CINXE.COM

A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities | Nature Methods

<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities | Nature Methods</title> <link rel="alternate" type="application/rss+xml" href="https://www.nature.com/nmeth.rss"/> <script id="save-data-connection-testing"> function hasConnection() { return navigator.connection || navigator.mozConnection || navigator.webkitConnection || navigator.msConnection; } function createLink(src) { var preloadLink = document.createElement("link"); preloadLink.rel = "preload"; preloadLink.href = src; preloadLink.as = "font"; preloadLink.type = "font/woff2"; preloadLink.crossOrigin = ""; document.head.insertBefore(preloadLink, document.head.firstChild); } var connectionDetail = { saveDataEnabled: false, slowConnection: false }; var connection = hasConnection(); if (connection) { connectionDetail.saveDataEnabled = connection.saveData; if (/\slow-2g|2g/.test(connection.effectiveType)) { connectionDetail.slowConnection = true; } } if (!(connectionDetail.saveDataEnabled || connectionDetail.slowConnection)) { createLink("/static/fonts/HardingText-Regular-Web-cecd90984f.woff2"); } else { document.documentElement.classList.add('save-data'); } </script> <link rel="preconnect" href="https://cmp.nature.com" crossorigin> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes"> <meta name="360-site-verification" content="5a2dc4ab3fcb9b0393241ffbbb490480" /> <script data-test="dataLayer"> window.dataLayer = [{"content":{"category":{"contentType":"article","legacy":{"webtrendsPrimaryArticleType":"research","webtrendsSubjectTerms":"image-processing;machine-learning","webtrendsContentCategory":null,"webtrendsContentCollection":null,"webtrendsContentGroup":"Nature Methods","webtrendsContentGroupType":null,"webtrendsContentSubGroup":"Article","status":null}},"article":{"doi":"10.1038/s41592-024-02499-w"},"attributes":{"cms":null,"deliveryPlatform":"oscar","copyright":{"open":false,"legacy":{"webtrendsLicenceType":null}}},"contentInfo":{"authors":["Theodore Zhao","Yu Gu","Jianwei Yang","Naoto Usuyama","Ho Hin Lee","Sid Kiblawi","Tristan Naumann","Jianfeng Gao","Angela Crabtree","Jacob Abel","Christine Moung-Wen","Brian Piening","Carlo Bifulco","Mu Wei","Hoifung Poon","Sheng Wang"],"publishedAt":1731888000,"publishedAtString":"2024-11-18","title":"A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities","legacy":null,"publishedAtTime":null,"documentType":"aplusplus","subjects":"Image processing,Machine learning"},"journal":{"pcode":"nmeth","title":"nature methods","volume":null,"issue":null,"id":41592,"publishingModel":"Hybrid Access"},"authorization":{"status":false},"features":[{"name":"furtherReadingSection","present":true}],"collection":null},"page":{"category":{"pageType":"article"},"attributes":{"template":"mosaic","featureFlags":[{"name":"nature-onwards-journey","active":false}],"testGroup":null},"search":null},"privacy":{},"version":"1.0.0","product":null,"session":null,"user":null,"backHalfContent":true,"country":"HK","hasBody":true,"uneditedManuscript":false,"twitterId":["o3xnx","o43y9","o3ef7"],"baiduId":"d38bce82bcb44717ccc29a90c4b781ea","japan":false}]; window.dataLayer.push({ ga4MeasurementId: 'G-ERRNTNZ807', ga360TrackingId: 'UA-71668177-1', twitterId: ['3xnx', 'o43y9', 'o3ef7'], baiduId: 'd38bce82bcb44717ccc29a90c4b781ea', ga4ServerUrl: 'https://collect.nature.com', imprint: 'nature' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card--major .c-card__title,.c-card__title,.u-h2,.u-h3,h2,h3{-webkit-font-smoothing:antialiased;font-family:Harding,Palatino,serif;font-weight:700;letter-spacing:-.0117156rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.u-h3,h3{font-size:1.25rem;line-height:1.4rem}.c-reading-companion__figure-title,.u-h4,h4{-webkit-font-smoothing:antialiased;font-weight:700;line-height:1.4rem}html{text-size-adjust:100%;box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{background:#eee;color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}details,main{display:block}h1{font-size:2em;margin:.67em 0}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}summary{display:list-item}[hidden]{display:none}button{border-radius:0;cursor:pointer;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}h1{-webkit-font-smoothing:antialiased;font-family:Harding,Palatino,serif;font-size:2rem;font-weight:700;letter-spacing:-.0390625rem;line-height:2.25rem}.c-card--major .c-card__title,.u-h2,.u-h3,h2{font-family:Harding,Palatino,serif;letter-spacing:-.0117156rem}.c-card--major .c-card__title,.u-h2,h2{-webkit-font-smoothing:antialiased;font-size:1.5rem;font-weight:700;line-height:1.6rem}.u-h3{font-size:1.25rem}.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h4,h5,h6{-webkit-font-smoothing:antialiased;font-weight:700;line-height:1.4rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,h3{font-family:Harding,Palatino,serif;font-size:1.25rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,h3{-webkit-font-smoothing:antialiased;font-weight:700;letter-spacing:-.0117156rem;line-height:1.4rem}.c-reading-companion__figure-title,.u-h4,h4{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;letter-spacing:-.0117156rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}nav ol,nav ul{list-style:none none}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#069;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:Harding,Palatino,serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-license__badge,c-card__section{margin-top:8px}.c-code-block{border:1px solid #eee;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-editorial-summary__container{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem}.c-article-editorial-summary__container .c-article-editorial-summary__content p:last-child{margin-bottom:0}.c-article-editorial-summary__container .c-article-editorial-summary__content--less{max-height:9.5rem;overflow:hidden}.c-article-editorial-summary__container .c-article-editorial-summary__button{background-color:#fff;border:0;color:#069;font-size:.875rem;margin-bottom:16px}.c-article-editorial-summary__container .c-article-editorial-summary__button.active,.c-article-editorial-summary__container .c-article-editorial-summary__button.hover,.c-article-editorial-summary__container .c-article-editorial-summary__button:active,.c-article-editorial-summary__container .c-article-editorial-summary__button:hover{text-decoration:underline;text-decoration-skip-ink:auto}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fff;border-bottom:1px solid #fff;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-cod,.c-reading-companion__panel--active{display:block}.c-cod{font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-basis:75%;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#069;border:1px solid #069;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#069}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-context-bar--sticky .c-pdf-download{display:block;margin-bottom:0;white-space:nowrap}@media only screen and (max-width:539px){.c-pdf-download .u-sticky-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:16px}.c-article-extras .c-pdf-container .c-pdf-download{width:100%}.c-article-extras .c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:0}@media only screen and (min-width:540px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:none}@media only screen and (max-width:1023px){.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:block}}.c-status-message--success{border-bottom:2px solid #00b8b0;justify-content:center;margin-bottom:16px;padding-bottom:8px}.c-recommendations-list__item .c-card{flex-basis:100%}.c-recommendations-list__item .c-card__image{align-items:baseline;flex:1 1 40%;margin:0 0 0 16px;max-width:150px}.c-recommendations-list__item .c-card__image img{border:1px solid #cedbe0;height:auto;min-height:0;position:static}@media only screen and (max-width:1023px){.c-recommendations-list__item .c-card__image{display:none}}.c-card__layout{display:flex;flex:1 1 auto;justify-content:space-between}.c-card__title-recommendation{-webkit-box-orient:vertical;-webkit-line-clamp:4;display:-webkit-box;font-size:1rem;font-weight:700;line-height:1.4;margin:0 0 8px;max-height:5.6em;overflow:hidden!important;text-overflow:ellipsis}.c-card__title-recommendation .c-card__link{color:inherit}.c-card__title-recommendation .c-card__link:hover{text-decoration:underline}.c-card__title-recommendation .MathJax_Display{display:inline!important}.c-card__link:not(.c-card__link--no-block-link):before{z-index:1}.c-article-metrics__heading a,.c-article-metrics__posts .c-card__title a,.c-article-recommendations-card__link{color:inherit}.c-recommendations-column-switch .c-meta{margin-top:auto}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-metrics__posts .c-card__title{font-size:1.05rem}.c-article-metrics__posts .c-card__title+span{color:#6f6f6f;font-size:1rem}p{overflow-wrap:break-word;word-break:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-author-list{color:#6f6f6f;font-family:inherit;font-size:1rem;line-height:inherit;list-style:none;margin:0;padding:0}.c-author-list>li,.c-breadcrumbs>li,.c-footer__links>li,.js .c-author-list,.u-list-comma-separated>li,.u-list-inline>li{display:inline}.c-author-list>li:not(:first-child):not(:last-child):before{content:", "}.c-author-list>li:not(:only-child):last-child:before{content:" & "}.c-author-list--compact{font-size:.875rem;line-height:1.4}.c-author-list--truncated>li:not(:only-child):last-child:before{content:" ... "}.js .c-author-list__hide{display:none;visibility:hidden}.js .c-author-list__hide:first-child+*{margin-block-start:0}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta--large{font-size:1rem}.c-meta--large .c-meta__item{margin-bottom:8px}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}@media only screen and (max-width:539px){.c-meta__item--block-sm-max{display:block}.c-meta__item--block-sm-max:not(:last-child){border-right:none;margin-right:0;padding-right:0}}@media only screen and (min-width:1024px){.c-meta__item--block-at-lg{display:block}.c-meta__item--block-at-lg:not(:last-child){border-right:none;margin-right:0;padding-right:0}}.c-meta__type{font-weight:700;text-transform:none}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#fff}.c-status-message{align-items:center;box-sizing:border-box;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;position:relative;width:100%}.c-card__summary>p:last-child,.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #eee;border-radius:2px;line-height:1.4;padding:16px}.c-status-message__heading{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-card{background-color:transparent;border:0;box-shadow:none;display:flex;flex-direction:column;font-size:14px;min-width:0;overflow:hidden;padding:0;position:relative}.c-card--no-shape{background:0 0;border:0;box-shadow:none}.c-card__image{display:flex;justify-content:center;overflow:hidden;padding-bottom:56.25%;position:relative}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}.c-card__image img{left:0;min-height:100%;min-width:100%;position:absolute}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-card__body{flex:1 1 auto;padding:16px}.c-card--no-shape .c-card__body{padding:0}.c-card--no-shape .c-card__body:not(:first-child){padding-top:16px}.c-card__title{letter-spacing:-.01875rem;margin-bottom:8px;margin-top:0}[lang=de] .c-card__title{hyphens:auto}.c-card__summary{line-height:1.4}.c-card__summary>p{margin-bottom:5px}.c-card__summary a{text-decoration:underline}.c-card__link:not(.c-card__link--no-block-link):before{bottom:0;content:"";left:0;position:absolute;right:0;top:0}.c-card--flush .c-card__body{padding:0}.c-card--major{font-size:1rem}.c-card--dark{background-color:#29303c;border-width:0;color:#e3e4e5}.c-card--dark .c-card__title{color:#fff}.c-card--dark .c-card__link,.c-card--dark .c-card__summary a{color:inherit}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;gap:8px 8px;line-height:1.4;list-style:none;margin:0 -8px;padding:0}@media print{.c-header__menu{display:none}}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;gap:4px 4px;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}.has-tethered .c-header__heading--js-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}@media print{.c-header__dropdown{display:none}}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;gap:0 16px;list-style:none;margin:0 -8px}.c-header__flush{margin:0 -8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap;gap:16px 16px}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg,.u-button--primary svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url("data:image/svg+xml,%3Csvg height='16' viewBox='0 0 16 16' width='16' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z' fill='%23333' fill-rule='evenodd' transform='matrix(0 1 -1 0 11 3)'/%3E%3C/svg%3E");background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}@media only screen and (min-width:540px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:auto;right:0}}@media only screen and (min-width:768px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:0;right:auto}}.c-header__dropdown.has-tethered{border-bottom:0;border-radius:0 0 2px 2px;left:0;position:absolute;top:100%;transform:translateY(5px);width:100%;z-index:1}@media only screen and (min-width:540px){.c-header__dropdown.has-tethered{transform:translateY(8px);width:auto}}@media only screen and (min-width:768px){.c-header__dropdown.has-tethered{min-width:225px}}.c-header__dropdown--full-width.has-tethered{padding:32px 0 24px;transform:none;width:100%}.has-tethered .c-header__heading--js-hide{display:none;visibility:hidden}.has-tethered .c-header__list--js-stack{flex-direction:column}.has-tethered .c-header__item--keyline,.has-tethered .c-header__list~.c-header__list .c-header__item:first-child{border-top:1px solid #d5d5d5;margin-top:8px;padding-top:8px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}.c-header__link--search{gap:13px 13px}}.u-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #069;border-radius:2px;color:#069;cursor:pointer;display:inline-flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-full-height{height:100%}.u-list-reset{list-style:none;margin:0;padding:0}.u-sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-16{margin-bottom:16px}.u-mb-24{margin-bottom:24px}.u-mb-32{margin-bottom:32px}.c-nature-box svg+.c-article__button-text,.u-ml-8{margin-left:8px}.u-pa-16{padding:16px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-card__title{line-height:1.4em}.c-article__button{background-color:#069;border:1px solid #069;border-radius:2px;color:#fff;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;margin-bottom:16px;padding:13px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-article__button,.c-article__button:hover{text-decoration:none}.c-article__button--inverted,.c-article__button:hover{background-color:#fff;color:#069}.c-article__button--inverted:hover{background-color:#069;color:#fff}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-nature-box{background-color:#fff;border:1px solid #d5d5d5;border-radius:2px;box-shadow:0 0 5px 0 rgba(51,51,51,.1);line-height:1.3;margin-bottom:24px;padding:16px 16px 3px}.c-nature-box__text{font-size:1rem;margin-bottom:16px}.c-nature-box .c-pdf-download{margin-bottom:16px!important}.c-nature-box--version{background-color:#eee}.c-nature-box__wrapper{transform:translateZ(0)}.c-nature-box__wrapper--placeholder{min-height:165px}.c-pdf-download__link{padding:13px 24px} } </style> <link data-test="critical-css-handler" data-inline-css-source="critical-css" rel="stylesheet" href="/static/css/enhanced-article-nature-branded-68c4876c28.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <noscript> <link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-nature-branded-68c4876c28.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)"> </noscript> <link rel="stylesheet" type="text/css" href="/static/css/article-print-122346e276.css" media="print"> <link rel="apple-touch-icon" sizes="180x180" href=/static/images/favicons/nature/apple-touch-icon-f39cb19454.png> <link rel="icon" type="image/png" sizes="48x48" href=/static/images/favicons/nature/favicon-48x48-b52890008c.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/images/favicons/nature/favicon-32x32-3fe59ece92.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/images/favicons/nature/favicon-16x16-951651ab72.png> <link rel="manifest" href=/static/manifest.json crossorigin="use-credentials"> <link rel="mask-icon" href=/static/images/favicons/nature/safari-pinned-tab-69bff48fe6.svg color="#000000"> <link rel="shortcut icon" href=/static/images/favicons/nature/favicon.ico> <meta name="msapplication-TileColor" content="#000000"> <meta name="msapplication-config" content=/static/browserconfig.xml> <meta name="theme-color" content="#000000"> <meta name="application-name" content="Nature"> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> <script> (function(w,d,t) { function cc() { var h = w.location.hostname; if (h.indexOf('preview-www.nature.com') > -1) return; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('nature.com') > -1) { if (h.indexOf('test-www.nature.com') > -1) { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window,document,'script'); </script> <script id="js-position0"> (function(w, d) { w.idpVerifyPrefix = 'https://verify.nature.com'; w.ra21Host = 'https://wayf.springernature.com'; var moduleSupport = (function() { return 'noModule' in d.createElement('script'); })(); if (w.config.mustardcut === true) { w.loader = { index: 0, registered: [], scripts: [ {src: '/static/js/global-article-es6-bundle-c8a573ca90.js', test: 'global-article-js', module: true}, {src: '/static/js/global-article-es5-bundle-d17603b9e9.js', test: 'global-article-js', nomodule: true}, {src: '/static/js/shared-es6-bundle-606cb67187.js', test: 'shared-js', module: true}, {src: '/static/js/shared-es5-bundle-e919764a53.js', test: 'shared-js', nomodule: true}, {src: '/static/js/header-150-es6-bundle-5bb959eaa1.js', test: 'header-150-js', module: true}, {src: '/static/js/header-150-es5-bundle-994fde5b1d.js', test: 'header-150-js', nomodule: true} ].filter(function (s) { if (s.src === null) return false; if (moduleSupport && s.nomodule) return false; return !(!moduleSupport && s.module); }), register: function (value) { this.registered.push(value); }, ready: function () { if (this.registered.length === this.scripts.length) { this.registered.forEach(function (fn) { if (typeof fn === 'function') { setTimeout(fn, 0); } }); this.ready = function () {}; } }, insert: function (s) { var t = d.getElementById('js-position' + this.index); if (t && t.insertAdjacentElement) { t.insertAdjacentElement('afterend', s); } else { d.head.appendChild(s); } ++this.index; }, createScript: function (script, beforeLoad) { var s = d.createElement('script'); s.id = 'js-position' + (this.index + 1); s.setAttribute('data-test', script.test); if (beforeLoad) { s.defer = 'defer'; s.onload = function () { if (script.noinit) { loader.register(true); } if (d.readyState === 'interactive' || d.readyState === 'complete') { loader.ready(); } }; } else { s.async = 'async'; } s.src = script.src; return s; }, init: function () { this.scripts.forEach(function (s) { loader.insert(loader.createScript(s, true)); }); d.addEventListener('DOMContentLoaded', function () { loader.ready(); var conditionalScripts; conditionalScripts = [ {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es6-bundle-464a2af269.js', test: 'pan-zoom-js', module: true }, {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es5-bundle-98fb9b653b.js', test: 'pan-zoom-js', nomodule: true }, {match: 'math,span.mathjax-tex', src: '/static/js/math-es6-bundle-23597ae350.js', test: 'math-js', module: true}, {match: 'math,span.mathjax-tex', src: '/static/js/math-es5-bundle-6532c6f78b.js', test: 'math-js', nomodule: true} ]; if (conditionalScripts) { conditionalScripts.filter(function (script) { return !!document.querySelector(script.match) && !