical precipitation technique"> chemical precipitation technique</a> </p> <a href="https://publications.waset.org/abstracts/162759/organic-matter-removal-in-urban-and-agroindustry-wastewater-by-chemical-precipitation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Characterisation of Pasteurella multocida from Asymptomatic Animals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Manhas">Rajeev Manhas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Bhat"> M. A. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Taku"> A. K. Taku</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalip%20Singh"> Dalip Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20Shikha"> Deep Shikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulzar%20Bader"> Gulzar Bader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was aimed to understand the distribution of various serogroups of Pasteurella multocida in bovines, small ruminants, pig, rabbit, and poultry from Jammu, Jammu and Kashmir and to characterize the isolates with respect to LPS synthesizing genes, dermonecrotic toxin gene (toxA) gene and antibiotic resistance. For isolation, the nasopharyngeal swab procedure appeared to be better than nasal swab procedure, particularly in ovine and swine. Out of 200 samples from different animals, isolation of P. multocida could be achieved from pig and sheep (5 each) and from poultry and buffalo (2 each) samples only, which accounted for 14 isolates. Upon molecular serogrouping, 3 isolates from sheep and 2 isolates from poultry were found as serogroup A, 2 isolates from buffalo were confirmed as serogroup B and 5 isolates from pig were found to belong to serogroup D. However, 2 isolates from sheep could not be typed, hence, untypable. All the 14 isolates were subjected to mPCR genotyping. A total of 10 isolates, 5 each from pig and sheep, generated an amplicon specific to genotype L6 and L6 indicates Heddleston serovars 10, 11, 12 and 15. Similarly, 2 isolates from bovines generated an amplicon of genotype L2 which indicates Heddleston serovar 2/5. However, 2 isolates from poultry generated specific amplicon with L1 signifying Heddleston serovar 1, but these isolates also produced multiple bands with primer L5. Only, one isolate of capsular type A from sheep possessed the structural gene, toxA for dermonecrotoxin. There was variability in the antimicrobial susceptibility pattern in sheep isolates, but overall the rate of tetracycline resistance was relatively high (64.28%) in our strains while all the isolates were sensitive to streptomycin. Except for the swine isolates and one toxigenic sheep isolate, the P. multocida isolates from this study were sensitive to quinolones. Although the level of resistance to commercial antibiotics was generally low, the use of tetracycline and erythromycin was not recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiogram" title="antibiogram">antibiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=genotyping" title=" genotyping"> genotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasteurella%20multocida" title=" Pasteurella multocida"> Pasteurella multocida</a>, <a href="https://publications.waset.org/abstracts/search?q=serogrouping" title=" serogrouping"> serogrouping</a>, <a href="https://publications.waset.org/abstracts/search?q=toxA" title=" toxA"> toxA</a> </p> <a href="https://publications.waset.org/abstracts/87663/characterisation-of-pasteurella-multocida-from-asymptomatic-animals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Wide Dissemination of CTX-M-Type Extended-Spectrum β-Lactamases in Korean Swine Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Ah%20Kim">Young Ah Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunsoo%20Kim"> Hyunsoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Jeong%20Yoon"> Eun-Jeong Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hee%20Seo"> Young Hee Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungwon%20Lee"> Kyungwon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from food animals are considered as a reservoir for transmission of ESBL genes to human. The aim of this study is to assess the prevalence and molecular epidemiology of ESBL-producing E. coli colonization in pigs, farm workers, and farm environments to elucidate the transmission of multidrug-resistant clones from animal to human. Nineteen pig farms were enrolled across the country in Korea from August to December 2017. ESBL-producing E. coli isolates were detected in 190 pigs, 38 farm workers, and 112 sites of farm environments using ChromID ESBL (bioMerieux, Marcy l'Etoile, France), directly (stool or perirectal swab) or after enrichment (sewage). Antimicrobial susceptibility tests were done with disk diffusion methods and blaTEM, blaSHV, and blaCTX-M were detected with PCR and sequencing. The genomes of the four CTX-M-55-producing E. coli isolates from various sources in one farm were entirely sequenced to assess the relatedness of the strains. Whole genome sequencing (WGS) was