CINXE.COM
Search results for: queuing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: queuing</title> <meta name="description" content="Search results for: queuing"> <meta name="keywords" content="queuing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="queuing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="queuing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 38</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: queuing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Automatic Queuing Model Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Suleiman">Fahad Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queuing%20systems" title="queuing systems">queuing systems</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20system%20models" title=" queuing system models"> queuing system models</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithms" title=" scheduling algorithms"> scheduling algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=patients" title=" patients"> patients</a> </p> <a href="https://publications.waset.org/abstracts/38535/automatic-queuing-model-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Application the Queuing Theory in the Warehouse Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Masek">Jaroslav Masek</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Camaj"> Juraj Camaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Nedeliakova"> Eva Nedeliakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queuing%20theory" title="queuing theory">queuing theory</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics%20system" title=" logistics system"> logistics system</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20methods" title=" mathematical methods"> mathematical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20optimization" title=" warehouse optimization"> warehouse optimization</a> </p> <a href="https://publications.waset.org/abstracts/34523/application-the-queuing-theory-in-the-warehouse-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omojokun%20Gabriel%20Aju">Omojokun Gabriel Aju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=applications" title="applications">applications</a>, <a href="https://publications.waset.org/abstracts/search?q=first-in-first-out%20queuing%20%28FIFO%29" title=" first-in-first-out queuing (FIFO)"> first-in-first-out queuing (FIFO)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimised%20network%20evaluation%20tool%20%28OPNET%29" title=" optimised network evaluation tool (OPNET)"> optimised network evaluation tool (OPNET)</a>, <a href="https://publications.waset.org/abstracts/search?q=packets" title=" packets"> packets</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20queuing%20%28PQ%29" title=" priority queuing (PQ)"> priority queuing (PQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20discipline" title=" queuing discipline"> queuing discipline</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted-fair%20queuing%20%28WFQ%29" title=" weighted-fair queuing (WFQ)"> weighted-fair queuing (WFQ)</a> </p> <a href="https://publications.waset.org/abstracts/26471/critical-evaluation-and-analysis-of-effects-of-different-queuing-disciplines-on-packets-delivery-and-delay-for-different-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganiyat%20Soliu">Ganiyat Soliu</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Bright"> Glen Bright</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiemela%20Onunka"> Chiemela Onunka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20optimization" title="performance optimization">performance optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20theory" title=" queuing theory"> queuing theory</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/102213/performance-optimization-on-waiting-time-using-queuing-theory-in-an-advanced-manufacturing-environment-robotics-to-enhance-productivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Aron">Moses Aron</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Mwakilama"> Elias Mwakilama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Namangale"> Jimmy Namangale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20care" title="health care">health care</a>, <a href="https://publications.waset.org/abstracts/search?q=out-patient%20department" title=" out-patient department"> out-patient department</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20model" title=" queuing model"> queuing model</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/36218/modeling-waiting-and-service-time-for-patients-a-case-study-of-matawale-health-centre-zomba-malawi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Health Care using Queuing Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vadivukkarasi">S. Vadivukkarasi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Karthi"> K. Karthi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karthick"> M. Karthick</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dinesh"> C. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Santhosh"> S. Santhosh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yogaraj"> A. Yogaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appointment%20system" title="appointment system">appointment system</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20scheduling" title=" patient scheduling"> patient scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20management" title=" bed management"> bed management</a>, <a href="https://publications.waset.org/abstracts/search?q=queueing%20calculation" title=" queueing calculation"> queueing calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20analysis" title=" system analysis"> system analysis</a> </p> <a href="https://publications.waset.org/abstracts/1705/health-care-using-queuing-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> A Simulation of Patient Queuing System on Radiology Department at Tertiary Specialized Referral Hospital in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonathan%20Audhitya%20Suthihono">Yonathan Audhitya Suthihono</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratih%20Dyah%20Kusumastuti"> Ratih Dyah Kusumastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The radiology department in a tertiary referral hospital faces service operation challenges such as huge and various patient arrival, which can increase the