((moduleSupport && script.nomodule) || (!moduleSupport && script.module)); }).forEach(function (script) { loader.insert(loader.createScript(script)); }); } }, false); } }; loader.init(); } })(window, document); </script> <meta name="robots" content="noarchive"> <meta name="access" content="No"> <link rel="search" href="https://www.nature.com/search"> <link rel="search" href="https://www.nature.com/opensearch/opensearch.xml" type="application/opensearchdescription+xml" title="nature.com"> <link rel="search" href="https://www.nature.com/opensearch/request" type="application/sru+xml" title="nature.com"> <script type="application/ld+json">{"mainEntity":{"headline":"A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities","description":"Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery. BiomedParse is a foundation model for image analysis that uses a joint learning approach to jointly conduct segmentation, detection and recognition and offer state-of-the-art performance across a wide range of datasets and nine modalities.","datePublished":"2024-11-18T00:00:00Z","dateModified":"2024-11-18T00:00:00Z","pageStart":"1","pageEnd":"11","sameAs":"https://doi.org/10.1038/s41592-024-02499-w","keywords":["Image processing","Machine learning","Life Sciences","general","Biological Techniques","Biological Microscopy","Biomedical Engineering/Biotechnology","Bioinformatics","Proteomics"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig5_HTML.png"],"isPartOf":{"name":"Nature Methods","issn":["1548-7105","1548-7091"],"@type":["Periodical"]},"publisher":{"name":"Nature Publishing Group US","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Theodore Zhao","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Yu Gu","url":"http://orcid.org/0000-0002-1704-1744","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jianwei Yang","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Naoto Usuyama","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ho Hin Lee","url":"http://orcid.org/0000-0002-7378-2379","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Sid Kiblawi","url":"http://orcid.org/0000-0001-6183-3354","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Tristan Naumann","url":"http://orcid.org/0000-0003-2150-1747","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jianfeng Gao","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Angela Crabtree","url":"http://orcid.org/0000-0001-6584-8158","affiliation":[{"name":"Providence Cancer Institute","address":{"name":"Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jacob Abel","affiliation":[{"name":"Providence Genomics","address":{"name":"Providence Genomics, Portland, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Christine Moung-Wen","affiliation":[{"name":"Providence Genomics","address":{"name":"Providence Genomics, Portland, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Brian Piening","url":"http://orcid.org/0000-0002-2683-8157","affiliation":[{"name":"Providence Genomics","address":{"name":"Providence Genomics, Portland, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Providence Cancer Institute","address":{"name":"Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Carlo Bifulco","affiliation":[{"name":"Providence Genomics","address":{"name":"Providence Genomics, Portland, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Providence Cancer Institute","address":{"name":"Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mu Wei","url":"http://orcid.org/0009-0000-4119-6490","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"email":"muhsin.wei@microsoft.com","@type":"Person"},{"name":"Hoifung Poon","url":"http://orcid.org/0000-0002-9067-0918","affiliation":[{"name":"Microsoft Research","address":{"name":"Microsoft Research, Redmond, USA","@type":"PostalAddress"},"@type":"Organization"}],"email":"hoifung@microsoft.com","@type":"Person"},{"name":"Sheng Wang","url":"http://orcid.org/0000-0002-0439-5199","affiliation":[{"name":"University of Washington","address":{"name":"Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"University of Washington","address":{"name":"Department of Surgery, University of Washington, Seattle, USA","@type":"PostalAddress"},"@type":"Organization"}],"email":"swang@cs.washington.edu","@type":"Person"}],"isAccessibleForFree":false,"hasPart":{"isAccessibleForFree":false,"cssSelector":".main-content","@type":"WebPageElement"},"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> <link rel="canonical" href="https://www.nature.com/articles/s41592-024-02499-w"> <meta name="journal_id" content="41592"/> <meta name="dc.title" content="A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities"/> <meta name="dc.source" content="Nature Methods 2024"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2024-11-18"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s), under exclusive licence to Springer Nature America, Inc."/> <meta name="dc.rights" content="2024 The Author(s), under exclusive licence to Springer Nature America, Inc."/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery. BiomedParse is a foundation model for image analysis that uses a joint learning approach to jointly conduct segmentation, detection and recognition and offer state-of-the-art performance across a wide range of datasets and nine modalities."/> <meta name="prism.issn" content="1548-7105"/> <meta name="prism.publicationName" content="Nature Methods"/> <meta name="prism.publicationDate" content="2024-11-18"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="11"/> <meta name="prism.copyright" content="2024 The Author(s), under exclusive licence to Springer Nature America, Inc."/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41592-024-02499-w"/> <meta name="prism.doi" content="doi:10.1038/s41592-024-02499-w"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41592-024-02499-w.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41592-024-02499-w"/> <meta name="citation_journal_title" content="Nature Methods"/> <meta name="citation_journal_abbrev" content="Nat Methods"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="1548-7105"/> <meta name="citation_title" content="A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities"/> <meta name="citation_online_date" content="2024/11/18"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="11"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41592-024-02499-w"/> <meta name="DOI" content="10.1038/s41592-024-02499-w"/> <meta name="size" content="226960"/> <meta name="citation_doi" content="10.1038/s41592-024-02499-w"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41592-024-02499-w&amp;api_key="/> <meta name="description" content="Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery. BiomedParse is a foundation model for image analysis that uses a joint learning approach to jointly conduct segmentation, detection and recognition and offer state-of-the-art performance across a wide range of datasets and nine modalities."/> <meta name="dc.creator" content="Zhao, Theodore"/> <meta name="dc.creator" content="Gu, Yu"/> <meta name="dc.creator" content="Yang, Jianwei"/> <meta name="dc.creator" content="Usuyama, Naoto"/> <meta name="dc.creator" content="Lee, Ho Hin"/> <meta name="dc.creator" content="Kiblawi, Sid"/> <meta name="dc.creator" content="Naumann, Tristan"/> <meta name="dc.creator" content="Gao, Jianfeng"/> <meta name="dc.creator" content="Crabtree, Angela"/> <meta name="dc.creator" content="Abel, Jacob"/> <meta name="dc.creator" content="Moung-Wen, Christine"/> <meta name="dc.creator" content="Piening, Brian"/> <meta name="dc.creator" content="Bifulco, Carlo"/> <meta name="dc.creator" content="Wei, Mu"/> <meta name="dc.creator" content="Poon, Hoifung"/> <meta name="dc.creator" content="Wang, Sheng"/> <meta name="dc.subject" content="Image processing"/> <meta name="dc.subject" content="Machine learning"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=The future of bioimage analysis: a dialog between mind and machine; citation_author=LA Royer; citation_volume=20; citation_publication_date=2023; citation_pages=951-952; citation_doi=10.1038/s41592-023-01930-y; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=Challenges and opportunities in bioimage analysis; citation_author=X Li, Y Zhang, J Wu, Q Dai; citation_volume=20; citation_publication_date=2023; citation_pages=958-961; citation_doi=10.1038/s41592-023-01900-4; citation_id=CR2"/> <meta name="citation_reference" content="Xu, H. et al. A whole-slide foundation model for digital pathology from real-world data. Nature 630,181&#8211;188 (2024)."/> <meta name="citation_reference" content="Liu, Z. et al. OCTCube: a 3D foundation model for optical coherence tomography that improves cross-dataset, cross-disease, cross-device and cross-modality analysis. Preprint at https://www.arxiv.org/abs/2408.11227 (2024)."/> <meta name="citation_reference" content="citation_journal_title=IET Image Process.; citation_title=Medical image segmentation using deep learning: a survey; citation_author=R Wang; citation_volume=16; citation_publication_date=2022; citation_pages=1243-1267; citation_doi=10.1049/ipr2.12419; citation_id=CR5"/> <meta name="citation_reference" content="Salpea, N., Tzouveli, P. &amp; Kollias, D. Medical image segmentation: a review of modern architectures. In European Conference on Computer Vision 691&#8211;708 (Springer, 2022)."/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Detecting and classifying lesions in mammograms with deep learning; citation_author=D Ribli, A Horv&#225;th, Z Unger, P Pollner, I Csabai; citation_volume=8; citation_publication_date=2018; citation_doi=10.1038/s41598-018-22437-z; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Cellcano: supervised cell type identification for single cell atac-seq data; citation_author=W Ma, J Lu, H Wu; citation_volume=14; citation_publication_date=2023; citation_doi=10.1038/s41467-023-37439-3; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Comput. Biol. Med.; citation_title=A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation; citation_author=H Jiang; citation_volume=157; citation_publication_date=2023; citation_pages=106726; citation_doi=10.1016/j.compbiomed.2023.106726; citation_id=CR9"/> <meta name="citation_reference" content="Kirillov, A. et al. Segment anything. In Proc. of the IEEE/CVF International Conference on Computer Vision 4015&#8211;4026 (IEEE, 2023)."/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Segment anything in medical images; citation_author=J Ma; citation_volume=15; citation_publication_date=2024; citation_doi=10.1038/s41467-024-44824-z; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Comput. Vis.; citation_title=Image parsing: Unifying segmentation, detection, and recognition; citation_author=Z Tu, X Chen, AL Yuille, S-C Zhu; citation_volume=63; citation_publication_date=2005; citation_pages=113-140; citation_doi=10.1007/s11263-005-6642-x; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Comput. Vis.; citation_title=Superparsing: scalable nonparametric image parsing with superpixels; citation_author=J Tighe, S Lazebnik; citation_volume=101; citation_publication_date=2013; citation_pages=329-349; citation_doi=10.1007/s11263-012-0574-z; citation_id=CR13"/> <meta name="citation_reference" content="Zhou, S. K. Medical Image Recognition, Segmentation and Parsing: Machine Learning and Multiple Object Approaches (Academic Press, 2015)."/> <meta name="citation_reference" content="Gamper, J. et al. PanNuke dataset extension, insights and baselines. Preprint at https://arxiv.org/abs/2003.10778 (2020)."/> <meta name="citation_reference" content="citation_journal_title=Adv. Neural Inf. Process. Syst.; citation_title=Amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation; citation_author=Y Ji; citation_volume=35; citation_publication_date=2022; citation_pages=36722-36732; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Med. Imaging; citation_title=Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?; citation_author=O Bernard; citation_volume=37; citation_publication_date=2018; citation_pages=2514-2525; citation_doi=10.1109/TMI.2018.2837502; citation_id=CR17"/> <meta name="citation_reference" content="Lee, H. H. et al. Foundation models for biomedical image segmentation: a survey. Preprint at https://arxiv.org/abs/2401.07654 (2024)."/> <meta name="citation_reference" content="Liu, S. et al. Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. Preprint at https://arxiv.org/abs/2303.05499 (2023)."/> <meta name="citation_reference" content="Zou, X. et al. Segment everything everywhere all at once. In Proc. 37th Int. Conference on Neural Information Processing Systems 19769&#8211;19782 (Curran Associates, 2024)."/> <meta name="citation_reference" content="citation_journal_title=Adv. Neural Inf. Process. Syst.; citation_title=Focal modulation networks; citation_author=J Yang, C Li, X Dai, J Gao; citation_volume=35; citation_publication_date=2022; citation_pages=4203-4217; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=ACM Trans. Comput. Healthc.; citation_title=Domain-specific language model pretraining for biomedical natural language processing; citation_author=Y Gu; citation_volume=3; citation_publication_date=2021; citation_pages=1-23; citation_doi=10.1145/3458754; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Med. Imaging; citation_title=A stochastic polygons model for glandular structures in colon histology images; citation_author=K Sirinukunwattana, DRJ Snead, NM Rajpoot; citation_volume=34; citation_publication_date=2015; citation_pages=2366-2378; citation_doi=10.1109/TMI.2015.2433900; citation_id=CR23"/> <meta name="citation_reference" content="Du, Y., Bai, F., Huang, T. &amp; Zhao, B. Segvol: universal and interactive volumetric medical image segmentation. Preprint at https://arxiv.org/abs/2311.13385 (2023)."/> <meta name="citation_reference" content="Zhao, Z. et al. One model to rule them all: towards universal segmentation for medical images with text prompts. Preprint at https://arxiv.org/abs/2312.17183 (2023)."/> <meta name="citation_reference" content="citation_journal_title=Med. Image Anal.; citation_title=Cellvit: vision transformers for precise cell segmentation and classification; citation_author=F H&#246;rst; citation_volume=94; citation_publication_date=2024; citation_pages=103143; citation_doi=10.1016/j.media.2024.103143; citation_id=CR26"/> <meta name="citation_reference" content="Hatamizadeh, A. et al. Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In Int. MICCAI Brain Lesion Workshop 272&#8211;284 (Springer, 2022)."/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation; citation_author=F Isensee, PF Jaeger, SA Kohl, J Petersen, KH Maier-Hein; citation_volume=18; citation_publication_date=2021; citation_pages=203-211; citation_doi=10.1038/s41592-020-01008-z; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Pattern Anal.Mach. Intell.; citation_title=Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs; citation_author=L-C Chen, G Papandreou, I Kokkinos, K Murphy, AL Yuille; citation_volume=40; citation_publication_date=2017; citation_pages=834-848; citation_doi=10.1109/TPAMI.2017.2699184; citation_id=CR29"/> <meta name="citation_reference" content="Butoi, V. I. et al. Universeg: universal medical image segmentation. In Proc. IEEE/CVF International Conference on Computer Vision 21438&#8211;21451 (ICCV, 2023)."/> <meta name="citation_reference" content="Ronneberger, O., Fischer, P. &amp; Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention&#8211;MICCAI 2015: 18th Int. Conf. Proc. Part III 234&#8211;241 (Springer, 2015)."/> <meta name="citation_reference" content="&#199;i&#231;ek, &#214;., Abdulkadir, A., Lienkamp, S. S., Brox, T. &amp; Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In Int. Conf. Medical Image Computing and Computer-assisted Intervention 424&#8211;432 (Springer, 2016)."/> <meta name="citation_reference" content="Milletari, F., Navab, N. &amp; Ahmadi, S.-A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In 2016 4th Int. Conf. 3D vision (3DV) 565&#8211;571 (IEEE, 2016)."/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Med. Imaging; citation_title=H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes; citation_author=X Li; citation_volume=37; citation_publication_date=2018; citation_pages=2663-2674; citation_doi=10.1109/TMI.2018.2845918; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Med. Imaging; citation_title=UNet++: redesigning Skip connections to exploit multiscale features in image segmentation; citation_author=Z Zhou, MMR Siddiquee, N Tajbakhsh, J Liang; citation_volume=39; citation_publication_date=2019; citation_pages=1856-1867; citation_doi=10.1109/TMI.2019.2959609; citation_id=CR35"/> <meta name="citation_reference" content="Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. In Int. MICCAI Brain Lesion Workshop 311&#8211;320 (Springer, 2018)."/> <meta name="citation_reference" content="Lee, H. H., Bao, S., Huo, Y. &amp; Landman, B. A. 3D UX-Net: a large kernel volumetric ConvNet modernizing hierarchical transformer for medical image segmentation. In The Eleventh International Conference on Learning Representations https://iclr.cc/media/iclr-2023/Slides/11340.pdf (ICLR, 2023)."/> <meta name="citation_reference" content="Lee, H. H. et al. Scaling up 3D kernels with bayesian frequency re-parameterization for medical image segmentation. In Int. Conf. Medical Image Computing and Computer-Assisted Intervention 632&#8211;641 (Springer, 2023)."/> <meta name="citation_reference" content="Chen, J. et al. TransUNet: transformers make strong encoders for medical image segmentation. Preprint at https://arxiv.org/abs/2102.04306 (2021)."/> <meta name="citation_reference" content="Xu, G., Zhang, X., He, X. &amp; Wu, X. LeViT-UNet: make faster encoders with transformer for medical image segmentation. In Chinese Conference on Pattern Recognition and Computer Vision (PRCV) 42&#8211;53 (Springer, 2023)."/> <meta name="citation_reference" content="Xie, Y., Zhang, J., Shen, C. &amp; Xia, Y. Cotr: efficiently bridging CNN and transformer for 3D medical image segmentation. In Int. Conf. Medical Image Computing And Computer-assisted Intervention 171&#8211;180 (Springer, 2021)."/> <meta name="citation_reference" content="Wang, W. et al. TransBTS: multimodal brain tumor segmentation using transformer. In Int. Conf. Medical Image Computing and Computer-Assisted Intervention 109&#8211;119 (Springer, 2021)."/> <meta name="citation_reference" content="Hatamizadeh, A. et al. UNETR: transformers for 3D medical image segmentation. In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision 574&#8211;584 (2022)."/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Image Process.; citation_title=nnformer: Volumetric medical image segmentation via a 3d transformer; citation_author=H-Y Zhou; citation_volume=32; citation_publication_date=2023; citation_pages=4036-4045; citation_doi=10.1109/TIP.2023.3293771; citation_id=CR44"/> <meta name="citation_reference" content="Cao, H. et al. Swin-UNet: UNet-like pure transformer for medical image segmentation. In European Conference on Computer Vision 205&#8211;218 (Springer, 2022)."/> <meta name="citation_reference" content="Zhang, S. et al. BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs. Preprint at https://arxiv.org/abs/2303.00915 (2023)."/> <meta name="citation_reference" content="Chaves, J. M. Z. et al. Training small multimodal models to bridge biomedical competency gap: a case study in radiology imaging. Preprint at https://arxiv.org/html/2403.08002v2 (2024)."/> <meta name="citation_reference" content="Ren, S., He, K., Girshick, R. &amp; Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intel. https://doi.org/10.1109/TPAMI.2016.2577031 (2017)."/> <meta name="citation_reference" content="Bochkovskiy, A., Wang, C.-Y. &amp; Liao, H.-Y. M. Yolov4: optimal speed and accuracy of object detection. Preprint at https://arxiv.org/abs/2004.10934 (2020)."/> <meta name="citation_reference" content="citation_journal_title=Med. Image Anal.; citation_title=A survey on deep learning in medical image analysis; citation_author=G Litjens; citation_volume=42; citation_publication_date=2017; citation_pages=60-88; citation_doi=10.1016/j.media.2017.07.005; citation_id=CR50"/> <meta name="citation_reference" content="Wong, H. E., Rakic, M., Guttag, J. &amp; Dalca, A. V. Scribbleprompt: fast and flexible interactive segmentation for any medical image. Preprint at https://arxiv.org/html/2312.07381v2 (2024)."/> <meta name="citation_reference" content="Shaharabany, T., Dahan, A., Giryes, R. &amp; Wolf, L. AutoSAM: adapting SAM to medical images by overloading the prompt encoder. Preprint at https://arxiv.org/abs/2306.06370 (2023)."/> <meta name="citation_reference" content="Lei, W., Wei, X., Zhang, X., Li, K. &amp; Zhang, S. MedLSAM: localize and segment anything model for 3D medical images. Preprint at https://arxiv.org/abs/2306.14752 (2023)."/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=Cellpose: a generalist algorithm for cellular segmentation; citation_author=C Stringer, T Wang, M Michaelos, M Pachitariu; citation_volume=18; citation_publication_date=2021; citation_pages=100-106; citation_doi=10.1038/s41592-020-01018-x; citation_id=CR54"/> <meta name="citation_reference" content="citation_journal_title=Nat. Biotechnol.; citation_title=Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning; citation_author=NF Greenwald; citation_volume=40; citation_publication_date=2022; citation_pages=555-565; citation_doi=10.1038/s41587-021-01094-0; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=Towards foundation models of biological image segmentation; citation_author=J Ma, B Wang; citation_volume=20; citation_publication_date=2023; citation_pages=953-955; citation_doi=10.1038/s41592-023-01885-0; citation_id=CR56"/> <meta name="citation_reference" content="Girshick, R. Fast r-cnn. In Proc. IEEE Int. Conf. on Computer Vision 1440&#8211;1448 (IEEE, 2015)."/> <meta name="citation_reference" content="He, K., Gkioxari, G., Doll&#225;r, P. &amp; Girshick, R. Mask R-CNN. In Proc. IEEE Int. Conf. On Computer Vision 2961&#8211;2969 (IEEE, 2017)."