performed with PacBio RS II system (Pacific Biosciences, Menlo Park, CA, USA). ESBL genotypes were 85 CTX-M-1 group (one CTX-M-3, 23 CTX-M-15, one CTX-M-28, 59 CTX-M-55, one CTX-M-69) and 60 CTX-M-9 group (41 CTX-M-14, one CTX-M-17, one CTX-M-27, 13 CTX-M-65, 4 CTX-M-102) in total 145 isolates. The rectal colonization rates were 53.2% (101/190) in pigs and 39.5% (15/38) in farm workers. In WGS, sequence types (STs) were determined as ST69 (E. coli PJFH115 isolate from a human carrier), ST457 (two E. coli isolates PJFE101 recovered from a fence and PJFA1104 from a pig) and ST5899 (E. coli PJFA173 isolate from the other pig). The four plasmids encoding CTX-M-55 (88,456 to 149, 674 base pair), whether it belonged to IncFIB or IncFIC-IncFIB type, shared IncF backbone furnishing the conjugal elements, suggesting of genes originated from same ancestor. In conclusion, the prevalence of ESBL-producing E. coli in swine farms was surprisingly high, and many of them shared common ESBL genotypes of clinical isolates such as CTX-M-14, 15, and 55 in Korea. It could spread by horizontal transfer between isolates from different reservoirs (human-animal-environment). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=extended-spectrum%20%CE%B2-lactamase" title=" extended-spectrum β-lactamase"> extended-spectrum β-lactamase</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=whole%20genome%20sequencing" title=" whole genome sequencing"> whole genome sequencing</a> </p> <a href="https://publications.waset.org/abstracts/90595/wide-dissemination-of-ctx-m-type-extended-spectrum-v-lactamases-in-korean-swine-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Soil Composition in Different Agricultural Crops under Application of Swine Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Almeida%20Castaldelli%20Maciel">Ana Paula Almeida Castaldelli Maciel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Medeiros"> Gabriela Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20de%20Souza%20Machado"> Amanda de Souza Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Clara%20Pilatti"> Maria Clara Pilatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralpho%20Rinaldo%20dos%20Reis"> Ralpho Rinaldo dos Reis</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvio%20Cesar%20Sampaio"> Silvio Cesar Sampaio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20research" title=" water research"> water research</a>, <a href="https://publications.waset.org/abstracts/search?q=biodigester" title=" biodigester"> biodigester</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a> </p> <a href="https://publications.waset.org/abstracts/184662/soil-composition-in-different-agricultural-crops-under-application-of-swine-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniela%20E.%20Marin">Daniela E. Marin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornelia%20Braicu"> Cornelia Braicu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20C.%20Pistol"> Gina C. Pistol</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Cojocneanu-Petric"> Roxana Cojocneanu-Petric</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioana%20Berindan%20Neagoe"> Ioana Berindan Neagoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20A.%20Gras"> Mihail A. Gras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionelia%20Taranu"> Ionelia Taranu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aristolochic%20acid" title="aristolochic acid">aristolochic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=swine" title=" swine"> swine</a> </p> <a href="https://publications.waset.org/abstracts/67527/use-of-pig-as-an-animal-model-for-assessing-the-differential-microrna-profiling-in-kidney-after-aristolochic-acid-intoxication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Application of Animal Welfare Certification System for Farm Animal in South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlyum%20Mun">Ahlyum Mun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Young%20Moon"> Ji-Young Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon-Seok%20Yoon"> Moon-Seok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Baek"> Dong-Jin Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo-Seok%20Seo"> Doo-Seok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oun-Kyong%20Moon"> Oun-Kyong Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing public concern over the standards of farm animal welfare, with higher standards of food safety. In addition, the recent low incidence of Avian Influenza in laying hens among certificated farms is receiving attention. In this study, we introduce animal welfare systems covering the rearing, transport and slaughter of farm animals in South Korea. The concepts of animal welfare farm certification are based on ensuring the five freedoms of animal. The animal welfare is also achieved by observing the condition of environment including shelter and resting area, feeding and water and the care for the animal health. The certification of farm