probability of patient queuing. During the COVID-19 pandemic, it is mandatory to apply social distancing protocol in the radiology department. A strategy to prevent the accumulation of patients at one spot would be required. The aim of this study is to identify an alternative solution which can reduce the patient’s waiting time in radiology department. Discrete event simulation (DES) is used for this study by constructing several improvement scenarios with Arena simulation software. Statistical analysis is used to test the validity of the base case scenario model and to investigate the performance of the improvement scenarios. The result of this study shows that the selected scenario is able to reduce patient waiting time significantly, which leads to more efficient services in a radiology department, be able to serve patients more effectively, and thus increase patient satisfaction. The result of the simulation can be used by the hospital management to improve the operational performance of the radiology department. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20management%20patient%20queuing%20model" title=" hospital management patient queuing model"> hospital management patient queuing model</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology%20department%20services" title=" radiology department services"> radiology department services</a> </p> <a href="https://publications.waset.org/abstracts/135508/a-simulation-of-patient-queuing-system-on-radiology-department-at-tertiary-specialized-referral-hospital-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baziana%20Peristera">Baziana Peristera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20transmission" title="asynchronous transmission">asynchronous transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelength%20division%20multiplexing" title=" wavelength division multiplexing"> wavelength division multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=WDM" title=" WDM"> WDM</a> </p> <a href="https://publications.waset.org/abstracts/18320/performance-evaluation-of-an-efficient-asynchronous-protocol-for-wdm-ring-mans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Fazel%20Zarandi">M. H. Fazel Zarandi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moshahedi"> N. Moshahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20modeling" title="fuzzy modeling">fuzzy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=location" title=" location"> location</a>, <a href="https://publications.waset.org/abstracts/search?q=possibilistic%20clustering" title=" possibilistic clustering"> possibilistic clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing" title=" queuing"> queuing</a> </p> <a href="https://publications.waset.org/abstracts/49645/amec-queuing-hub-maximal-covering-location-model-with-fuzzy-parameter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Queuing Analysis and Optimization of Public Vehicle Transport Stations: A Case of South West Ethiopia Region Vehicle Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mequanint%20Birhan">Mequanint Birhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern urban environments present a dynamically growing field where, notwithstanding shared goals, several mutually conflicting interests frequently collide. However, it has a big impact on the city's socioeconomic standing, waiting lines and queues are common occurrences. This results in extremely long lines for both vehicles and people on incongruous routes, service coagulation, customer murmuring, unhappiness, complaints, and looking for other options sometimes illegally. The root cause of this is corruption, which leads to traffic jams, stopping, and packing vehicles beyond their safe carrying capacity, and violating the human rights and freedoms of passengers. This study focused on the optimizing time of passengers had to wait in public vehicle stations. This applied research employed both data gathering sources and mixed approaches, then 166 samples of key informants of transport station were taken by using the Slovin sampling formula. The length of time vehicles, including the drivers and auxiliary drivers ‘Weyala', had to wait was also studied. To maximize the service level at vehicle stations, a queuing model was subsequently devised ‘Menaharya’. Time, cost, and quality encompass performance, scope, and suitability for the intended purposes. The minimal response time for passengers and vehicles queuing to reach their final destination at the stations of the Tepi, Mizan, and Bonga towns was determined. A new bus station system was modeled and simulated by Arena simulation software in the chosen study area. 84% improvement on cost reduced by 56.25%, time 4hr to 1.5hr, quality, safety and designed load performance calculations employed. Stakeholders are asked to put the model into practice and monitor the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arena%2014%20automatic%20rockwell" title="Arena 14 automatic rockwell">Arena 14 automatic rockwell</a>, <a href="https://publications.waset.org/abstracts/search?q=queue" title=" queue"> queue</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20services" title=" transport services"> transport services</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20stations" title=" vehicle stations"> vehicle stations</a> </p> <a href="https://publications.waset.org/abstracts/171055/queuing-analysis-and-optimization-of-public-vehicle-transport-stations-a-case-of-south-west-ethiopia-region-vehicle-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Parking Service Effectiveness at Commercial Malls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20AlAbdullah">Ahmad AlAbdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20AlQallaf"> Ali AlQallaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Hussain"> Mahdi Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20AlAttar"> Mohammed AlAttar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Ashknani"> Salman Ashknani</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20Helal"> Magdy Helal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the effectiveness of the parking service provided at Kuwaiti commercial malls and explore potential problems and feasible improvements. Commercial malls are important to Kuwaitis as the entertainment and shopping centers due to the lack of other alternatives. The difficulty and relatively