/> <meta name="citation_reference" content="Schmidt, U., Weigert, M., Broaddus, C. &amp; Myers, G. Cell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention&#8211;MICCAI 2018: 21st Int. Conf. Proc. Part II 265&#8211;273 (Springer, 2018)."/> <meta name="citation_reference" content="citation_journal_title=Med. Image Anal.; citation_title=Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images; citation_author=S Graham; citation_volume=58; citation_publication_date=2019; citation_pages=101563; citation_doi=10.1016/j.media.2019.101563; citation_id=CR60"/> <meta name="citation_reference" content="Yang, H. et al. CircleNet: anchor-free glomerulus detection with circle representation. In Medical Image Computing and Computer Assisted Intervention&#8211;MICCAI 2020: 23rd Int. Conf. Proc. Part IV 35&#8211;44 (Springer, 2020)."/> <meta name="citation_reference" content="Nguyen, E. H. et al. CircleSnake: instance segmentation with circle representation. In Int. Workshop on Machine Learning in Medical Imaging 298&#8211;306 (Springer, 2022)."/> <meta name="citation_reference" content="citation_journal_title=Neural Netw.; citation_title=Tsfd-net: tissue specific feature distillation network for nuclei segmentation and classification; citation_author=T Ilyas; citation_volume=151; citation_publication_date=2022; citation_pages=1-15; citation_doi=10.1016/j.neunet.2022.02.020; citation_id=CR63"/> <meta name="citation_reference" content="OHDSI. Athena standardized vocabularies. https://www.ohdsi.org/analytic-tools/athena-standardized-vocabularies/ "/> <meta name="citation_reference" content="Gu, Y. et al. BiomedJourney: counterfactual biomedical image generation by instruction-learning from multimodal patient journeys. Preprint at https://arxiv.org/abs/2310.10765 (2023)."/> <meta name="citation_reference" content="Li, C. et al. Llava-med: training a large language-and-vision assistant for biomedicine in one day. In 37th Conference on Neural Information Processing Systems https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf (NeurIPS, 2024)."/> <meta name="citation_reference" content="Gu, Y., Zhang, S., Usuyama, N. et al. Distilling large language models for biomedical knowledge extraction: a case study on adverse drug events. Preprint at https://arxiv.org/abs/2307.06439 (2023)."/> <meta name="citation_reference" content="Zou, X. et al. Generalized decoding for pixel, image, and language. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 15116&#8211;15127 (IEEE, 2023)."/> <meta name="citation_reference" content="Ren, T. et al. Grounded SAM: assembling open-world models for diverse visual tasks. Preprint at https://arxiv.org/abs/2401.14159 (2024)."/> <meta name="citation_reference" content="Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. &amp; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proc. European Conference on Computer Vision (ECCV) 801&#8211;818 (2018)."/> <meta name="citation_reference" content="Kazerooni, A. F. et al. The brain tumor segmentation (BraTS) challenge 2023: focus on pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs). Preprint at https://arxiv.org/abs/2305.17033 (2023)."/> <meta name="citation_reference" content="Lee, P., Goldberg, C. &amp; Kohane, I. The AI Revolution in Medicine: GPT-4 and Beyond (Pearson, 2023)."/> <meta name="citation_reference" content="Achiam, J. et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023)."/> <meta name="citation_reference" content="citation_journal_title=J. Am. Stat. Assoc.; citation_title=The Kolmogorov&#8211;Smirnov test for goodness of fit; citation_author=FJ Massey Jr; citation_volume=46; citation_publication_date=1951; citation_pages=68-78; citation_doi=10.1080/01621459.1951.10500769; citation_id=CR74"/> <meta name="citation_reference" content="Canny, J. A computational approach to edge detection. In IEEE Transactions on Pattern Analysis and Machine Intelligence 679&#8211;698 (IEEE, 1986)."/> <meta name="citation_reference" content="Viola, P. &amp; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, I&#8211;I (IEEE, 2001)."/> <meta name="citation_reference" content="Girshick, R., Donahue, J., Darrell, T. &amp; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 580&#8211;587 (2014)."/> <meta name="citation_author" content="Zhao, Theodore"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Gu, Yu"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Yang, Jianwei"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Usuyama, Naoto"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Lee, Ho Hin"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Kiblawi, Sid"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Naumann, Tristan"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Gao, Jianfeng"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Crabtree, Angela"/> <meta name="citation_author_institution" content="Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, USA"/> <meta name="citation_author" content="Abel, Jacob"/> <meta name="citation_author_institution" content="Providence Genomics, Portland, USA"/> <meta name="citation_author" content="Moung-Wen, Christine"/> <meta name="citation_author_institution" content="Providence Genomics, Portland, USA"/> <meta name="citation_author" content="Piening, Brian"/> <meta name="citation_author_institution" content="Providence Genomics, Portland, USA"/> <meta name="citation_author_institution" content="Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, USA"/> <meta name="citation_author" content="Bifulco, Carlo"/> <meta name="citation_author_institution" content="Providence Genomics, Portland, USA"/> <meta name="citation_author_institution" content="Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, USA"/> <meta name="citation_author" content="Wei, Mu"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Poon, Hoifung"/> <meta name="citation_author_institution" content="Microsoft Research, Redmond, USA"/> <meta name="citation_author" content="Wang, Sheng"/> <meta name="citation_author_institution" content="Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA"/> <meta name="citation_author_institution" content="Department of Surgery, University of Washington, Seattle, USA"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@naturemethods"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities"/> <meta name="twitter:description" content="Nature Methods - BiomedParse is a foundation model for image analysis that uses a joint learning approach to jointly conduct segmentation, detection and recognition and offer state-of-the-art..."/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig1_HTML.png"/> <meta property="og:url" content="https://www.nature.com/articles/s41592-024-02499-w"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="Nature"/> <meta property="og:title" content="A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities - Nature Methods"/> <meta property="og:description" content="BiomedParse is a foundation model for image analysis that uses a joint learning approach to jointly conduct segmentation, detection and recognition and offer state-of-the-art performance across a wide range of datasets and nine modalities."/> <meta property="og:image" content="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig1_HTML.png"/> <script> window.eligibleForRa21 = 'true'; </script> </head> <body class="article-page"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="position-relative cleared z-index-50 background-white" data-test="top-containers"> <a class="c-skip-link" href="#content">Skip to main content</a> <div class="c-grade-c-banner u-hide"> <div class="c-grade-c-banner__container"> <p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.</p> </div> </div> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90"> <div class="c-ad__inner" data-container-type="banner-advert"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-top-1" class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type="top" data-test="top-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/nmeth.nature.com/article" data-gpt-sizes="728x90" data-gpt-targeting="type=article;pos=top;artid=s41592-024-02499-w;doi=10.1038/s41592-024-02499-w;subjmeta=114,1305,1564,631;kwrd=Image+processing,Machine+learning"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/nmeth.nature.com/article&amp;sz=728x90&amp;c=1699968841&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41592-024-02499-w%26doi%3D10.1038/s41592-024-02499-w%26subjmeta%3D114,1305,1564,631%26kwrd%3DImage+processing,Machine+learning"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/nmeth.nature.com/article&amp;sz=728x90&amp;c=1699968841&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41592-024-02499-w%26doi%3D10.1038/s41592-024-02499-w%26subjmeta%3D114,1305,1564,631%26kwrd%3DImage+processing,Machine+learning" alt="Advertisement" width="728" height="90"></a> </noscript> </div> </div> </aside> <header class="c-header" id="header" data-header data-track-component="nature-150-split-header" style="border-color:#eb5b25"> <div class="c-header__row"> <div class="c-header__container"> <div class="c-header__split"> <div class="c-header__logo-container"> <a href="/nmeth" data-track="click" data-track-action="home" data-track-label="image"> <picture class="c-header__logo"> <source srcset="https://media.springernature.com/full/nature-cms/uploads/product/nmeth/header-88dba1e6157ca1cb71613e5e7c3ef243.svg" media="(min-width: 875px)"> <img src="https://media.springernature.com/full/nature-cms/uploads/product/nmeth/header-88dba1e6157ca1cb71613e5e7c3ef243.svg" height="32" alt="Nature Methods"> </picture> </a> </div> <ul class="c-header__menu c-header__menu--global"> <li class="c-header__item c-header__item--padding c-header__item--hide-md-max"> <a class="c-header__link" href="https://www.nature.com/siteindex" data-test="siteindex-link" data-track="click" data-track-action="open nature research index" data-track-label="link"> <span>View all journals</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--pipe"> <a class="c-header__link c-header__link--search" href="#search-menu" data-header-expander data-test="search-link" data-track="click" data-track-action="open search tray" data-track-label="button"> <svg role="img" aria-hidden="true" focusable="false" height="22" width="22" viewBox="0 0 18 18" xmlns="http://www.w3.org/2000/svg"><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"/></svg><span>Search</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe"> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41592-024-02499-w?error=cookies_not_supported&code=1fb54b0a-dddc-49b4-ba95-4219fb6a0023'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </li> </ul> </div> </div> </div> <div class="c-header__row"> <div class="c-header__container" data-test="navigation-row"> <div class="c-header__split"> <ul class="c-header__menu c-header__menu--journal"> <li class="c-header__item c-header__item--dropdown-menu" data-test="explore-content-button"> <a href="#explore" class="c-header__link" data-header-expander data-test="menu-button--explore" data-track="click" data-track-action="open explore expander" data-track-label="button"> <span><span class="c-header__show-text">Explore</span> content</span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu"> <a href="#about-the-journal" class="c-header__link" data-header-expander data-test="menu-button--about-the-journal" data-track="click" data-track-action="open about the journal expander" data-track-label="button"> <span>About <span class="c-header__show-text">the journal</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu" data-test="publish-with-us-button"> <a href="#publish-with-us" class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test="menu-button--publish" data-track="click" data-track-action="open publish with us expander" data-track-label="button"> <span>Publish <span class="c-header__show-text">with us</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe c-header__item--hide-lg-max"> <a class="c-header__link" href="/nmeth/subscribe" data-track="click" data-track-action="subscribe" data-track-label="link" data-test="menu-button-subscribe"> <span>Subscribe</span> </a> </li> </ul> <ul class="c-header__menu c-header__menu--hide-lg-max"> <li class="c-header__item"> <a class="c-header__link" href="https://idp.nature.com/auth/personal/springernature?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D95%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fnmeth%252F" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external> <span>Sign up for alerts</span><svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#222"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe"> <a class="c-header__link" href="https://www.nature.com/nmeth.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </div> </div> </header> <nav class="u-mb-16" aria-label="breadcrumbs"> <div class="u-container"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature"><span itemprop="name">nature</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/nmeth" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature methods"><span itemprop="name">nature methods</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/nmeth/articles?type&#x3D;article" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:articles"><span itemprop="name">articles</span></a><meta itemprop="position" content="3"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb3" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"> <span itemprop="name">article</span><meta itemprop="position" content="4"></li> </ol> </div> </nav> </div> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="content" data-component="article-container" data-container-type="article"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <article lang="en"> <div class="c-article-header"> <header> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Article</li> <li class="c-article-identifiers__item">Published: <time datetime="2024-11-18">18 November 2024</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Theodore-Zhao-Aff1" data-author-popup="auth-Theodore-Zhao-Aff1" data-author-search="Zhao, Theodore">Theodore Zhao</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yu-Gu-Aff1" data-author-popup="auth-Yu-Gu-Aff1" data-author-search="Gu, Yu">Yu Gu</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-1704-1744"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-1704-1744</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jianwei-Yang-Aff1" data-author-popup="auth-Jianwei-Yang-Aff1" data-author-search="Yang, Jianwei">Jianwei Yang</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Naoto-Usuyama-Aff1" data-author-popup="auth-Naoto-Usuyama-Aff1" data-author-search="Usuyama, Naoto">Naoto Usuyama</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ho_Hin-Lee-Aff1" data-author-popup="auth-Ho_Hin-Lee-Aff1" data-author-search="Lee, Ho Hin">Ho Hin Lee</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-7378-2379"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-7378-2379</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sid-Kiblawi-Aff1" data-author-popup="auth-Sid-Kiblawi-Aff1" data-author-search="Kiblawi, Sid">Sid Kiblawi</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-6183-3354"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-6183-3354</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Tristan-Naumann-Aff1" data-author-popup="auth-Tristan-Naumann-Aff1" data-author-search="Naumann, Tristan">Tristan Naumann</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0003-2150-1747"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0003-2150-1747</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jianfeng-Gao-Aff1" data-author-popup="auth-Jianfeng-Gao-Aff1" data-author-search="Gao, Jianfeng">Jianfeng Gao</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Angela-Crabtree-Aff3" data-author-popup="auth-Angela-Crabtree-Aff3" data-author-search="Crabtree, Angela">Angela Crabtree</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-6584-8158"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-6584-8158</a></span><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jacob-Abel-Aff2" data-author-popup="auth-Jacob-Abel-Aff2" data-author-search="Abel, Jacob">Jacob Abel</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Christine-Moung_Wen-Aff2" data-author-popup="auth-Christine-Moung_Wen-Aff2" data-author-search="Moung-Wen, Christine">Christine Moung-Wen</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Brian-Piening-Aff2-Aff3" data-author-popup="auth-Brian-Piening-Aff2-Aff3" data-author-search="Piening, Brian">Brian Piening</a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-2683-8157"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-2683-8157</a></span><sup class="u-js-hide"><a href="#Aff2">2</a>,<a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Carlo-Bifulco-Aff2-Aff3" data-author-popup="auth-Carlo-Bifulco-Aff2-Aff3" data-author-search="Bifulco, Carlo">Carlo Bifulco</a><sup class="u-js-hide"><a href="#Aff2">2</a>,<a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mu-Wei-Aff1" data-author-popup="auth-Mu-Wei-Aff1" data-author-search="Wei, Mu" data-corresp-id="c1">Mu Wei<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0009-0000-4119-6490"><span class="u-visually-hidden">ORCID: </span>orcid.org/0009-0000-4119-6490</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Hoifung-Poon-Aff1" data-author-popup="auth-Hoifung-Poon-Aff1" data-author-search="Poon, Hoifung" data-corresp-id="c2">Hoifung Poon<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-9067-0918"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-9067-0918</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 16 authors for this article" title="Show all 16 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sheng-Wang-Aff4-Aff5" data-author-popup="auth-Sheng-Wang-Aff4-Aff5" data-author-search="Wang, Sheng" data-corresp-id="c3">Sheng Wang<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-0439-5199"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-0439-5199</a></span><sup class="u-js-hide"><a href="#Aff4">4</a>,<a href="#Aff5">5</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/nmeth" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">Nature Methods</i></a> (<span data-test="article-publication-year">2024</span>)<a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">5970 <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item" data-test="citation-count"> <p class="c-article-metrics-bar__count">1 <span class="c-article-metrics-bar__label">Citations</span></p> </li> <li class="c-article-metrics-bar__item" data-test="altmetric-score"> <p class="c-article-metrics-bar__count">112 <span class="c-article-metrics-bar__label">Altmetric</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/s41592-024-02499-w/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </header> <div class="u-js-hide" data-component="article-subject-links"> <h3 class="c-article__sub-heading">Subjects</h3> <ul class="c-article-subject-list"> <li class="c-article-subject-list__subject"><a href="/subjects/image-processing" data-track="click" data-track-action="view subject" data-track-label="link">Image processing</a></li><li class="c-article-subject-list__subject"><a href="/subjects/machine-learning" data-track="click" data-track-action="view subject" data-track-label="link">Machine learning</a></li> </ul> </div> </div> <div class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery.</p></div></div></section> <noscript> <div class="c-nature-box c-nature-box--side " data-component="entitlement-box"> <div class="js-access-button"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button" data-test="ra21"> <svg class="u-icon" width="18" height="18" aria-hidden="true" focusable="false"><use href="#icon-institution"></use></svg> <span class="c-article__button-text">Access through your institution</span> </a> </div> <div class="js-buy-button"> <a href="#access-options" class="c-article__button c-article__button--inverted" data-test="ra21"> <span>Buy or subscribe</span> </a> </div> </div> </noscript> <div class="js-context-bar-sticky-point-mobile" data-track-context="article body"> </div> <div class="c-article-access-provider u-mb-32 u-mt-0"> <p class="c-article-access-provider__text u-sans-serif">This is a preview of subscription content, <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" data-track="click_institution_login" data-track-context="article body link" data-track-action="institution access preview subscription" data-track-label="link">access via your institution</a></p> </div> <h2 class="c-article-section__title u-h2 u-mb-24" id="access-options">Access options</h2> <noscript> <div class="c-nature-box c-nature-box--side " data-component="entitlement-box"> <div class="js-access-button"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button" data-test="ra21"> <svg class="u-icon" width="18" height="18" aria-hidden="true" focusable="false"><use href="#icon-institution"></use></svg> <span class="c-article__button-text">Access through your institution</span> </a> </div> </div> </noscript> <div class="c-nature-box c-nature-box--side u-display-none u-hide-print" aria-hidden="true" data-component="entitlement-box" id=entitlement-box-main-column-unentitled data-force-hide-buy-button="true" data-unsubscribe-media-query-change="true" > <p class="c-nature-box__text js-text u-display-none" aria-hidden="true"></p> <div class="js-access-button u-display-none"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button" aria-hidden="true" data-test="ra21" data-track="click_institution_login" data-track-context="article body button" data-track-action="institution access above buybox" data-track-label="button"> <svg class="u-icon" width="18" height="18" aria-hidden="true" focusable="false"><use xlink:href="#icon-institution"></use></svg> <span class="c-article__button-text">Access through your institution</span> </a> </div> <div class="js-change-institution-button u-display-none"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button c-article__button--inverted" aria-hidden="true" data-test="ra21" data-track="click" data-track-action="change institution above buybox" data-track-label="button"> <span class="c-article__button-text">Change institution</span> </a> </div> <div class="js-buy-button u-display-none"> <a href="#access-options" class="c-article__button c-article__button--inverted" aria-hidden="true" data-test="ra21" data-track="click" data-track-action="buy or subscribe" data-track-label="button"> <span>Buy or subscribe</span> </a> </div> </div> <div class="LiveAreaSection"><style type="text/css">/* style specs start */ /* style specs end */</style><section class="BuyBoxSection"><div class="subscribe-buybox-nature-plus"> <div class="box-inner"> <p class="title-buybox"> Access Nature and 54 other Nature Portfolio journals </p> <p class="access-buybox"> Get Nature+, our best-value online-access subscription </p> <div> <p class="price-buybox" id="nature-plus-subscription-price"> <span class="price-value">24,99 €<span class="price-per-period" style="font-size: 0.9rem"> / 30 days</span></span> </p> <p class="issue-buybox">cancel any time</p> </div> <div class="button-container"> <a href="https://shop.nature.com/products/plus" class="Button-505204839" data-track="click" data-track-action="nature+" data-track-label="link" data-track-category="article body" ><span class="ButtonLabel-3869432492">Learn more</span></a > </div> </div> </div><div class="subscribe-buybox"> <div class="box-inner"> <p class="title-buybox">Subscribe to this journal</p> <p class="access-buybox"> Receive 12 print issues and online access </p> <div> <p class="price-buybox" id="subscription-price">251,40 € per year</p> <p class="issue-buybox">only 20,95 € per issue</p> </div> <div class="button-container"> <a href="/nmeth/subscribe" class="Button-1078489254" data-track="click" data-track-action="subscribe" data-track-label="link" data-track-category="article body" ><span class="ButtonLabel-3296148077">Learn more</span></a > </div> </div> </div><div class="readcube-buybox"> <div class="box-inner"> <p class="title-readcube">Buy this article</p> <ul> <li class="link-usp"><span>Purchase on SpringerLink</span></li> <li class="link-usp"> <span>Instant access to full article PDF</span> </li> </ul> <div class="button-container"> <a href="//link.springer.com/article/10.1038/s41592-024-02499-w?utm_source=nature&amp;utm_medium=referral&amp;utm_campaign=buyArticle" class="btn-secondary Button-2737859108" data-track="click" data-track-action="Go to SL article page" data-track-label="link" data-track-category="article body" rel="noreferrer" ><span class="btn-secondary-label ButtonLabel-1636778223" >Buy now</span ></a > </div> </div> </div><p class="tax-buybox">Prices may be subject to local taxes which are calculated during checkout</p></section><style type="text/css"> /* style specs start */ style { display: none !important; } .LiveAreaSection * { align-content: stretch; align-items: stretch; align-self: auto; animation-delay: 0s; animation-direction: normal; animation-duration: 0s; animation-fill-mode: none; animation-iteration-count: 1; animation-name: none; animation-play-state: running; animation-timing-function: ease; azimuth: center; backface-visibility: visible; background-attachment: scroll; background-blend-mode: normal; background-clip: borderBox; background-color: transparent; background-image: none; background-origin: paddingBox; background-position: 0 0; background-repeat: repeat; background-size: auto auto; block-size: auto; border-block-end-color: currentcolor; border-block-end-style: none; border-block-end-width: medium; border-block-start-color: currentcolor; border-block-start-style: none; border-block-start-width: medium; border-bottom-color: currentcolor; border-bottom-left-radius: 0; border-bottom-right-radius: 0; border-bottom-style: none; border-bottom-width: medium; border-collapse: separate; border-image-outset: 0s; border-image-repeat: stretch; border-image-slice: 100%; border-image-source: none; border-image-width: 1; border-inline-end-color: currentcolor; border-inline-end-style: none; border-inline-end-width: medium; border-inline-start-color: currentcolor; border-inline-start-style: none; border-inline-start-width: medium; border-left-color: currentcolor; border-left-style: none; border-left-width: medium; border-right-color: currentcolor; border-right-style: none; border-right-width: medium; border-spacing: 0; border-top-color: currentcolor; border-top-left-radius: 0; border-top-right-radius: 0; border-top-style: none; border-top-width: medium; bottom: auto; box-decoration-break: slice; box-shadow: none; box-sizing: border-box; break-after: auto; break-before: auto; break-inside: auto; caption-side: top; caret-color: auto; clear: none; clip: auto; clip-path: none; color: initial; column-count: auto; column-fill: balance; column-gap: normal; column-rule-color: currentcolor; column-rule-style: none; column-rule-width: medium; column-span: none; column-width: auto; content: normal; counter-increment: none; counter-reset: none; cursor: auto; display: inline; empty-cells: show; filter: none; flex-basis: auto; flex-direction: row; flex-grow: 0; flex-shrink: 1; flex-wrap: nowrap; float: none; font-family: initial; font-feature-settings: normal; font-kerning: auto; font-language-override: normal; font-size: medium; font-size-adjust: none; font-stretch: normal; font-style: normal; font-synthesis: weight style; font-variant: normal; font-variant-alternates: normal; font-variant-caps: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; font-weight: 400; grid-auto-columns: auto; grid-auto-flow: row; grid-auto-rows: auto; grid-column-end: auto; grid-column-gap: 0; grid-column-start: auto; grid-row-end: auto; grid-row-gap: 0; grid-row-start: auto; grid-template-areas: none; grid-template-columns: none; grid-template-rows: none; height: auto; hyphens: manual; image-orientation: 0deg; image-rendering: auto; image-resolution: 1dppx; ime-mode: auto; inline-size: auto; isolation: auto; justify-content: flexStart; left: auto; letter-spacing: normal; line-break: auto; line-height: normal; list-style-image: none; list-style-position: outside; list-style-type: disc; margin-block-end: 0; margin-block-start: 0; margin-bottom: 0; margin-inline-end: 0; margin-inline-start: 0; margin-left: 0; margin-right: 0; margin-top: 0; mask-clip: borderBox; mask-composite: add; mask-image: none; mask-mode: matchSource; mask-origin: borderBox; mask-position: 0 0; mask-repeat: repeat; mask-size: auto; mask-type: luminance; max-height: none; max-width: none; min-block-size: 0; min-height: 0; min-inline-size: 0; min-width: 0; mix-blend-mode: normal; object-fit: fill; object-position: 50% 50%; offset-block-end: auto; offset-block-start: auto; offset-inline-end: auto; offset-inline-start: auto; opacity: 1; order: 0; orphans: 2; outline-color: initial; outline-offset: 0; outline-style: none; outline-width: medium; overflow: visible; overflow-wrap: normal; overflow-x: visible; overflow-y: visible; padding-block-end: 0; padding-block-start: 0; padding-bottom: 0; padding-inline-end: 0; padding-inline-start: 0; padding-left: 0; padding-right: 0; padding-top: 0; page-break-after: auto; page-break-before: auto; page-break-inside: auto; perspective: none; perspective-origin: 50% 50%; pointer-events: auto; position: static; quotes: initial; resize: none; right: auto; ruby-align: spaceAround; ruby-merge: separate; ruby-position: over; scroll-behavior: auto; scroll-snap-coordinate: none; scroll-snap-destination: 0 0; scroll-snap-points-x: none; scroll-snap-points-y: none; scroll-snap-type: none; shape-image-threshold: 0; shape-margin: 0; shape-outside: none; tab-size: 8; table-layout: auto; text-align: initial; text-align-last: auto; text-combine-upright: none; text-decoration-color: currentcolor; text-decoration-line: none; text-decoration-style: solid; text-emphasis-color: currentcolor; text-emphasis-position: over right; text-emphasis-style: none; text-indent: 0; text-justify: auto; text-orientation: mixed; text-overflow: clip; text-rendering: auto; text-shadow: none; text-transform: none; text-underline-position: auto; top: auto; touch-action: auto; transform: none; transform-box: borderBox; transform-origin: 50% 50%0; transform-style: flat; transition-delay: 0s; transition-duration: 0s; transition-property: all; transition-timing-function: ease; vertical-align: baseline; visibility: visible; white-space: normal; widows: 2; width: auto; will-change: auto; word-break: normal; word-spacing: normal; word-wrap: normal; writing-mode: horizontalTb; z-index: auto; -webkit-appearance: none; -moz-appearance: none; -ms-appearance: none; appearance: none; margin: 0; } .LiveAreaSection { width: 100%; } .LiveAreaSection .login-option-buybox { display: block; width: 100%; font-size: 17px; line-height: 30px; color: #222; padding-top: 30px; font-family: Harding, Palatino, serif; } .LiveAreaSection .additional-access-options { display: block; font-weight: 700; font-size: 17px; line-height: 30px; color: #222; font-family: Harding, Palatino, serif; } .LiveAreaSection .additional-login > li:not(:first-child)::before { transform: translateY(-50%); content: ""; height: 1rem; position: absolute; top: 50%; left: 0; border-left: 2px solid #999; } .LiveAreaSection .additional-login > li:not(:first-child) { padding-left: 10px; } .LiveAreaSection .additional-login > li { display: inline-block; position: relative; vertical-align: middle; padding-right: 10px; } .BuyBoxSection { display: flex; flex-wrap: wrap; flex: 1; flex-direction: row-reverse; margin: -30px -15px 0; } .BuyBoxSection .box-inner { width: 100%; height: 100%; padding: 30px 5px; display: flex; flex-direction: column; justify-content: space-between; } .BuyBoxSection p { margin: 0; } .BuyBoxSection .readcube-buybox { background-color: #f3f3f3; flex-shrink: 1; flex-grow: 1; flex-basis: 255px; background-clip: content-box; padding: 0 15px; margin-top: 30px; } .BuyBoxSection .subscribe-buybox { background-color: #f3f3f3; flex-shrink: 1; flex-grow: 4; flex-basis: 300px; background-clip: content-box; padding: 0 15px; margin-top: 30px; } .BuyBoxSection .subscribe-buybox-nature-plus { background-color: #f3f3f3; flex-shrink: 1; flex-grow: 4; flex-basis: 100%; background-clip: content-box; padding: 0 15px; margin-top: 30px; } .BuyBoxSection .title-readcube, .BuyBoxSection .title-buybox { display: block; margin: 0; margin-right: 10%; margin-left: 10%; font-size: 24px; line-height: 32px; color: #222; text-align: center; font-family: Harding, Palatino, serif; } .BuyBoxSection .title-asia-buybox { display: block; margin: 0; margin-right: 5%; margin-left: 5%; font-size: 24px; line-height: 32px; color: #222; text-align: center; font-family: Harding, Palatino, serif; } .BuyBoxSection .asia-link, .Link-328123652, .Link-2926870917, .Link-2291679238, .Link-595459207 { color: #069; cursor: pointer; text-decoration: none; font-size: 1.05em; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 1.05em6; } .BuyBoxSection .access-readcube { display: block; margin: 0; margin-right: 10%; margin-left: 10%; font-size: 14px; color: #222; padding-top: 10px; text-align: center; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 20px; } .BuyBoxSection ul { margin: 0; } .BuyBoxSection .link-usp { display: list-item; margin: 0; margin-left: 20px; padding-top: 6px; list-style-position: inside; } .BuyBoxSection .link-usp span { font-size: 14px; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 20px; } .BuyBoxSection .access-asia-buybox { display: block; margin: 0; margin-right: 5%; margin-left: 5%; font-size: 14px; color: #222; padding-top: 10px; text-align: center; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 20px; } .BuyBoxSection .access-buybox { display: block; margin: 0; margin-right: 10%; margin-left: 10%; font-size: 14px; color: #222; opacity: 0.8px; padding-top: 10px; text-align: center; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 20px; } .BuyBoxSection .price-buybox { display: block; font-size: 30px; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; padding-top: 30px; text-align: center; } .BuyBoxSection .price-buybox-to { display: block; font-size: 30px; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; text-align: center; } .BuyBoxSection .price-info-text { font-size: 16px; padding-right: 10px; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; } .BuyBoxSection .price-value { font-size: 30px; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; } .BuyBoxSection .price-per-period { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; } .BuyBoxSection .price-from { font-size: 14px; padding-right: 10px; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 20px; } .BuyBoxSection .issue-buybox { display: block; font-size: 13px; text-align: center; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 19px; } .BuyBoxSection .no-price-buybox { display: block; font-size: 13px; line-height: 18px; text-align: center; padding-right: 10%; padding-left: 10%; padding-bottom: 20px; padding-top: 30px; color: #222; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; } .BuyBoxSection .vat-buybox { display: block; margin-top: 5px; margin-right: 20%; margin-left: 20%; font-size: 11px; color: #222; padding-top: 10px; padding-bottom: 15px; text-align: center; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: 17px; } .BuyBoxSection .tax-buybox { display: block; width: 100%; color: #222; padding: 20px 16px; text-align: center; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; line-height: NaNpx; } .BuyBoxSection .button-container { display: flex; padding-right: 20px; padding-left: 20px; justify-content: center; } .BuyBoxSection .button-container > * { flex: 1px; } .BuyBoxSection .button-container > a:hover, .Button-505204839:hover, .Button-1078489254:hover, .Button-2737859108:hover { text-decoration: none; } .BuyBoxSection .btn-secondary { background: #fff; } .BuyBoxSection .button-asia { background: #069; border: 1px solid #069; border-radius: 0; cursor: pointer; display: block; padding: 9px; outline: 0; text-align: center; text-decoration: none; min-width: 80px; margin-top: 75px; } .BuyBoxSection .button-label-asia, .ButtonLabel-3869432492, .ButtonLabel-3296148077, .ButtonLabel-1636778223 { display: block; color: #fff; font-size: 17px; line-height: 20px; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; text-align: center; text-decoration: none; cursor: pointer; } .Button-505204839, .Button-1078489254, .Button-2737859108 { background: #069; border: 1px solid #069; border-radius: 0; cursor: pointer; display: block; padding: 9px; outline: 0; text-align: center; text-decoration: none; min-width: 80px; max-width: 320px; margin-top: 20px; } .Button-505204839 .btn-secondary-label, .Button-1078489254 .btn-secondary-label, .Button-2737859108 .btn-secondary-label { color: #069; } .uList-2102244549 { list-style: none; padding: 0; margin: 0; } /* style specs end */</style><div></div></div> <nav class="c-access-options"> <h3 class="c-access-options__heading">Additional access options:</h3> <ul class="c-access-options__list"> <li> <a href="https://idp.nature.com/authorize/natureuser?client_id&#x3D;grover&amp;redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" data-track="click" data-track-action="login" data-track-category="article body" data-track-label="link">Log in</a> </li> <li> <a href="https://www.springernature.com/gp/librarians/licensing/license-options" data-track="click" data-track-action="learn-subscription" data-track-category="article body" data-track-label="link">Learn about institutional subscriptions</a> </li> <li> <a href="https://support.nature.com/en/support/home" data-track="click" data-track-action="read our faqs" data-track-category="article body" data-track-label="link">Read our FAQs</a> </li> <li> <a href="https://www.springernature.com/gp/contact" data-track="click" data-track-action="contact customer support" data-track-category="article body" data-track-label="link">Contact customer support</a> </li> </ul> </nav> <div class="u-display-none"> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1: Overview of BiomedParse and BiomedParseData<i>.</i></b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig1_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig1_HTML.png" alt="" loading="lazy" width="261" height="312"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2: Comparison on large-scale biomedical image segmentation datasets.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig2_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig2_HTML.png" alt="" loading="lazy" width="258" height="312"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3: Evaluation on detecting irregular-shaped objects.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig3_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig3_HTML.png" alt="" loading="lazy" width="225" height="312"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4: Evaluation on object recognition.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig4_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig4_HTML.png" alt="" loading="lazy" width="268" height="312"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5: Evaluation of BiomedParse on real-world cell segmentation examples.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig5_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig5_HTML.png" alt="" loading="lazy" width="294" height="312"></picture></div></div></figure></div> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41467-024-44824-z/MediaObjects/41467_2024_44824_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41467-024-44824-z?fromPaywallRec=true" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s41467-024-44824-z">Segment anything in medical images </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">22 January 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs43588-024-00662-z/MediaObjects/43588_2024_662_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s43588-024-00662-z?fromPaywallRec=true" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s43588-024-00662-z">Overcoming data scarcity in biomedical imaging with a foundational multi-task model </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">19 July 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41597-024-04159-2/MediaObjects/41597_2024_4159_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41597-024-04159-2?fromPaywallRec=true" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41597-024-04159-2">MedSegBench: A comprehensive benchmark for medical image segmentation in diverse data modalities </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">25 November 2024</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732699910, embedded_user: 'null' } }); </script> <div> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>BiomedParseData can be accessed at <a href="https://aka.ms/biomedparse-release">https://aka.ms/biomedparse-release</a>. The three real-world pathology images, including the annotations by pathologists and BiomedParse, can be accessed at <a href="https://aka.ms/biomedparse-release">https://aka.ms/biomedparse-release</a>.</p> </div></div></section><section data-title="Code availability"><div class="c-article-section" id="code-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="code-availability">Code availability</h2><div class="c-article-section__content" id="code-availability-content"> <p>BiomedParse can be accessed at <a href="https://aka.ms/biomedparse-release">https://aka.ms/biomedparse-release</a>, including the model weights and relevant source code. We include detailed methods and implementation steps in the <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41592-024-02499-w#Sec8">Methods</a> to allow for independent replication.