animal welfare is handled by the Animal Protection & Welfare Division of Animal and Plant Quarantine Agency (APQA). Following the full amendment of Animal Protection Law in 2011, animal welfare farm certification program has been implemented since 2012. The certification system has expanded to cover laying hen, swine, broiler, beef cattle and dairy cow, goat and duck farms. Livestock farmers who want to be certified must apply for certification at the APQA. Upon receipt of the application, the APQA notifies the applicant of the detailed schedule of the on-site examination after reviewing the document and conducts the on-site inspection according to the evaluation criteria of the welfare standard. If the on-site audit results meet the certification criteria, APQA issues a certificate. The production process of certified farms is inspected at least once a year for follow-up management. As of 2017, a total of 145 farms have been certified (95 laying hen farms, 12 swine farms, 30 broiler farms and 8 dairy cow farms). In addition, animal welfare transportation vehicles and slaughterhouses have been designated since 2013 and currently 6 slaughterhouses have been certified. Animal Protection Law has been amended so that animal welfare certification marks can be affixed only to livestock products produced by animal welfare farms, transported through animal welfare vehicles and slaughtered at animal welfare slaughterhouses. The whole process including rearing–transportation- slaughtering completes the farm animal welfare system. APQA established its second 5-year animal welfare plan (2014-2019) that includes setting a minimum standard of animal welfare applicable to all livestock farms, transportation vehicles and slaughterhouses. In accordance with this plan, we will promote the farm animal welfare policy in order to truly advance the Korean livestock industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20welfare" title="animal welfare">animal welfare</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20animal" title=" farm animal"> farm animal</a>, <a href="https://publications.waset.org/abstracts/search?q=certification%20system" title=" certification system"> certification system</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Korea" title=" South Korea"> South Korea</a> </p> <a href="https://publications.waset.org/abstracts/89314/the-application-of-animal-welfare-certification-system-for-farm-animal-in-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xiao">Wei Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Gangzhi%20Cai"> Gangzhi Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingliang%20Qin"> Xingliang Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyan%20Ren"> Hongyan Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaidong%20Hua"> Zaidong Hua</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Xiao"> Hongwei Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ximin%20Zheng"> Ximin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yao"> Jie Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanzhen%20Bi"> Yanzhen Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fat%20deposition" title="fat deposition">fat deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=MEF2C" title=" MEF2C"> MEF2C</a>, <a href="https://publications.waset.org/abstracts/search?q=miR222" title=" miR222"> miR222</a>, <a href="https://publications.waset.org/abstracts/search?q=myostatin" title=" myostatin"> myostatin</a>, <a href="https://publications.waset.org/abstracts/search?q=SCD5" title=" SCD5"> SCD5</a>, <a href="https://publications.waset.org/abstracts/search?q=pig" title=" pig"> pig</a> </p> <a href="https://publications.waset.org/abstracts/103392/regulation-of-desaturation-of-fatty-acid-and-triglyceride-synthesis-by-myostatin-through-swine-specific-mef2cmir222scd5-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Positioning Food Safety in Halal Assurance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marin%20Neio%20Demirci">Marin Neio Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Mei%20Soon"> Jan Mei Soon</a>, <a href="https://publications.waset.org/abstracts/search?q=Carol%20A.%20Wallace"> Carol A. Wallace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muslims follow the religion of Islam and the food they eat should be Halal, meaning lawful or permissible. Muslims are allowed to eat halal and wholesome food that has been provided for them. However, some of the main prohibitions are swine flesh, blood, carrion, animals not slaughtered according to Islamic laws and alcoholic drinks. At present Halal assurance is in a complicated state, with various Halal standards differing from each other without gaining mutual acceptance. The world is starting to understand the need for an influential globally accepted standard that would open doors to global markets and gain consumer confidence. This paper discusses issues mainly related to food safety in Halal assurance. The aim was to discover and describe the approach to