long times wasted in finding a parking spot at the mall are real annoyances. We applied queuing analysis to one of the major malls that offer paid-parking (1040 parking spots) in addition to free parking. Patrons of the mall usually complained of the traffic jams and delays at entering the paid parking (average delay to park exceeds 15 min for about 62% of the patrons, while average time spent in the mall is about 2.6 hours). However, the analysis showed acceptable service levels at the check-in gates of the parking garage. Detailed review of the vehicle movement at the gateways indicated that arriving and departing cars both had to share parts of the gateway to the garage, which caused the traffic jams and delays. A simple comparison we made indicated that the largest commercial mall in Kuwait does not suffer such parking issues, while other smaller, yet important malls do, including the one we studied. It was suggested that well-designed inlets and outlets of that gigantic mall permitted smooth parking despite being totally free and mall is the first choice for most people for entertainment and shopping. A simulation model is being developed for further analysis and verification. Simulation can overcome the mathematical difficulty in using non-Poisson queuing models. The simulation model is used to explore potential changes to the parking garage entrance layout. And with the inclusion of the drivers’ behavior inside the parking, effectiveness indicators can be derived to address the economic feasibility of extending the parking capacity and increasing service levels. Outcomes of the study are planned to be generalized as appropriate to other commercial malls in Kuwait <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20malls" title="commercial malls">commercial malls</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20service" title=" parking service"> parking service</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20analysis" title=" queuing analysis"> queuing analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modeling" title=" simulation modeling"> simulation modeling</a> </p> <a href="https://publications.waset.org/abstracts/9478/parking-service-effectiveness-at-commercial-malls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Ma">F. J. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20H.%20Kwan"> A. K. H. Kwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20queuing%20algorithm" title="crack queuing algorithm">crack queuing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20analysis" title=" crack width analysis"> crack width analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20effect" title=" shrinkage effect"> shrinkage effect</a> </p> <a href="https://publications.waset.org/abstracts/50507/crack-width-analysis-of-reinforced-concrete-members-under-shrinkage-effect-by-pseudo-discrete-crack-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Optimizing the Passenger Throughput at an Airport Security Checkpoint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Li">Kun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzheng%20Liu"> Yuzheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuqi%20Fan"> Xiuqi Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queue%20theory" title="queue theory">queue theory</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20check" title=" security check"> security check</a>, <a href="https://publications.waset.org/abstracts/search?q=stochatic%20process" title=" stochatic process"> stochatic process</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/72716/optimizing-the-passenger-throughput-at-an-airport-security-checkpoint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Developing a Web-Based Workflow Management System in Cloud Computing Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Shuen-Tai">Wang Shuen-Tai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Yu-Ching"> Lin Yu-Ching</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hsi-Ya"> Chang Hsi-Ya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web-based" title="web-based">web-based</a>, <a href="https://publications.waset.org/abstracts/search?q=workflow" title=" workflow"> workflow</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML5" title=" HTML5"> HTML5</a>, <a href="https://publications.waset.org/abstracts/search?q=Cloud%20Computing" title=" Cloud Computing"> Cloud Computing</a>, <a href="https://publications.waset.org/abstracts/search?q=Queuing%20System" title=" Queuing System"> Queuing System</a> </p> <a href="https://publications.waset.org/abstracts/29622/developing-a-web-based-workflow-management-system-in-cloud-computing-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashansa%20Singh">Prashansa Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Bajaj"> Rohit Bajaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjot%20Kaur"> Manjot Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iot" title="Iot">Iot</a>, <a href="https://publications.waset.org/abstracts/search?q=MQTT%20protocol" title=" MQTT protocol"> MQTT protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=publish" title=" publish"> publish</a>, <a href="https://publications.waset.org/abstracts/search?q=subscriber" title=" subscriber"> subscriber</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a> </p> <a href="https://publications.waset.org/abstracts/183075/an-iot-enabled-crop-recommendation-system-utilizing-message-queuing-telemetry-transport-mqtt-for-efficient-data-transmission-to-aiml-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> A Study on Net Profit Associated with Queueing System Subject to Catastrophical Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Reni%20Sagayaraj">M. Reni Sagayaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anand%20Gnana%20Selvam"> S. Anand Gnana Selvam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Reynald%20Susainathan"> R. Reynald Susainathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we study that the catastrophic events arrive independently at the service facility according to a Poisson process with rate λ. The nature of a catastrophic event is that upon its arrival at a service station, it destroys all the customers there waiting and in the service. We will derive the net profit associated with queuing system and obtain its probability of the busy period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queueing%20system" title="queueing