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Royer, L. A. The future of bioimage analysis: a dialog between mind and machine. <i>Nat. Methods</i> <b>20</b>, 951–952 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41592-023-01930-y" data-track-item_id="10.1038/s41592-023-01930-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41592-023-01930-y" aria-label="Article reference 1" data-doi="10.1038/s41592-023-01930-y">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVGrurjI" aria-label="CAS reference 1">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=37434005" aria-label="PubMed reference 1">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20future%20of%20bioimage%20analysis%3A%20a%20dialog%20between%20mind%20and%20machine&amp;journal=Nat.%20Methods&amp;doi=10.1038%2Fs41592-023-01930-y&amp;volume=20&amp;pages=951-952&amp;publication_year=2023&amp;author=Royer%2CLA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Li, X., Zhang, Y., Wu, J. &amp; Dai, Q. Challenges and opportunities in bioimage analysis. <i>Nat. Methods</i> <b>20</b>, 958–961 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41592-023-01900-4" data-track-item_id="10.1038/s41592-023-01900-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41592-023-01900-4" aria-label="Article reference 2" data-doi="10.1038/s41592-023-01900-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVGrurjF" aria-label="CAS reference 2">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=37433996" aria-label="PubMed reference 2">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=Challenges%20and%20opportunities%20in%20bioimage%20analysis&amp;journal=Nat.%20Methods&amp;doi=10.1038%2Fs41592-023-01900-4&amp;volume=20&amp;pages=958-961&amp;publication_year=2023&amp;author=Li%2CX&amp;author=Zhang%2CY&amp;author=Wu%2CJ&amp;author=Dai%2CQ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Xu, H. et al. A whole-slide foundation model for digital pathology from real-world data. <i>Nature</i> <b>630</b>,181–188 (2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Liu, Z. et al. OCTCube: a 3D foundation model for optical coherence tomography that improves cross-dataset, cross-disease, cross-device and cross-modality analysis. Preprint at <a href="https://www.arxiv.org/abs/2408.11227" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://www.arxiv.org/abs/2408.11227">https://www.arxiv.org/abs/2408.11227</a> (2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Wang, R. et al. Medical image segmentation using deep learning: a survey. <i>IET Image Process.</i> <b>16</b>, 1243–1267 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1049/ipr2.12419" data-track-item_id="10.1049/ipr2.12419" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1049%2Fipr2.12419" aria-label="Article reference 5" data-doi="10.1049/ipr2.12419">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Medical%20image%20segmentation%20using%20deep%20learning%3A%20a%20survey&amp;journal=IET%20Image%20Process.&amp;doi=10.1049%2Fipr2.12419&amp;volume=16&amp;pages=1243-1267&amp;publication_year=2022&amp;author=Wang%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Salpea, N., Tzouveli, P. &amp; Kollias, D. Medical image segmentation: a review of modern architectures. In <i>European Conference on Computer Vision</i> 691–708 (Springer, 2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Ribli, D., Horváth, A., Unger, Z., Pollner, P. &amp; Csabai, I. Detecting and classifying lesions in mammograms with deep learning. <i>Sci. Rep.</i> <b>8</b>, 4165 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-018-22437-z" data-track-item_id="10.1038/s41598-018-22437-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-018-22437-z" aria-label="Article reference 7" data-doi="10.1038/s41598-018-22437-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29545529" aria-label="PubMed reference 7">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854668" aria-label="PubMed Central reference 7">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=Detecting%20and%20classifying%20lesions%20in%20mammograms%20with%20deep%20learning&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-018-22437-z&amp;volume=8&amp;publication_year=2018&amp;author=Ribli%2CD&amp;author=Horv%C3%A1th%2CA&amp;author=Unger%2CZ&amp;author=Pollner%2CP&amp;author=Csabai%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Ma, W., Lu, J. &amp; Wu, H. Cellcano: supervised cell type identification for single cell atac-seq data. <i>Nat. Commun.</i> <b>14</b>, 1864 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-023-37439-3" data-track-item_id="10.1038/s41467-023-37439-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-023-37439-3" aria-label="Article reference 8" data-doi="10.1038/s41467-023-37439-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXntVejsLo%3D" aria-label="CAS reference 8">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=37012226" aria-label="PubMed reference 8">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070275" aria-label="PubMed Central reference 8">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=Cellcano%3A%20supervised%20cell%20type%20identification%20for%20single%20cell%20atac-seq%20data&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-023-37439-3&amp;volume=14&amp;publication_year=2023&amp;author=Ma%2CW&amp;author=Lu%2CJ&amp;author=Wu%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Jiang, H. et al. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. <i>Comput. Biol. Med.</i> <b>157</b>, 106726 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.compbiomed.2023.106726" data-track-item_id="10.1016/j.compbiomed.2023.106726" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.compbiomed.2023.106726" aria-label="Article reference 9" data-doi="10.1016/j.compbiomed.2023.106726">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=36924732" aria-label="PubMed reference 9">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20review%20of%20deep%20learning-based%20multiple-lesion%20recognition%20from%20medical%20images%3A%20classification%2C%20detection%20and%20segmentation&amp;journal=Comput.%20Biol.%20Med.&amp;doi=10.1016%2Fj.compbiomed.2023.106726&amp;volume=157&amp;publication_year=2023&amp;author=Jiang%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Kirillov, A. et al. Segment anything. In <i>Proc. of the IEEE/CVF International Conference on Computer Vision</i> 4015–4026 (IEEE, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Ma, J. et al. Segment anything in medical images. <i>Nat. Commun.</i> <b>15</b>, 654 (2024).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-024-44824-z" data-track-item_id="10.1038/s41467-024-44824-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-024-44824-z" aria-label="Article reference 11" data-doi="10.1038/s41467-024-44824-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB2cXivVWhsrc%3D" aria-label="CAS reference 11">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=38253604" aria-label="PubMed reference 11">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803759" aria-label="PubMed Central reference 11">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=Segment%20anything%20in%20medical%20images&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-024-44824-z&amp;volume=15&amp;publication_year=2024&amp;author=Ma%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Tu, Z., Chen, X., Yuille, A. L. &amp; Zhu, S.-C. Image parsing: Unifying segmentation, detection, and recognition. <i>Int. J. Comput. Vis.</i> <b>63</b>, 113–140 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11263-005-6642-x" data-track-item_id="10.1007/s11263-005-6642-x" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11263-005-6642-x" aria-label="Article reference 12" data-doi="10.1007/s11263-005-6642-x">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Image%20parsing%3A%20Unifying%20segmentation%2C%20detection%2C%20and%20recognition&amp;journal=Int.%20J.%20Comput.%20Vis.&amp;doi=10.1007%2Fs11263-005-6642-x&amp;volume=63&amp;pages=113-140&amp;publication_year=2005&amp;author=Tu%2CZ&amp;author=Chen%2CX&amp;author=Yuille%2CAL&amp;author=Zhu%2CS-C"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Tighe, J. &amp; Lazebnik, S. Superparsing: scalable nonparametric image parsing with superpixels. <i>Int. J. Comput. Vis.</i> <b>101</b>, 329–349 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11263-012-0574-z" data-track-item_id="10.1007/s11263-012-0574-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11263-012-0574-z" aria-label="Article reference 13" data-doi="10.1007/s11263-012-0574-z">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Superparsing%3A%20scalable%20nonparametric%20image%20parsing%20with%20superpixels&amp;journal=Int.%20J.%20Comput.%20Vis.&amp;doi=10.1007%2Fs11263-012-0574-z&amp;volume=101&amp;pages=329-349&amp;publication_year=2013&amp;author=Tighe%2CJ&amp;author=Lazebnik%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Zhou, S. K. <i>Medical Image Recognition, Segmentation and Parsing: Machine Learning and Multiple Object Approaches</i> (Academic Press, 2015).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Gamper, J. et al. PanNuke dataset extension, insights and baselines. Preprint at <a href="https://arxiv.org/abs/2003.10778" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2003.10778">https://arxiv.org/abs/2003.10778</a> (2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Ji, Y. et al. Amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. <i>Adv. Neural Inf. Process. Syst.</i> <b>35</b>, 36722–36732 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Amos%3A%20a%20large-scale%20abdominal%20multi-organ%20benchmark%20for%20versatile%20medical%20image%20segmentation&amp;journal=Adv.%20Neural%20Inf.%20Process.%20Syst.&amp;volume=35&amp;pages=36722-36732&amp;publication_year=2022&amp;author=Ji%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Bernard, O. et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? <i>IEEE Trans. Med. Imaging</i> <b>37</b>, 2514–2525 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TMI.2018.2837502" data-track-item_id="10.1109/TMI.2018.2837502" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTMI.2018.2837502" aria-label="Article reference 17" data-doi="10.1109/TMI.2018.2837502">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29994302" aria-label="PubMed reference 17">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Deep%20learning%20techniques%20for%20automatic%20MRI%20cardiac%20multi-structures%20segmentation%20and%20diagnosis%3A%20is%20the%20problem%20solved%3F&amp;journal=IEEE%20Trans.%20Med.%20Imaging&amp;doi=10.1109%2FTMI.2018.2837502&amp;volume=37&amp;pages=2514-2525&amp;publication_year=2018&amp;author=Bernard%2CO"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Lee, H. H. et al. Foundation models for biomedical image segmentation: a survey. Preprint at <a href="https://arxiv.org/abs/2401.07654" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2401.07654">https://arxiv.org/abs/2401.07654</a> (2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Liu, S. et al. Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. Preprint at <a href="https://arxiv.org/abs/2303.05499" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2303.05499">https://arxiv.org/abs/2303.05499</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Zou, X. et al. Segment everything everywhere all at once. In <i>Proc. 37th Int. Conference on Neural Information Processing Systems</i> 19769–19782 (Curran Associates, 2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Yang, J., Li, C., Dai, X. &amp; Gao, J. Focal modulation networks. <i>Adv. Neural Inf. Process. Syst.</i> <b>35</b>, 4203–4217 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=Focal%20modulation%20networks&amp;journal=Adv.%20Neural%20Inf.%20Process.%20Syst.&amp;volume=35&amp;pages=4203-4217&amp;publication_year=2022&amp;author=Yang%2CJ&amp;author=Li%2CC&amp;author=Dai%2CX&amp;author=Gao%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Gu, Y. et al. Domain-specific language model pretraining for biomedical natural language processing. <i>ACM Trans. Comput. Healthc.</i> <b>3</b>, 1–23 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/3458754" data-track-item_id="10.1145/3458754" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1145%2F3458754" aria-label="Article reference 22" data-doi="10.1145/3458754">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXitlGksbjO" aria-label="CAS reference 22">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&amp;title=Domain-specific%20language%20model%20pretraining%20for%20biomedical%20natural%20language%20processing&amp;journal=ACM%20Trans.%20Comput.%20Healthc.&amp;doi=10.1145%2F3458754&amp;volume=3&amp;pages=1-23&amp;publication_year=2021&amp;author=Gu%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Sirinukunwattana, K., Snead, D. R. J. &amp; Rajpoot, N. M. A stochastic polygons model for glandular structures in colon histology images. <i>IEEE Trans. Med. Imaging</i> <b>34</b>, 2366–2378 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TMI.2015.2433900" data-track-item_id="10.1109/TMI.2015.2433900" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTMI.2015.2433900" aria-label="Article reference 23" data-doi="10.1109/TMI.2015.2433900">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25993703" aria-label="PubMed reference 23">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20stochastic%20polygons%20model%20for%20glandular%20structures%20in%20colon%20histology%20images&amp;journal=IEEE%20Trans.%20Med.%20Imaging&amp;doi=10.1109%2FTMI.2015.2433900&amp;volume=34&amp;pages=2366-2378&amp;publication_year=2015&amp;author=Sirinukunwattana%2CK&amp;author=Snead%2CDRJ&amp;author=Rajpoot%2CNM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Du, Y., Bai, F., Huang, T. &amp; Zhao, B. Segvol: universal and interactive volumetric medical image segmentation. Preprint at <a href="https://arxiv.org/abs/2311.13385" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2311.13385">https://arxiv.org/abs/2311.13385</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Zhao, Z. et al. One model to rule them all: towards universal segmentation for medical images with text prompts. Preprint at <a href="https://arxiv.org/abs/2312.17183" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2312.17183">https://arxiv.org/abs/2312.17183</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Hörst, F. et al. Cellvit: vision transformers for precise cell segmentation and classification. <i>Med. Image Anal.</i> <b>94</b>, 103143 (2024).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.media.2024.103143" data-track-item_id="10.1016/j.media.2024.103143" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.media.2024.103143" aria-label="Article reference 26" data-doi="10.1016/j.media.2024.103143">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=38507894" aria-label="PubMed reference 26">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&amp;title=Cellvit%3A%20vision%20transformers%20for%20precise%20cell%20segmentation%20and%20classification&amp;journal=Med.%20Image%20Anal.&amp;doi=10.1016%2Fj.media.2024.103143&amp;volume=94&amp;publication_year=2024&amp;author=H%C3%B6rst%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Hatamizadeh, A. et al. Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In <i>Int. MICCAI Brain Lesion Workshop</i> 272–284 (Springer, 2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J. &amp; Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. <i>Nat. Methods</i> <b>18</b>, 203–211 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41592-020-01008-z" data-track-item_id="10.1038/s41592-020-01008-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41592-020-01008-z" aria-label="Article reference 28" data-doi="10.1038/s41592-020-01008-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFSltL%2FN" aria-label="CAS reference 28">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=33288961" aria-label="PubMed reference 28">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&amp;title=nnU-Net%3A%20a%20self-configuring%20method%20for%20deep%20learning-based%20biomedical%20image%20segmentation&amp;journal=Nat.%20Methods&amp;doi=10.1038%2Fs41592-020-01008-z&amp;volume=18&amp;pages=203-211&amp;publication_year=2021&amp;author=Isensee%2CF&amp;author=Jaeger%2CPF&amp;author=Kohl%2CSA&amp;author=Petersen%2CJ&amp;author=Maier-Hein%2CKH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. &amp; Yuille, A. L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. <i>IEEE Trans. Pattern Anal.Mach. Intell.</i> <b>40</b>, 834–848 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TPAMI.2017.2699184" data-track-item_id="10.1109/TPAMI.2017.2699184" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTPAMI.2017.2699184" aria-label="Article reference 29" data-doi="10.1109/TPAMI.2017.2699184">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28463186" aria-label="PubMed reference 29">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&amp;title=Deeplab%3A%20Semantic%20image%20segmentation%20with%20deep%20convolutional%20nets%2C%20atrous%20convolution%2C%20and%20fully%20connected%20CRFs&amp;journal=IEEE%20Trans.%20Pattern%20Anal.Mach.%20Intell.&amp;doi=10.1109%2FTPAMI.2017.2699184&amp;volume=40&amp;pages=834-848&amp;publication_year=2017&amp;author=Chen%2CL-C&amp;author=Papandreou%2CG&amp;author=Kokkinos%2CI&amp;author=Murphy%2CK&amp;author=Yuille%2CAL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">Butoi, V. I. et al. Universeg: universal medical image segmentation. In <i>Proc. IEEE/CVF International Conference on Computer Vision</i> 21438–21451 (ICCV, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Ronneberger, O., Fischer, P. &amp; Brox, T. U-Net: convolutional networks for biomedical image segmentation. In <i>Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th Int. Conf. Proc. Part III</i> 234–241 (Springer, 2015).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. &amp; Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In <i>Int. Conf. Medical Image Computing and Computer-assisted Intervention</i> 424–432 (Springer, 2016).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Milletari, F., Navab, N. &amp; Ahmadi, S.-A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In <i>2016 4th Int. Conf. 3D vision (3DV)</i> 565–571 (IEEE, 2016).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Li, X. et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. <i>IEEE Trans. Med. Imaging</i> <b>37</b>, 2663–2674 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TMI.2018.2845918" data-track-item_id="10.1109/TMI.2018.2845918" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTMI.2018.2845918" aria-label="Article reference 34" data-doi="10.1109/TMI.2018.2845918">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29994201" aria-label="PubMed reference 34">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&amp;title=H-DenseUNet%3A%20hybrid%20densely%20connected%20UNet%20for%20liver%20and%20tumor%20segmentation%20from%20CT%20volumes&amp;journal=IEEE%20Trans.%20Med.%20Imaging&amp;doi=10.1109%2FTMI.2018.2845918&amp;volume=37&amp;pages=2663-2674&amp;publication_year=2018&amp;author=Li%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. &amp; Liang, J. UNet++: redesigning Skip connections to exploit multiscale features in image segmentation. <i>IEEE Trans. Med. Imaging</i> <b>39</b>, 1856–1867 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TMI.2019.2959609" data-track-item_id="10.1109/TMI.2019.2959609" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTMI.2019.2959609" aria-label="Article reference 35" data-doi="10.1109/TMI.2019.2959609">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31841402" aria-label="PubMed reference 35">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357299" aria-label="PubMed Central reference 35">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&amp;title=UNet%2B%2B%3A%20redesigning%20Skip%20connections%20to%20exploit%20multiscale%20features%20in%20image%20segmentation&amp;journal=IEEE%20Trans.%20Med.%20Imaging&amp;doi=10.1109%2FTMI.2019.2959609&amp;volume=39&amp;pages=1856-1867&amp;publication_year=2019&amp;author=Zhou%2CZ&amp;author=Siddiquee%2CMMR&amp;author=Tajbakhsh%2CN&amp;author=Liang%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. In <i>Int. MICCAI Brain Lesion Workshop</i> 311–320 (Springer, 2018).