food safety requirements in Halal food provision and how this is incorporated in the Halal assurance systems. The position of food safety regulation within Halal requirements or Halal standards’ requirements for food safety is still unclear. This review also considers whether current Halal standards include criteria in common with internationally accepted food hygiene standards and emphasizes the potential of using the HACCP system for Halal assurance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=certification" title="certification">certification</a>, <a href="https://publications.waset.org/abstracts/search?q=GHP" title=" GHP"> GHP</a>, <a href="https://publications.waset.org/abstracts/search?q=HACCP" title=" HACCP"> HACCP</a>, <a href="https://publications.waset.org/abstracts/search?q=Halal%20standard" title=" Halal standard"> Halal standard</a> </p> <a href="https://publications.waset.org/abstracts/55352/positioning-food-safety-in-halal-assurance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Association of Leptin Gene T3469C Polymorphism on Reproductive Performance of Purebred Sows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariedel%20Autriz">Mariedel Autriz</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Lambio"> Angel Lambio</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20Vega"> Renato Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Severino%20Capitan"> Severino Capitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Laude"> Rita Laude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to associate genetic polymorphism of the leptin gene T3469C with reproductive performance in purebred sows. DNA were isolated from hair follicles of 29 Landrace and 24 Large White sows. Amplification of the leptin gene was done followed by Hinf1digestion to determine the base at the T3469C site. Electrophoresis of the digestion products revealed that there were 25 Landrace and 15 Large White sows with the TT genotype while there were 3 Landrace and 6 Large White TC. There was 1 CC for Landrace and 3 for Large White. Significant genotype associations were observed for total litter size born and total born alive. Significant breed differences, on the other hand, was observed for gestation length and average birth weight. Significant breed by genotype interaction was observed in litter size total born and litter size born alive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20polymorphism" title="genetic polymorphism">genetic polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=leptin" title=" leptin"> leptin</a>, <a href="https://publications.waset.org/abstracts/search?q=swine" title=" swine"> swine</a>, <a href="https://publications.waset.org/abstracts/search?q=T3469C" title=" T3469C"> T3469C</a> </p> <a href="https://publications.waset.org/abstracts/67141/association-of-leptin-gene-t3469c-polymorphism-on-reproductive-performance-of-purebred-sows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Jabeen">Shagufta Jabeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Faez%20J.%20Firdaus%20Abdullah"> Faez J. Firdaus Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zunita%20Zakaria"> Zunita Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurulfiza%20M.%20Isa"> Nurulfiza M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20C.%20Tan"> Yung C. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Y.%20Yee"> Wai Y. Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20R.%20Omar"> Abdul R. Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20genomics" title="comparative genomics">comparative genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sequencing" title=" DNA sequencing"> DNA sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=phage" title=" phage"> phage</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenomics" title=" phylogenomics"> phylogenomics</a> </p> <a href="https://publications.waset.org/abstracts/81349/complete-genome-sequence-analysis-of-pasteurella-multocida-subspecies-multocida-serotype-a-strain-pmtb21" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Capnography for Detection of Return of Spontaneous Circulation Pseudo-Pea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiyuan%20David%20Hu">Yiyuan David Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Lindqwister"> Alex Lindqwister</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20B.%20Klein"> Samuel B. Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Moodie"> Karen Moodie</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20%20Paradis"> Norman A. Paradis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) is a reliable indicator of the return of spontaneous circulation (ROSC) in ventricular fibrillation and true-PEA but has not been studied p-PEA. Hypothesis: ET-CO2 can be used as an independent indicator of ROSC in p-PEA resuscitation. Methods: 30kg female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic Ao less than 40 mmHg. The statistical relationships between ET-CO2 and ROSC are reported. Results: ET-CO2 during resuscitation strongly correlated with ROSC (Figure 1). Mean ET-CO2 during p-PEA was 28.4 ± 8.4, while mean ET-CO2 in ROSC for 100% O2 cohort was 42.2 ± 12.6 (p < 0.0001), mean ET-CO2 in ROSC for 100% O2 + CPR was 33.0 ± 15.4 (p < 0.0001). Analysis of slope was limited to one minute of resuscitation data to capture local linearity; assessment began 10 seconds after resuscitation started to allow the ventilator to mix 100% O2. Pigs who would recover with 100% O2 had a slope of 0.023 ± 0.001, oxygen + CPR had a slope of 0.018 ± 0.002, and oxygen + CPR + epinephrine had a slope of 0.0050 ± 0.0009. Conclusions: During resuscitation from porcine hypoxic p-PEA, a rise in ET-CO2 is indicative of ROSC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ET-CO2" title="ET-CO2">ET-CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=resuscitation" title=" resuscitation"> resuscitation</a>, <a href="https://publications.waset.org/abstracts/search?q=capnography" title=" capnography"> capnography</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-PEA" title=" pseudo-PEA"> pseudo-PEA</a> </p> <a href="https://publications.waset.org/abstracts/134316/capnography-for-detection-of-return-of-spontaneous-circulation-pseudo-pea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Extension Services&#039; Needs of Small Farmers in Biliran Province, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20C.%20Nierras">Mario C. Nierras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the extension services’ needs of small farmers in Biliran province, Philippines. It also sought to find out other issues/concerns of the small farmers. Extension services’ needs of small farmers were gathered through personal interviewing and observational analysis of randomly-selected small farmers in Biliran, Philippines. Biliran small farmers extension services’ needs include: raising fruits, raising legumes, raising vegetables, raising swine, raising cattle, and raising chicken (as priority broad skills). For the specific skills, diagnosing symptoms on fertilizer deficiencies, controlling plant pests and diseases, diagnosing signs on specific pest and disease damage, controlling animal pests and diseases, and doing artificial insemination were the priority skills. They considered an on-farm trial of new technology as most needed to be coupled with industry and quality-orientedness, as positive behaviors needed in farming success. The farmers still adhere to the so-called wait-and-see attitude, thus they are more convinced to follow a particular technology if they see a concrete result of the introduced changes. Technical needs prioritization of Biliran small farmers showed that they have a real need for crop and animal production skills to include the other issues/concerns. Extension service program planning for small farmers should be patterned after their technical needs giving due attention to some issues/concerns so that extension work could deliver the right skills for the right needs of the farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extension" title="extension">extension</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20service" title=" extension service"> extension service</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20service%20needs" title=" extension service needs"> extension service needs</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20service%20program" title=" extension service program"> extension service program</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20farmers" title=" small farmers"> small farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20farmers" title=" marginal farmers"> marginal farmers</a> </p> <a href="https://publications.waset.org/abstracts/24749/extension-services-needs-of-small-farmers-in-biliran-province-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiyuan%20David%20%20Hu">Yiyuan David Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Lindqwister"> Alex Lindqwister</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20B.%20%20Klein"> Samuel B. Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Moodie"> Karen Moodie</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20%20Paradis"> Norman A. Paradis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo-PEA" title="pseudo-PEA">pseudo-PEA</a>, <a href="https://publications.waset.org/abstracts/search?q=resuscitation" title=" resuscitation"> resuscitation</a>, <a href="https://publications.waset.org/abstracts/search?q=capnography" title=" capnography"> capnography</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxic%20pseudo-PEA" title=" hypoxic pseudo-PEA"> hypoxic pseudo-PEA</a> </p> <a href="https://publications.waset.org/abstracts/134315/capnography-in-hypoxic-pseudo-pea-may-correlate-to-the-amount-of-required-intervention-for-resuscitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swine&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=swine&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10