system">queueing system</a>, <a href="https://publications.waset.org/abstracts/search?q=net-profit" title=" net-profit"> net-profit</a>, <a href="https://publications.waset.org/abstracts/search?q=busy%20period" title=" busy period"> busy period</a>, <a href="https://publications.waset.org/abstracts/search?q=catastrophical%20events" title=" catastrophical events"> catastrophical events</a> </p> <a href="https://publications.waset.org/abstracts/38190/a-study-on-net-profit-associated-with-queueing-system-subject-to-catastrophical-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Design of Doctor’s Appointment Scheduling Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Sondkar">Shilpa Sondkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maithili%20Patil"> Maithili Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Atharva%20Potnis"> Atharva Potnis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current health care landscape desires efficiency and patient satisfaction for optimal performance. Medical appointment booking apps have increased the overall efficiency of clinics, hospitals, and e-health marketplaces while simplifying processes. These apps allow patients to connect with doctors online. Not only are mobile doctor appointment apps a reliable and efficient solution, but they are also the future of clinical progression and a distinct new stage in the patient-doctor relationship. Compared to the usual queuing method, the web-based appointment system could significantly increase patients' satisfaction with registration and reduce total waiting time effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appointment" title="appointment">appointment</a>, <a href="https://publications.waset.org/abstracts/search?q=patient" title=" patient"> patient</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20development" title=" design and development"> design and development</a>, <a href="https://publications.waset.org/abstracts/search?q=Figma" title=" Figma"> Figma</a> </p> <a href="https://publications.waset.org/abstracts/152596/design-of-doctors-appointment-scheduling-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Modeling of Production Lines Systems with Layout Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Abebi">Sadegh Abebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Queuing%20theory" title="Queuing theory">Queuing theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Chain" title=" Markov Chain"> Markov Chain</a>, <a href="https://publications.waset.org/abstracts/search?q=layout" title=" layout"> layout</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balance" title=" line balance"> line balance</a> </p> <a href="https://publications.waset.org/abstracts/26003/modeling-of-production-lines-systems-with-layout-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Resource Allocation Scheme For IEEE802.16 Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmabruk%20Laias">Elmabruk Laias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IEEE Standard 802.16 provides QoS (Quality of Service) for the applications such as Voice over IP, video streaming and high bandwidth file transfer. With the ability of broadband wireless access of an IEEE 802.16 system, a WiMAX TDD frame contains one downlink subframe and one uplink subframe. The capacity allocated to each subframe is a system parameter that should be determined based on the expected traffic conditions. a proper resource allocation scheme for packet transmissions is imperatively needed. In this paper, we present a new resource allocation scheme, called additional bandwidth yielding (ABY), to improve transmission efficiency of an IEEE 802.16-based network. Our proposed scheme can be adopted along with the existing scheduling algorithms and the multi-priority scheme without any change. The experimental results show that by using our ABY, the packet queuing delay could be significantly improved, especially for the service flows of higher-priority classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEEE%20802.16" title="IEEE 802.16">IEEE 802.16</a>, <a href="https://publications.waset.org/abstracts/search?q=WiMAX" title=" WiMAX"> WiMAX</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title=" OFDMA"> OFDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=uplink-downlink%20mapping" title=" uplink-downlink mapping"> uplink-downlink mapping</a> </p> <a href="https://publications.waset.org/abstracts/15555/resource-allocation-scheme-for-ieee80216-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Performance Analysis of the First-Order Characteristics of Polling System Based on Parallel Limited (K=1) Services Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yi">Liu Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bao%20Liyong"> Bao Liyong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polling" title="polling">polling</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20scheduling" title=" parallel scheduling"> parallel scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20queue%20length" title=" mean queue length"> mean queue length</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20cycle%20time" title=" average cycle time"> average cycle time</a> </p> <a href="https://publications.waset.org/abstracts/186109/performance-analysis-of-the-first-order-characteristics-of-polling-system-based-on-parallel-limited-k1-services-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Agent-Based Simulation for Supply Chain Transport Corridors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamalendu%20Pal">Kamalendu Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supply chains are the spinal cord of trade and commerce. Their logistics use different transport corridors on regular basis for operational purpose. The international supply chain transport corridors include different infrastructure elements (e.g. weighbridge, package handling equipment, border clearance authorities, and so on) in supply chains. This paper presents the use of multi-agent systems (MAS) to model and simulate some aspects of transportation corridors, and in particular the area of weighbridge resource optimization for operational profit generation purpose. An underlying multi-agent model provides a means of modeling the relationships among stakeholders in order to enable coordination in a transport corridor environment. Simulations of the costs of container unloading, reloading, and waiting time for queuing up tracks have been carried out using data sets. Results of the simulation provide the potential guidance in making decisions about optimal service resource allocation in a trade corridor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title="multi-agent systems">multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20corridor" title=" transport corridor"> transport corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=weighbridge" title=" weighbridge"> weighbridge</a> </p> <a href="https://publications.waset.org/abstracts/29221/agent-based-simulation-for-supply-chain-transport-corridors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Steady-State Behavior of a Multi-Phase M/M/1 Queue in Random Evolution Subject to Catastrophe Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reni%20M.