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Lee, H. H., Bao, S., Huo, Y. &amp; Landman, B. A. 3D UX-Net: a large kernel volumetric ConvNet modernizing hierarchical transformer for medical image segmentation. In <i>The Eleventh International Conference on Learning Representations</i> <a href="https://iclr.cc/media/iclr-2023/Slides/11340.pdf" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://iclr.cc/media/iclr-2023/Slides/11340.pdf">https://iclr.cc/media/iclr-2023/Slides/11340.pdf</a> (ICLR, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Lee, H. H. et al. Scaling up 3D kernels with bayesian frequency re-parameterization for medical image segmentation. In <i>Int. Conf. Medical Image Computing and Computer-Assisted Intervention</i> 632–641 (Springer, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">Chen, J. et al. TransUNet: transformers make strong encoders for medical image segmentation. Preprint at <a href="https://arxiv.org/abs/2102.04306" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2102.04306">https://arxiv.org/abs/2102.04306</a> (2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Xu, G., Zhang, X., He, X. &amp; Wu, X. LeViT-UNet: make faster encoders with transformer for medical image segmentation. In <i>Chinese Conference on Pattern Recognition and Computer Vision (PRCV)</i> 42–53 (Springer, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Xie, Y., Zhang, J., Shen, C. &amp; Xia, Y. Cotr: efficiently bridging CNN and transformer for 3D medical image segmentation. In <i>Int. Conf. Medical Image Computing And Computer-assisted Intervention</i> 171–180 (Springer, 2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Wang, W. et al. TransBTS: multimodal brain tumor segmentation using transformer. In <i>Int. Conf. Medical Image Computing and Computer-Assisted Intervention</i> 109–119 (Springer, 2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Hatamizadeh, A. et al. UNETR: transformers for 3D medical image segmentation. In <i>Proc. IEEE/CVF Winter Conference on Applications of Computer Vision</i> 574–584 (2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Zhou, H.-Y. et al. nnformer: Volumetric medical image segmentation via a 3d transformer. <i>IEEE Trans. Image Process.</i> <b>32</b>, 4036–4045 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TIP.2023.3293771" data-track-item_id="10.1109/TIP.2023.3293771" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTIP.2023.3293771" aria-label="Article reference 44" data-doi="10.1109/TIP.2023.3293771">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=37440404" aria-label="PubMed reference 44">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&amp;title=nnformer%3A%20Volumetric%20medical%20image%20segmentation%20via%20a%203d%20transformer&amp;journal=IEEE%20Trans.%20Image%20Process.&amp;doi=10.1109%2FTIP.2023.3293771&amp;volume=32&amp;pages=4036-4045&amp;publication_year=2023&amp;author=Zhou%2CH-Y"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">Cao, H. et al. Swin-UNet: UNet-like pure transformer for medical image segmentation. In <i>European Conference on Computer Vision</i> 205–218 (Springer, 2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">Zhang, S. et al. BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs. Preprint at <a href="https://arxiv.org/abs/2303.00915" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2303.00915">https://arxiv.org/abs/2303.00915</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">Chaves, J. M. Z. et al. Training small multimodal models to bridge biomedical competency gap: a case study in radiology imaging. Preprint at <a href="https://arxiv.org/html/2403.08002v2" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/html/2403.08002v2">https://arxiv.org/html/2403.08002v2</a> (2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">Ren, S., He, K., Girshick, R. &amp; Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. <i>IEEE Trans.</i> <i>Pattern Anal. Mach. Intel.</i> <a href="https://doi.org/10.1109/TPAMI.2016.2577031" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/TPAMI.2016.2577031">https://doi.org/10.1109/TPAMI.2016.2577031</a> (2017).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">Bochkovskiy, A., Wang, C.-Y. &amp; Liao, H.-Y. M. Yolov4: optimal speed and accuracy of object detection. Preprint at <a href="https://arxiv.org/abs/2004.10934" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2004.10934">https://arxiv.org/abs/2004.10934</a> (2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">Litjens, G. et al. A survey on deep learning in medical image analysis. <i>Med. Image Anal.</i> <b>42</b>, 60–88 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.media.2017.07.005" data-track-item_id="10.1016/j.media.2017.07.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.media.2017.07.005" aria-label="Article reference 50" data-doi="10.1016/j.media.2017.07.005">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28778026" aria-label="PubMed reference 50">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20survey%20on%20deep%20learning%20in%20medical%20image%20analysis&amp;journal=Med.%20Image%20Anal.&amp;doi=10.1016%2Fj.media.2017.07.005&amp;volume=42&amp;pages=60-88&amp;publication_year=2017&amp;author=Litjens%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">Wong, H. E., Rakic, M., Guttag, J. &amp; Dalca, A. V. Scribbleprompt: fast and flexible interactive segmentation for any medical image. Preprint at <a href="https://arxiv.org/html/2312.07381v2" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/html/2312.07381v2">https://arxiv.org/html/2312.07381v2</a> (2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">Shaharabany, T., Dahan, A., Giryes, R. &amp; Wolf, L. AutoSAM: adapting SAM to medical images by overloading the prompt encoder. Preprint at <a href="https://arxiv.org/abs/2306.06370" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2306.06370">https://arxiv.org/abs/2306.06370</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">Lei, W., Wei, X., Zhang, X., Li, K. &amp; Zhang, S. MedLSAM: localize and segment anything model for 3D medical images. Preprint at <a href="https://arxiv.org/abs/2306.14752" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2306.14752">https://arxiv.org/abs/2306.14752</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">Stringer, C., Wang, T., Michaelos, M. &amp; Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. <i>Nat. Methods</i> <b>18</b>, 100–106 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41592-020-01018-x" data-track-item_id="10.1038/s41592-020-01018-x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41592-020-01018-x" aria-label="Article reference 54" data-doi="10.1038/s41592-020-01018-x">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXis1Sgs77K" aria-label="CAS reference 54">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=33318659" aria-label="PubMed reference 54">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&amp;title=Cellpose%3A%20a%20generalist%20algorithm%20for%20cellular%20segmentation&amp;journal=Nat.%20Methods&amp;doi=10.1038%2Fs41592-020-01018-x&amp;volume=18&amp;pages=100-106&amp;publication_year=2021&amp;author=Stringer%2CC&amp;author=Wang%2CT&amp;author=Michaelos%2CM&amp;author=Pachitariu%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. <i>Nat. Biotechnol.</i> <b>40</b>, 555–565 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41587-021-01094-0" data-track-item_id="10.1038/s41587-021-01094-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41587-021-01094-0" aria-label="Article reference 55" data-doi="10.1038/s41587-021-01094-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXisFCmtL%2FI" aria-label="CAS reference 55">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=34795433" aria-label="PubMed reference 55">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&amp;title=Whole-cell%20segmentation%20of%20tissue%20images%20with%20human-level%20performance%20using%20large-scale%20data%20annotation%20and%20deep%20learning&amp;journal=Nat.%20Biotechnol.&amp;doi=10.1038%2Fs41587-021-01094-0&amp;volume=40&amp;pages=555-565&amp;publication_year=2022&amp;author=Greenwald%2CNF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">Ma, J. &amp; Wang, B. Towards foundation models of biological image segmentation. <i>Nat. Methods</i> <b>20</b>, 953–955 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41592-023-01885-0" data-track-item_id="10.1038/s41592-023-01885-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41592-023-01885-0" aria-label="Article reference 56" data-doi="10.1038/s41592-023-01885-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVGrurnO" aria-label="CAS reference 56">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=37433999" aria-label="PubMed reference 56">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&amp;title=Towards%20foundation%20models%20of%20biological%20image%20segmentation&amp;journal=Nat.%20Methods&amp;doi=10.1038%2Fs41592-023-01885-0&amp;volume=20&amp;pages=953-955&amp;publication_year=2023&amp;author=Ma%2CJ&amp;author=Wang%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">Girshick, R. Fast r-cnn. In <i>Proc. IEEE Int. Conf. on Computer Vision</i> 1440–1448 (IEEE, 2015).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">He, K., Gkioxari, G., Dollár, P. &amp; Girshick, R. Mask R-CNN. In <i>Proc. IEEE Int. Conf. On Computer Vision</i> 2961–2969 (IEEE, 2017).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">Schmidt, U., Weigert, M., Broaddus, C. &amp; Myers, G. Cell detection with star-convex polygons. In <i>Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st Int. Conf. Proc. Part II</i> 265–273 (Springer, 2018).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">Graham, S. et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. <i>Med. Image Anal.</i> <b>58</b>, 101563 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.media.2019.101563" data-track-item_id="10.1016/j.media.2019.101563" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.media.2019.101563" aria-label="Article reference 60" data-doi="10.1016/j.media.2019.101563">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31561183" aria-label="PubMed reference 60">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&amp;title=Hover-Net%3A%20simultaneous%20segmentation%20and%20classification%20of%20nuclei%20in%20multi-tissue%20histology%20images&amp;journal=Med.%20Image%20Anal.&amp;doi=10.1016%2Fj.media.2019.101563&amp;volume=58&amp;publication_year=2019&amp;author=Graham%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">Yang, H. et al. CircleNet: anchor-free glomerulus detection with circle representation. In <i>Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd Int. Conf. Proc. Part IV</i> 35–44 (Springer, 2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">Nguyen, E. H. et al. CircleSnake: instance segmentation with circle representation. In <i>Int. Workshop on Machine Learning in Medical Imaging</i> 298–306 (Springer, 2022).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">Ilyas, T. et al. Tsfd-net: tissue specific feature distillation network for nuclei segmentation and classification. <i>Neural Netw.</i> <b>151</b>, 1–15 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neunet.2022.02.020" data-track-item_id="10.1016/j.neunet.2022.02.020" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neunet.2022.02.020" aria-label="Article reference 63" data-doi="10.1016/j.neunet.2022.02.020">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=35367734" aria-label="PubMed reference 63">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&amp;title=Tsfd-net%3A%20tissue%20specific%20feature%20distillation%20network%20for%20nuclei%20segmentation%20and%20classification&amp;journal=Neural%20Netw.&amp;doi=10.1016%2Fj.neunet.2022.02.020&amp;volume=151&amp;pages=1-15&amp;publication_year=2022&amp;author=Ilyas%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">OHDSI. Athena standardized vocabularies. <a href="https://www.ohdsi.org/analytic-tools/athena-standardized-vocabularies/" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://www.ohdsi.org/analytic-tools/athena-standardized-vocabularies/">https://www.ohdsi.org/analytic-tools/athena-standardized-vocabularies/</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">Gu, Y. et al. BiomedJourney: counterfactual biomedical image generation by instruction-learning from multimodal patient journeys. Preprint at <a href="https://arxiv.org/abs/2310.10765" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2310.10765">https://arxiv.org/abs/2310.10765</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">Li, C. et al. Llava-med: training a large language-and-vision assistant for biomedicine in one day. In <i>37th Conference on</i> <i>Neural Information Processing Systems</i> <a href="https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf">https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf</a> (NeurIPS, 2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">Gu, Y., Zhang, S., Usuyama, N. et al. Distilling large language models for biomedical knowledge extraction: a case study on adverse drug events. Preprint at <a href="https://arxiv.org/abs/2307.06439" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2307.06439">https://arxiv.org/abs/2307.06439</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">Zou, X. et al. Generalized decoding for pixel, image, and language. In <i>Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> 15116–15127 (IEEE, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">Ren, T. et al. Grounded SAM: assembling open-world models for diverse visual tasks. Preprint at <a href="https://arxiv.org/abs/2401.14159" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2401.14159">https://arxiv.org/abs/2401.14159</a> (2024).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. &amp; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In <i>Proc. European Conference on Computer Vision (ECCV)</i> 801–818 (2018).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">Kazerooni, A. F. et al. The brain tumor segmentation (BraTS) challenge 2023: focus on pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs). Preprint at <a href="https://arxiv.org/abs/2305.17033" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2305.17033">https://arxiv.org/abs/2305.17033</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">Lee, P., Goldberg, C. &amp; Kohane, I. <i>The AI Revolution in Medicine: GPT-4 and Beyond</i> (Pearson, 2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">Achiam, J. et al. GPT-4 technical report. Preprint at <a href="https://arxiv.org/abs/2303.08774" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://arxiv.org/abs/2303.08774">https://arxiv.org/abs/2303.08774</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">Massey Jr, F. J. The Kolmogorov–Smirnov test for goodness of fit. <i>J. Am. Stat. Assoc.</i> <b>46</b>, 68–78 (1951).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01621459.1951.10500769" data-track-item_id="10.1080/01621459.1951.10500769" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01621459.1951.10500769" aria-label="Article reference 74" data-doi="10.1080/01621459.1951.10500769">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20Kolmogorov%E2%80%93Smirnov%20test%20for%20goodness%20of%20fit&amp;journal=J.%20Am.%20Stat.%20Assoc.&amp;doi=10.1080%2F01621459.1951.10500769&amp;volume=46&amp;pages=68-78&amp;publication_year=1951&amp;author=Massey%20Jr%2CFJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">Canny, J. A computational approach to edge detection. In <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> 679–698 (IEEE, 1986).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">Viola, P. &amp; Jones, M. Rapid object detection using a boosted cascade of simple features. In <i>Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001</i>, vol. 1, I–I (IEEE, 2001).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">Girshick, R., Donahue, J., Darrell, T. &amp; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In <i>Proc. IEEE Conference on Computer Vision and Pattern Recognition</i> 580–587 (2014).</p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41592-024-02499-w?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>The authors thank the Microsoft Health and Life Sciences Research team and the Microsoft Health Futures team for support and helpful discussions.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><span class="c-article-author-information__subtitle u-visually-hidden" id="author-notes">Author notes</span><ol class="c-article-author-information__list"><li class="c-article-author-information__item" id="na1"><p>These authors contributed equally: Theodore Zhao, Yu Gu.</p></li></ol><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Microsoft Research, Redmond, WA, USA</p><p class="c-article-author-affiliation__authors-list">Theodore Zhao, Yu Gu, Jianwei Yang, Naoto Usuyama, Ho Hin Lee, Sid Kiblawi, Tristan Naumann, Jianfeng Gao, Mu Wei &amp; Hoifung Poon</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Providence Genomics, Portland, OR, USA</p><p class="c-article-author-affiliation__authors-list">Jacob Abel, Christine Moung-Wen, Brian Piening &amp; Carlo Bifulco</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA</p><p class="c-article-author-affiliation__authors-list">Angela Crabtree, Brian Piening &amp; Carlo Bifulco</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA</p><p class="c-article-author-affiliation__authors-list">Sheng Wang</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Department of Surgery, University of Washington, Seattle, WA, USA</p><p class="c-article-author-affiliation__authors-list">Sheng Wang</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Theodore-Zhao-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Theodore Zhao</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Theodore%20Zhao" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Theodore%20Zhao" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Theodore%20Zhao%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yu-Gu-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Yu Gu</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Yu%20Gu" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yu%20Gu" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yu%20Gu%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jianwei-Yang-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Jianwei Yang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Jianwei%20Yang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jianwei%20Yang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jianwei%20Yang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Naoto-Usuyama-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Naoto Usuyama</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Naoto%20Usuyama" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Naoto%20Usuyama" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Naoto%20Usuyama%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ho_Hin-Lee-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Ho Hin Lee</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Ho%20Hin%20Lee" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Ho%20Hin%20Lee" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Ho%20Hin%20Lee%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Sid-Kiblawi-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Sid Kiblawi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Sid%20Kiblawi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Sid%20Kiblawi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Sid%20Kiblawi%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Tristan-Naumann-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Tristan Naumann</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Tristan%20Naumann" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Tristan%20Naumann" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Tristan%20Naumann%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jianfeng-Gao-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Jianfeng Gao</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Jianfeng%20Gao" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jianfeng%20Gao" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jianfeng%20Gao%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Angela-Crabtree-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Angela Crabtree</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Angela%20Crabtree" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Angela%20Crabtree" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Angela%20Crabtree%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jacob-Abel-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Jacob Abel</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Jacob%20Abel" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jacob%20Abel" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jacob%20Abel%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Christine-Moung_Wen-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Christine Moung-Wen</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Christine%20Moung-Wen" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Christine%20Moung-Wen" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Christine%20Moung-Wen%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Brian-Piening-Aff2-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Brian Piening</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Brian%20Piening" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Brian%20Piening" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Brian%20Piening%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Carlo-Bifulco-Aff2-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Carlo Bifulco</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Carlo%20Bifulco" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Carlo%20Bifulco" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Carlo%20Bifulco%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mu-Wei-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Mu Wei</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Mu%20Wei" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Mu%20Wei" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Mu%20Wei%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Hoifung-Poon-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Hoifung Poon</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Hoifung%20Poon" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Hoifung%20Poon" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Hoifung%20Poon%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Sheng-Wang-Aff4-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Sheng Wang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Sheng%20Wang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Sheng%20Wang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Sheng%20Wang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>T.Z., Y.G., J.Y., N.U., M.W., H.P. and S.W. contributed to the conception and design of the work. T.Z. contributed to the data acquisition and curation of BiomedParseData. T.Z., J.Y., N.U. and M.W. contributed to BiomedParse model training. Y.G., T.Z., H.L., N.U. and S.K. contributed to the evaluation of BiomedParse and baseline models. T.N. and J.G. contributed to the technical discussions. A.C., J.A., C.M., B.P. and C.B. provided clinical inputs to the study. All authors contributed to the drafting and revision of the manuscript.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding authors</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:muhsin.wei@microsoft.com">Mu Wei</a>, <a id="corresp-c2" href="mailto:hoifung@microsoft.com">Hoifung Poon</a> or <a id="corresp-c3" href="mailto:swang@cs.washington.edu">Sheng Wang</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar4">Competing interests</h3> <p>C.B. is a member of the scientific advisory board and owns stock in PrimeVax and BioAI; is on the scientific board of Lunaphore and SironaDx; has a consultant or advisory relationship with Sanofi, Agilent, Roche and Incendia; contributes to institutional research for Illumina, and is an inventor on US patent applications US20180322632A1 (Image Processing Systems and Methods for Displaying Multiple Images of a Biological Specimen) filed by Ventana Medical Systems, Providence Health and Services Oregon and US20200388033A1 (System and Method for Automatic Labeling of Pathology Images) filed by Providence Health and Services Oregon, Omics Data Automation. The other authors declare no competing interests.</p> </div></div></section><section data-title="Peer review"><div class="c-article-section" id="peer-review-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="peer-review">Peer review</h2><div class="c-article-section__content" id="peer-review-content"> <h3 class="c-article__sub-heading" id="FPar3">Peer review information</h3> <p><i>Nature Methods</i> thanks Stefania Moroianu, Dong Ni, Yichi Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the <i>Nature Methods</i> team. <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41592-024-02499-w#MOESM3">Peer reviewer reports</a> are available.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><p><b>Publisher’s note</b> Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Extended data"><div class="c-article-section" id="Sec21-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec21">Extended data</h2><div class="c-article-section__content" id="Sec21-content"><div data-test="supplementary-info"><div id="figshareContainer" class="c-article-figshare-container" data-test="figshare-container"></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig6"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 1 number of images in each of t" href="/articles/s41592-024-02499-w/figures/6" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig6_ESM.jpg">Extended Data Fig. 1 Number of images in each of the 25 anatomic sites from 9 modalities.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>One anatomic site could present in multiple modalities.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig7"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 2 ablation studies comparing th" href="/articles/s41592-024-02499-w/figures/7" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig7_ESM.jpg">Extended Data Fig. 2 Ablation studies comparing the performance of BiomedParse and two variants.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>BiomedParse-SAM stands for using SAM to initialize the image encoder. BiomedParse-PubmedBERT stands for using the frozen PubmedBERT as the text encoder. Each modality category contains multiple object types. Each object type was aggregated as the instance median to be shown in the plot. N in the plot denotes the number of images in the corresponding modality. The numbers of object types in each modality are as follows: N = 112 for All, N = 27 for CT, N = 34 for MRI, N = 12 for X-Ray, N = 24 for Pathology, N = 7 for Ultrasound, N = 2 for Fundus, N = 3 for Endoscope, N = 2 for Dermoscopy, and N = 1 for OCT. Each box shows the quartiles of the distribution, with the center as the median, the minimum as the first quartile, and the maximum as the third quartile. The whiskers extend to the farthest data point that lies within 2 times the inter-quartile range (IQR) from the nearest quartile. Data points that lie outside the whiskers are shown as fliers. *indicates the significance level at which BiomedParse outperforms BiomedParse-PubmedBERT, with two-sided paired t-test p-value &lt; 1 × 10<sup>-2</sup> for **, p-value &lt; 1 × 10<sup>-3</sup> for ***, p-value &lt; 1 × 10<sup>-4</sup> for ****. Exact p-values for the comparison between BiomedParse and BiomedParse-PubMedBERT are as follows: p-value &lt; 9.52 × 10<sup>-10</sup> for All, p-value &lt; 1.67 × 10<sup>-3</sup> for CT, p-value &lt; 4.87 × 10<sup>-4</sup> for MRI, p-value &lt; 1.98 × 10<sup>-4</sup> for Pathology, and p-value &lt; 7.13 × 10<sup>-3</sup> for Ultrasound.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig8"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 3 evaluating biomedparse and co" href="/articles/s41592-024-02499-w/figures/8" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig8_ESM.jpg">Extended Data Fig. 3 Evaluating BiomedParse and competing methods in terms of Average Symmetric Surface Distance.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Box plot comparing the performance of BiomedParse and competing methods in terms of Average Symmetric Surface Distance (ASSD). Smaller ASSD indicates better segmentation performance. Each box shows the quartiles of the distribution, with center as the median, minimum as the first quartile, and maximum as the third quartile. The whiskers extend to the farthest data point that lies within 2 times the inter-quartile range (IQR) from the nearest quartile. Data points that lie outside the whiskers are shown as fliers. Each modality category contains multiple object types. Each object type was aggregated as the instance median to be shown in the plot. The numbers of object types in each modality are as follows: n = 112 for All, n = 27 for CT, n = 34 for MRI, n = 12 for X-Ray, n = 24 for Pathology, n = 7 for Ultrasound, n = 2 for Fundus, n = 3 for Endoscope, n = 2 for Dermoscopy, and n = 1 for OCT. *indicates the significance level at which BiomedParse outperforms the best-competing method, with two-sided paired t-test p-value &lt; 1 × 10<sup>-2</sup> for **, p-value &lt; 1 × 10<sup>-3</sup> for ***, p-value &lt; 1 × 10<sup>-4</sup> for ****. Exact p-values for the comparison between BiomedParse and MedSAM with oracle box prompt are as follows: p-value &lt; 3.43 × 10<sup>-6</sup> for All, p-value &lt; 2.61 × 10<sup>-3</sup> for CT, p-value &lt; 7.73 × 10<sup>-5</sup> for MRI, and p-value &lt; 2.94 × 10<sup>-8</sup> for Pathology.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig9"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 4 comparing biomedparse with bi" href="/articles/s41592-024-02499-w/figures/9" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig9_ESM.jpg">Extended Data Fig. 4 Comparing BiomedParse with biomedical-specific text prompt segmentation models.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Bar plot comparing BiomedParse with biomedical-specific text prompt segmentation models across different organs on CT in terms of Dice score. Each bar shows the mean of the distribution, with error bar indicating the 95% confidence interval. The sample sizes for the target organs are as follows: n = 27,779 for All, n = 4,409 for Aorta, n = 864 for Bladder, n = 1,677 for Duodenum, n = 1,964 for Esophagus, n = 712 for Gallbladder, n = 4,105 for Inferior vena cava, n = 635 for Left adrenal gland, n = 1,776 for Left kidney, n = 4,648 for Liver, n = 1,345 for Pancreas, n = 571 for Right adrenal gland, n = 1,649 for Right kidney, n = 1,587 for Spleen, and n = 1,837 for Stomach. *indicates the significance level at which BiomedParse outperforms the best-competing method, with two-sided paired t-test p-value &lt; 1 × 10<sup>-2</sup> for **, p-value &lt; 1 × 10<sup>-3</sup> for ***, p-value &lt; 1 × 10<sup>-4</sup> for ****. Exact p-values for the comparison between BiomedParse and SegVol are as follows: p-value &lt; 2.23 × 10<sup>-308</sup> for All, p-value &lt; 1.86 × 10<sup>-58</sup> for Aorta, p-value &lt; 1.73 × 10<sup>-7</sup> for Bladder, p-value &lt; 3.44 × 10<sup>-86</sup> for Duodenum, p-value &lt; 5.00 × 10<sup>-185</sup> for Esophagus, p-value &lt; 3.37 × 10<sup>-15</sup> for Gallbladder, p-value &lt; 6.28 × 10<sup>-99</sup> for Inferior vena cava, p-value &lt; 5.08 × 10<sup>-10</sup> for Left adrenal gland, p-value &lt; 9.26 × 10<sup>-31</sup> for Left kidney, p-value &lt; 3.31 × 10<sup>-37</sup> for Liver, p-value &lt; 2.27 × 10<sup>-56</sup> for Pancreas, p-value &lt; 1.01 × 10<sup>-16</sup> for Right adrenal gland, p-value &lt; 2.98 × 10<sup>-20</sup> for Right kidney, p-value &lt; 1.09 × 10<sup>-20</sup> for Spleen, and p-value &lt; 4.68 × 10<sup>-25</sup> for Stomach.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig10"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 5 comparing biomedparse with fi" href="/articles/s41592-024-02499-w/figures/10" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig10_ESM.jpg">Extended Data Fig. 5 Comparing BiomedParse with fine-tuned SAM and MedSAM.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Bar plot comparing BiomedParse and SAM and MedSAM when SAM and MedSAM are both further trained on the entire BiomedParseData. Both SAM and MedSAM were provided with oracle bounding box around the segmentation target during the training and the inference stage. Each bar shows the mean of the distribution, with error bar indicating the 95% confidence interval. Each modality category contains multiple object types. Each object type was aggregated as the instance median to be shown in the plot. We show the numbers of object types in each modality are as follows. The numbers of object types in each modality are as follows: n = 105 for All, n = 26 for CT, n = 34 for MRI, n = 6 for X-Ray, n = 24 for Pathology, n = 7 for Ultrasound, n = 2 for Fundus, n = 3 for Endoscope, n = 2 for Dermoscopy, and n = 1 for OCT. *indicates the significance level at which BiomedParse outperforms the best-competing method, with two-sided paired t-test p-value &lt; 1 × 10<sup>-2</sup> for **, p-value &lt; 1 × 10<sup>-3</sup> for ***, p-value &lt; 1 × 10<sup>-4</sup> for ****. Exact p-values for the comparison between BiomedParse and SAM-FT with oracle box prompt are as follows: p-value &lt; 1.78 × 10<sup>-7</sup> for All, p-value &lt; 2.02 × 10<sup>-2</sup> for CT, p-value &lt; 1.32 × 10<sup>-2</sup> for X-Ray, p-value &lt; 3.52 × 10<sup>-8</sup> for Pathology, and p-value &lt; 1.49 × 10<sup>-2</sup> for Ultrasound.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig11"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 6 comparison between biomedpars" href="/articles/s41592-024-02499-w/figures/11" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig11_ESM.jpg">Extended Data Fig. 6 Comparison between BiomedParse and competing methods on the MedSAM benchmark.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>We evaluated MedSAM and SAM using the ground truth bounding box for the segmentation.For nnU-Net and DeepLabV3+, we reported the evaluation reported by MedSAM. Results are shown by imaging modality, with statistical significance comparison between BiomedParse and best-competing method MedSAM. Each box shows the quartiles of the distribution, with center as the median, minimum as the first quartile, and maximum as the third quartile. The whiskers extend to the farthest data point that lies within 2 times the inter-quartile range (IQR) from the nearest quartile. Data points that lie outside the whiskers are shown as fliers. Each modality category contains multiple object types. Each object type was aggregated as the instance median to be shown in the plot. The numbers of object types in each modality are as follows: n = 50 for All, n = 18 for CT, n = 15 for MRI, n = 6 for X-Ray, n = 1 for Pathology, n = 6 for Ultrasound, n = 2 for Fundus, n = 1 for Endoscope, and n = 1 for Dermoscopy. * indicates the significance level at which BiomedParse outperforms the best-competing method, with two-sided paired t-test p-value &lt; 1 × 10<sup>-2</sup> for **, p-value &lt; 1 × 10<sup>-3</sup> for ***, p-value &lt; 1 × 10<sup>-4</sup> for ****. Exact p-values for the comparison between BiomedParse and MedSAM with oracle box prompt are as follows: p-value &lt; 2.98 × 10<sup>-3</sup> for All, p-value &lt; 7.08 × 10<sup>-3</sup> for CT, and p-value &lt; 4.35 × 10<sup>-2</sup> for MRI.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig12"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 7 comparing the improvement of " href="/articles/s41592-024-02499-w/figures/12" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_Fig12_ESM.jpg">Extended Data Fig. 7 Comparing the improvement of BiomedParse over SAM with shape irregularity.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Scatter plots comparing the improvement of BiomedParse over SAM with shape irregularity in terms of box ratio (left), convex ratio (middle), and inversed rotational inertia (right). Each dot represents the mean statistics over one object type in our segmentation ontology. We show the regression plot with the 95 confidence interval as the error bands. The p-values show the two-sided Wald test results.</p></div></div></div></div></div></section><section data-title="Supplementary information"><div class="c-article-section" id="Sec22-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec22">Supplementary information</h2><div class="c-article-section__content" id="Sec22-content"><div data-test="supplementary-info"><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM1"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary information" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_MOESM1_ESM.pdf" data-supp-info-image="">Supplementary Information</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Supplementary Table 1, Figs. 1–11 and References.</p></div></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM2"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="reporting summary" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_MOESM2_ESM.pdf" data-supp-info-image="">Reporting Summary</a></h3></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM3"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="peer review file" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-024-02499-w/MediaObjects/41592_2024_2499_MOESM3_ESM.pdf" data-supp-info-image="">Peer Review File</a></h3></div></div></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"><p>Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</p><p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=A%20foundation%20model%20for%20joint%20segmentation%2C%20detection%20and%20recognition%20of%20biomedical%20objects%20across%20nine%20modalities&amp;author=Theodore%20Zhao%20et%20al&amp;contentID=10.1038%2Fs41592-024-02499-w&amp;copyright=The%20Author%28s%29%2C%20under%20exclusive%20licence%20to%20Springer%20Nature%20America%2C%20Inc.&amp;publication=1548-7091&amp;publicationDate=2024-11-18&amp;publisherName=SpringerNature&amp;orderBeanReset=true">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41592-024-02499-w" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02499-w" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Zhao, T., Gu, Y., Yang, J. <i>et al.</i> A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities. <i>Nat Methods</i> (2024). https://doi.org/10.1038/s41592-024-02499-w</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41592-024-02499-w?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-05-21">21 May 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-10-02">02 October 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-11-18">18 November 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41592-024-02499-w</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> </div> </article> </main> <aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type="reading-companion" data-track-component="reading companion"> <div class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <noscript> <div class="c-nature-box c-nature-box--side " data-component="entitlement-box"> <div class="js-access-button"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button" data-test="ra21"> <svg class="u-icon" width="18" height="18" aria-hidden="true" focusable="false"><use href="#icon-institution"></use></svg> <span class="c-article__button-text">Access through your institution</span> </a> </div> <div class="js-buy-button"> <a href="#access-options" class="c-article__button c-article__button--inverted" data-test="ra21"> <span>Buy or subscribe</span> </a> </div> </div> </noscript> <div class="c-nature-box__wrapper c-nature-box__wrapper--placeholder"> <div class="c-nature-box c-nature-box--side u-display-none u-hide-print" aria-hidden="true" data-component="entitlement-box" id=entitlement-box-right-column > <p class="c-nature-box__text js-text u-display-none" aria-hidden="true"></p> <div class="js-access-button u-display-none"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button" aria-hidden="true" data-test="ra21" data-track="click_institution_login" data-track-context="reading companion" data-track-action="institution access" data-track-label="button"> <svg class="u-icon" width="18" height="18" aria-hidden="true" focusable="false"><use xlink:href="#icon-institution"></use></svg> <span class="c-article__button-text">Access through your institution</span> </a> </div> <div class="js-change-institution-button u-display-none"> <a href="https://wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41592-024-02499-w" class="c-article__button c-article__button--inverted" aria-hidden="true" data-test="ra21" data-track="click" data-track-action="change institution" data-track-label="button"> <span class="c-article__button-text">Change institution</span> </a> </div> <div class="js-buy-button u-display-none"> <a href="#access-options" class="c-article__button c-article__button--inverted" aria-hidden="true" data-test="ra21" data-track="click" data-track-action="buy or subscribe" data-track-label="button"> <span>Buy or subscribe</span> </a> </div> </div> </div> </div> <div class="c-article-associated-content__container"> <section> <h2 class="c-article-associated-content__title u-mb-24">Associated content</h2> <div class="u-full-height u-mb-24"> <article class="u-full-height c-card c-card--flush"> <div class="c-card__layout u-full-height"> <div class="c-card__body"> <h3 class="c-card__title"> <a href="https://www.nature.com/articles/s41592-024-02519-9" class="c-card__link u-link-inherit" data-track="click" data-track-action="view article" data-track-category="associated content" data-track-label="news_and_views">A foundation model unlocks unified biomedical image analysis</a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact"> <li>Yuhao Huang</li><li>Haoran Dou</li><li>Dong Ni</li> </ul> <div class="c-card__section c-meta"> <span class="c-meta__item">Nature Methods</span> <span class="c-meta__item" data-test="article.type"><span class="c-meta__type">News &amp; Views</span></span> <time class="c-meta__item" datetime="2024-11-18">18 Nov 2024</time> </div> </div> </div> </article> </div> </section> </div> <script> window.dataLayer = window.dataLayer || []; window.dataLayer[0] = window.dataLayer[0] || {}; window.dataLayer[0].content = window.dataLayer[0].content || {}; window.dataLayer[0].content.associatedContentTypes = "news_and_views"; </script> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-right-2" class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type="right" data-test="right-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/nmeth.nature.com/article" data-gpt-sizes="300x250" data-gpt-targeting="type=article;pos=right;artid=s41592-024-02499-w;doi=10.1038/s41592-024-02499-w;subjmeta=114,1305,1564,631;kwrd=Image+processing,Machine+learning"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/nmeth.nature.com/article&amp;sz=300x250&amp;c=709259399&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41592-024-02499-w%26doi%3D10.1038/s41592-024-02499-w%26subjmeta%3D114,1305,1564,631%26kwrd%3DImage+processing,Machine+learning"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/nmeth.nature.com/article&amp;sz=300x250&amp;c=709259399&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41592-024-02499-w%26doi%3D10.1038/s41592-024-02499-w%26subjmeta%3D114,1305,1564,631%26kwrd%3DImage+processing,Machine+learning" alt="Advertisement" width="300" height="250"></a> </noscript> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> <nav class="c-header__dropdown" aria-labelledby="Explore-content" data-test="Explore-content" id="explore" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Explore-content" class="c-header__heading c-header__heading--js-hide">Explore content</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/research-articles" data-track="click" data-track-action="research articles" data-track-label="link" data-test="explore-nav-item"> Research articles </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/reviews-and-analysis" data-track="click" data-track-action="reviews &amp; analysis" data-track-label="link" data-test="explore-nav-item"> Reviews &amp; Analysis </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/news-and-comment" data-track="click" data-track-action="news &amp; comment" data-track-label="link" data-test="explore-nav-item"> News &amp; Comment </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/current-issue" data-track="click" data-track-action="current issue" data-track-label="link" data-test="explore-nav-item"> Current issue </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/collections" data-track="click" data-track-action="collections" data-track-label="link" data-test="explore-nav-item"> Collections </a> </li> </ul> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="https://twitter.com/naturemethods" data-track="click" data-track-action="twitter" data-track-label="link">Follow us on Twitter </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a data-test="subscribe-button" class="c-header__link" href="https://www.nature.com/nmeth/subscribe" data-track="click" data-track-action="subscribe" data-track-label="link"> <span>Subscribe</span> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id&#x3D;95" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#fff"/></svg> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/nmeth.