%20Sagayaraj">Reni M. Sagayaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20Gnana%20S.%20Selvam"> Anand Gnana S. Selvam</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynald%20R.%20Susainathan"> Reynald R. Susainathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider stochastic queueing models for Steady-state behavior of a multi-phase M/M/1 queue in random evolution subject to catastrophe failure. The arrival flow of customers is described by a marked Markovian arrival process. The service times of different type customers have a phase-type distribution with different parameters. To facilitate the investigation of the system we use a generalized phase-type service time distribution. This model contains a repair state, when a catastrophe occurs the system is transferred to the failure state. The paper focuses on the steady-state equation, and observes that, the steady-state behavior of the underlying queueing model along with the average queue size is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%2FG%2F1%20queuing%20system" title="M/G/1 queuing system">M/G/1 queuing system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase" title=" multi-phase"> multi-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20evolution" title=" random evolution"> random evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20equation" title=" steady-state equation"> steady-state equation</a>, <a href="https://publications.waset.org/abstracts/search?q=catastrophe%20failure" title=" catastrophe failure"> catastrophe failure</a> </p> <a href="https://publications.waset.org/abstracts/53659/steady-state-behavior-of-a-multi-phase-mm1-queue-in-random-evolution-subject-to-catastrophe-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Building Capacity and Personnel Flow Modeling for Operating amid COVID-19</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Fernandes">Samuel Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Dylan%20Kato"> Dylan Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Emin%20Burak%20Onat"> Emin Burak Onat</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Keyantuo"> Patrick Keyantuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20%20Sengupta"> Raja Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Bouzaghrane"> Amine Bouzaghrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20analysis" title="network analysis">network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title=" building simulation"> building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19 "> COVID-19 </a> </p> <a href="https://publications.waset.org/abstracts/128718/building-capacity-and-personnel-flow-modeling-for-operating-amid-covid-19" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%93scar%20Mu%C3%B1oz%20Garrig%C3%B3s">Óscar Muñoz Garrigós</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Manuel%20Bernabeu%20Aub%C3%A1n"> José Manuel Bernabeu Aubán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20auto-scaling" title="reactive auto-scaling">reactive auto-scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-scaling" title=" auto-scaling"> auto-scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=microservices" title=" microservices"> microservices</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a> </p> <a href="https://publications.waset.org/abstracts/151438/modelling-of-reactive-methodologies-in-auto-scaling-time-sensitive-services-with-a-mape-k-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Using Traffic Micro-Simulation to Assess the Benefits of Accelerated Pavement Construction for Reducing Traffic Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipta%20Ghorai">Sudipta Ghorai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ossama%20Salem"> Ossama Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement maintenance, repair, and rehabilitation (MRR) processes may have considerable environmental impacts due to traffic disruptions associated with work zones. The simulation models in use to predict the emission of work zones were mostly static emission factor models (SEFD). SEFD calculates emissions based on average operation conditions e.g. average speed and type of vehicles. Although these models produce accurate results for large-scale planning studies, they are not suitable for analyzing driving conditions at the micro level such as acceleration, deceleration, idling, cruising, and queuing in a work zone. The purpose of this study is to prepare a comprehensive work zone environmental assessment (WEA) framework to calculate the emissions caused due to disrupted traffic; by integrating traffic microsimulation tools with emission models. This will help highway officials to assess the benefits of accelerated construction and opt for the most suitable TMP not only economically but also from an environmental point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20construction" title="accelerated construction">accelerated construction</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20MRR" title=" pavement MRR"> pavement MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20microsimulation" title=" traffic microsimulation"> traffic microsimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=congestion" title=" congestion"> congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions "> emissions </a> </p> <a href="https://publications.waset.org/abstracts/19803/using-traffic-micro-simulation-to-assess-the-benefits-of-accelerated-pavement-construction-for-reducing-traffic-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinarayana%20Badveeti">Adinarayana Badveeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shafi%20Mir"> Mohammad Shafi Mir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title="traffic congestion">traffic congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time%20index" title=" travel time index"> travel time index</a> </p> <a href="https://publications.waset.org/abstracts/82508/traffic-congestion-analysis-and-modeling-for-urban-roads-of-srinagar-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Mohajerzadeh">Amirhossein Mohajerzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Mohajerzadeh"> Abolghasem Mohajerzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing" title=" queuing"> queuing</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a> </p> <a href="https://publications.waset.org/abstracts/92838/multi-tier-data-collection-and-estimation-utilizing-queue-model-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Customer Experience Management in Food and Beverage Outlet at Indian School of Business: Methodology and Recommendations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Purwar">Anupam Purwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In conventional consumer product industry, stockouts are taken care by carrying buffer stock to check underserving caused by changes in customer demand, incorrect forecast or variability in lead times. But, for food outlets, the alternate of carrying buffer stock is unviable because of indispensable need to serve freshly cooked meals. Besides, the food outlet being the sole provider has no incentives to reduce stockouts, as they have no fear of losing revenue, gross profit, customers and market share. Hence, innovative, easy to implement and practical ways of addressing the twin problem of long queues and poor customer experience needs to be investigated. Current work analyses the demand pattern of 11 different food items across a routine day. Based on this optimum resource allocation for all food items has been carried out by solving a linear programming problem with cost minimization as the objective. Concurrently, recommendations have been devised to address this demand and supply side problem keeping in mind their practicability. Currently, the recommendations are being discussed and implemented at ISB (Indian School of Business) Hyderabad campus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F%26B%20industry" title="F&B industry">F&B industry</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20management" title=" demand management"> demand management</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=LP" title=" LP"> LP</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20analysis" title=" queuing analysis"> queuing analysis</a> </p> <a href="https://publications.waset.org/abstracts/102394/customer-experience-management-in-food-and-beverage-outlet-at-indian-school-of-business-methodology-and-recommendations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Kumar">Subodh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Varde"> Amit Varde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20computing" title="high performance computing">high performance computing</a>, <a href="https://publications.waset.org/abstracts/search?q=HPC" title=" HPC"> HPC</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=schedulers" title=" schedulers"> schedulers</a> </p> <a href="https://publications.waset.org/abstracts/155107/method-and-apparatus-for-optimized-job-scheduling-in-the-high-performance-computing-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Repair Workshop Queue System Modification Using Priority Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Okonkwo%20Ugochukwu">C. Okonkwo Ugochukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sinebe%20Jude"> E. Sinebe Jude</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Odoh%20Blessing"> N. Odoh Blessing</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Okafor%20Christian"> E. Okafor Christian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a modification on repair workshop queuing system using multi priority scheme was carried out. Chi square goodness of fit test was used to determine the random distribution of the inter arrival time and service time of crankshafts that come for maintenance in the workshop. The chi square values obtained for all the prioritized classes show that the distribution conforms to Poisson distribution. The mean waiting time in queue results of non-preemptive priority for 1st, 2nd and 3rd classes show 0.066, 0.09, and 0.224 day respectively, while preemptive priority show 0.007, 0.036 and 0.258 day. However, when non priority is used, which obviously has no class distinction it amounts to 0.17 days. From the results, one can observe that the preemptive priority system provides a very dramatic improvement over the non preemptive priority as it concerns arrivals that are of higher priority. However, the improvement has a detrimental effect on the low priority class. The trend of the results is similar to the mean waiting time in the system as a result of addition of the actual service time. Even though the mean waiting time for the queue and that of the system for no priority takes the least time when compared with the least priority, urgent and semi-urgent jobs will terribly suffer which will most likely result in reneging or balking of many urgent jobs. Hence, the adoption of priority scheme in this type of scenario will result in huge profit to the Company and more customer satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queue" title="queue">queue</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20class" title=" priority class"> priority class</a>, <a href="https://publications.waset.org/abstracts/search?q=preemptive" title=" preemptive"> preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-preemptive" title=" non-preemptive"> non-preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20waiting%20time" title=" mean waiting time"> mean waiting time</a> </p> <a href="https://publications.waset.org/abstracts/69985/repair-workshop-queue-system-modification-using-priority-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=queuing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=queuing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>