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="About-the-journal" id="about-the-journal" data-test="about-the-journal" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="About-the-journal" class="c-header__heading c-header__heading--js-hide">About the journal</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/aims" data-track="click" data-track-action="aims &amp; scope" data-track-label="link"> Aims &amp; Scope </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/journal-information" data-track="click" data-track-action="journal information" data-track-label="link"> Journal Information </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/journal-impact" data-track="click" data-track-action="journal metrics" data-track-label="link"> Journal Metrics </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/our-publishing-models" data-track="click" data-track-action="our publishing models" data-track-label="link"> Our publishing models </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/editors" data-track="click" data-track-action="about the editors" data-track-label="link"> About the Editors </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/research-cross-journal-editorial-team" data-track="click" data-track-action="research cross-journal editorial team" data-track-label="link"> Research Cross-Journal Editorial Team </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/reviews-cross-journal-editorial-team" data-track="click" data-track-action="reviews cross-journal editorial team" data-track-label="link"> Reviews Cross-Journal Editorial Team </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/editorial-values-statement" data-track="click" data-track-action="editorial values statement" data-track-label="link"> Editorial Values Statement </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/editorial-policies" data-track="click" data-track-action="editorial policies" data-track-label="link"> Editorial Policies </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/content" data-track="click" data-track-action="content types" data-track-label="link"> Content Types </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/web-feeds" data-track="click" data-track-action="web feeds" data-track-label="link"> Web Feeds </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/contact" data-track="click" data-track-action="contact" data-track-label="link"> Contact </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="Publish-with-us-label" id="publish-with-us" data-test="publish-with-us" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Publish-with-us-label" class="c-header__heading c-header__heading--js-hide">Publish with us</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/submission-guidelines" data-track="click" data-track-action="submission guidelines" data-track-label="link"> Submission Guidelines </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/nmeth/for-reviewers" data-track="click" data-track-action="for reviewers" data-track-label="link"> For Reviewers </a> </li> <li class="c-header__item"> <a class="c-header__link" data-test="nature-author-services" data-track="nav_language_services" data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&utm_medium=Website_Nature&utm_campaign=Platform+Experimentation+2022&utm_id=PE2022"> Language editing services </a> </li> <li class="c-header__item c-header__item--keyline"> <a class="c-header__link" href="https://mts-nmeth.nature.com/" data-track="click_submit_manuscript" data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external>Submit manuscript<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill="#fff"/></svg> </a> </li> </ul> </div> </nav> <div id="search-menu" class="c-header__dropdown c-header__dropdown--full-width" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 class="c-header__visually-hidden">Search</h2> <form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search"> <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label> <div class="c-header__search-layout c-header__search-layout--max-width"> <div> <input type="text" required="" class="c-header__input" id="keywords" name="q" value=""> </div> <div class="c-header__search-layout"> <div> <label for="results-from" class="c-header__visually-hidden">Show results from</label> <select id="results-from" name="journal" class="c-header__select"> <option value="" selected>All journals</option> <option value="nmeth">This journal</option> </select> </div> <div> <button type="submit" class="c-header__search-button">Search</button> </div> </div> </div> </form> <div class="c-header__flush"> <a class="c-header__link" href="/search/advanced" data-track="click" data-track-action="advanced search" data-track-label="link"> Advanced search </a> </div> <h3 class="c-header__heading c-header__heading--keyline">Quick links</h3> <ul class="c-header__list"> <li><a class="c-header__link" href="/subjects" data-track="click" data-track-action="explore articles by subject" data-track-label="link">Explore articles by subject</a></li> <li><a class="c-header__link" href="/naturecareers" data-track="click" data-track-action="find a job" data-track-label="link">Find a job</a></li> <li><a class="c-header__link" href="/authors/index.html" data-track="click" data-track-action="guide to authors" data-track-label="link">Guide to authors</a></li> <li><a class="c-header__link" href="/authors/editorial_policies/" data-track="click" data-track-action="editorial policies" data-track-label="link">Editorial policies</a></li> </ul> </div> </div> <footer class="composite-layer" itemscope itemtype="http://schema.org/Periodical"> <meta itemprop="publisher" content="Springer Nature"> <div class="u-mt-16 u-mb-16"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between"> <p class="c-meta u-ma-0 u-flex-shrink"> <span class="c-meta__item"> Nature Methods (<i>Nat Methods</i>) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="onlineIssn">1548-7105</span> (online) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="printIssn">1548-7091</span> (print) </span> </p> </div> </div> </div> <div class="c-footer"> <div class="u-hide-print" data-track-component="footer"> <h2 class="u-visually-hidden">nature.com sitemap</h2> <div class="c-footer__container"> <div class="c-footer__grid c-footer__group--separator"> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/company_info/index.html" data-track="click" data-track-action="about us" data-track-label="link">About us</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/press_room/press_releases.html" data-track="click" data-track-action="press releases" data-track-label="link">Press releases</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://press.nature.com/" data-track="click" data-track-action="press office" data-track-label="link">Press office</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://support.nature.com/support/home" data-track="click" data-track-action="contact us" data-track-label="link">Contact us</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Discover content</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/siteindex" data-track="click" data-track-action="journals a-z" data-track-label="link">Journals A-Z</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/subjects" data-track="click" data-track-action="article by subject" data-track-label="link">Articles by subject</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.protocols.io/" data-track="click" data-track-action="protocols.io" data-track-label="link">protocols.io</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureindex.com/" data-track="click" data-track-action="nature index" data-track-label="link">Nature Index</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Publishing policies</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/authors/editorial_policies" data-track="click" data-track-action="Nature portfolio policies" data-track-label="link">Nature portfolio policies</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nature-research/open-access" data-track="click" data-track-action="open access" data-track-label="link">Open access</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Author &amp; Researcher services</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/reprints" data-track="click" data-track-action="reprints and permissions" data-track-label="link">Reprints &amp; permissions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/authors/research-data" data-track="click" data-track-action="data research service" data-track-label="link">Research data</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/language-editing/" data-track="click" data-track-action="language editing" data-track-label="link">Language editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/scientific-editing/" data-track="click" data-track-action="scientific editing" data-track-label="link">Scientific editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://masterclasses.nature.com/" data-track="click" data-track-action="nature masterclasses" data-track-label="link">Nature Masterclasses</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://solutions.springernature.com/" data-track="click" data-track-action="research solutions" data-track-label="link">Research Solutions</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Libraries &amp; institutions</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/tools-services" data-track="click" data-track-action="librarian service and tools" data-track-label="link">Librarian service &amp; tools</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/manage-your-account/librarianportal" data-track="click" data-track-action="librarian portal" data-track-label="link">Librarian portal</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/openresearch/about-open-access/information-for-institutions" data-track="click" data-track-action="open research" data-track-label="link">Open research</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/recommend-to-your-library" data-track="click" data-track-action="Recommend to library" data-track-label="link">Recommend to library</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Advertising &amp; partnerships</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/digital-advertising/" data-track="click" data-track-action="advertising" data-track-label="link">Advertising</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/" data-track="click" data-track-action="partnerships and services" data-track-label="link">Partnerships &amp; Services</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/media-kits/" data-track="click" data-track-action="media kits" data-track-label="link">Media kits</a> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/branded-content-native-advertising/" data-track-action="branded content" data-track-label="link">Branded content</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Professional development</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/naturecareers/" data-track="click" data-track-action="nature careers" data-track-label="link">Nature Careers</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://conferences.nature.com" data-track="click" data-track-action="nature conferences" data-track-label="link">Nature<span class="u-visually-hidden"> </span> Conferences</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Regional websites</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natafrica" data-track="click" data-track-action="nature africa" data-track-label="link">Nature Africa</a></li> <li class="c-footer__item"><a class="c-footer__link" href="http://www.naturechina.com" data-track="click" data-track-action="nature china" data-track-label="link">Nature China</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nindia" data-track="click" data-track-action="nature india" data-track-label="link">Nature India</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natitaly" data-track="click" data-track-action="nature Italy" data-track-label="link">Nature Italy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureasia.com/ja-jp" data-track="click" data-track-action="nature japan" data-track-label="link">Nature Japan</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nmiddleeast" data-track="click" data-track-action="nature middle east" data-track-label="link">Nature Middle East</a></li> </ul> </div> </div> </div> <div class="c-footer__container"> <ul class="c-footer__links"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/privacy" data-track="click" data-track-action="privacy policy" data-track-label="link">Privacy Policy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/cookies" data-track="click" data-track-action="use of cookies" data-track-label="link">Use of cookies</a></li> <li class="c-footer__item"> <button class="optanon-toggle-display c-footer__link" onclick="javascript:;" data-cc-action="preferences" data-track="click" data-track-action="manage cookies" data-track-label="link">Your privacy choices/Manage cookies </button> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/legal-notice" data-track="click" data-track-action="legal notice" data-track-label="link">Legal notice</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/accessibility-statement" data-track="click" data-track-action="accessibility statement" data-track-label="link">Accessibility statement</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/terms-and-conditions" data-track="click" data-track-action="terms and conditions" data-track-label="link">Terms &amp; Conditions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/ccpa" data-track="click" data-track-action="california privacy statement" data-track-label="link">Your US state privacy rights</a></li> </ul> </div> </div> <div class="c-footer__container"> <a href="https://www.springernature.com/" class="c-footer__link"> <img src="/static/images/logos/sn-logo-white-ea63208b81.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature Limited</p> </div> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </footer> <div class="c-site-messages message u-hide u-hide-print c-site-messages--nature-briefing c-site-messages--nature-briefing-email-variant c-site-messages--nature-briefing-redesign-2020 sans-serif " data-component-id="nature-briefing-banner" data-component-expirydays="30" data-component-trigger-scroll-percentage="15" data-track="in-view" data-track-action="in-view" data-track-category="nature briefing" data-track-label="Briefing banner visible: Flagship"> <div class="c-site-messages__banner-large"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__form-container"> <div class="grid grid-12 last"> <div class="grid grid-4"> <img alt="Nature Briefing" src="/static/images/logos/nature-briefing-logo-n150-white-d81c9da3ec.svg" width="250" height="40"> <p class="c-site-messages--nature-briefing__strapline extra-tight-line-height">Sign up for the <em>Nature Briefing</em> newsletter — what matters in science, free to your inbox daily.</p> </div> <div class="grid grid-8 last"> <form action="https://www.nature.com/briefing/briefing" method="post" data-location="banner" data-track="signup_nature_briefing_banner" data-track-action="transmit-form" data-track-category="nature briefing" data-track-label="Briefing banner submit: Flagship"> <input id="briefing-banner-signup-form-input-track-originReferralPoint" type="hidden" name="track_originReferralPoint" value="MainBriefingBanner"> <input id="briefing-banner-signup-form-input-track-formType" type="hidden" name="track_formType" value="DirectEmailBanner"> <input type="hidden" value="false" name="gdpr_tick" id="gdpr_tick_banner"> <input type="hidden" value="false" name="marketing" id="marketing_input_banner"> <input type="hidden" value="false" name="marketing_tick" id="marketing_tick_banner"> <input type="hidden" value="MainBriefingBanner" name="brieferEntryPoint" id="brieferEntryPoint_banner"> <label class="nature-briefing-banner__email-label" for="emailAddress">Email address</label> <div class="nature-briefing-banner__email-wrapper"> <input class="nature-briefing-banner__email-input box-sizing text14" type="email" id="emailAddress" name="emailAddress" value="" placeholder="e.g. jo.smith@university.ac.uk" required data-test-element="briefing-emailbanner-email-input"> <input type="hidden" value="true" name="N:nature_briefing_daily" id="defaultNewsletter_banner"> <button type="submit" class="nature-briefing-banner__submit-button box-sizing text14" data-test-element="briefing-emailbanner-signup-button">Sign up</button> </div> <div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last"> <input class="nature-briefing-banner__checkbox-checkbox" id="gdpr-briefing-banner-checkbox" type="checkbox" name="gdpr" value="true" data-test-element="briefing-emailbanner-gdpr-checkbox" required> <label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for="gdpr-briefing-banner-checkbox">I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature Limited <a href="https://www.nature.com/info/privacy">Privacy Policy</a>.</label> </div> </form> </div> </div> </div> </div> <div class="c-site-messages__banner-small"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__content text14"> <span class="c-site-messages--nature-briefing__strapline strong">Get the most important science stories of the day, free in your inbox.</span> <a class="nature-briefing__link text14 sans-serif" data-track="click" data-track-category="nature briefing" data-track-label="Small-screen banner CTA to site" data-test-element="briefing-banner-link" target="_blank" rel="noreferrer noopener" href="https://www.nature.com/briefing/signup/?brieferEntryPoint=MainBriefingBanner">Sign up for Nature Briefing </a> </div> </div> </div> <noscript> <img hidden src="https://verify.nature.com/verify/nature.png" width="0" height="0" style="display: none" alt=""> </noscript> <script src="//content.readcube.com/ping?doi=10.1038/s41592-024-02499-w&amp;format=js&amp;last_modified=2024-11-18" async></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10