CINXE.COM
Search results for: very low frequency
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: very low frequency</title> <meta name="description" content="Search results for: very low frequency"> <meta name="keywords" content="very low frequency"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="very low frequency" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="very low frequency"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4005</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: very low frequency</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3885</span> Precoding-Assisted Frequency Division Multiple Access Transmission Scheme: A Cyclic Prefixes- Available Modulation-Based Filter Bank Multi-Carrier Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Wang">Ying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang"> Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhong"> Yu Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The offset Quadrature Amplitude Modulation-based Filter Bank Multi-Carrier (FBMC) system provides superior spectral properties over Orthogonal Frequency Division Multiplexing. However, seriously affected by imaginary interference, its performances are hampered in many areas. In this paper, we propose a Precoding-Assisted Frequency Division Multiple Access (PA-FDMA) modulation scheme. By spreading FBMC symbols into the frequency domain and transmitting them with a precoding matrix, the impact of imaginary interference can be eliminated. Specifically, we first generate the coding pre-solution matrix with a nonuniform Fast Fourier Transform and pick the best columns by introducing auxiliary factors. Secondly, according to the column indexes, we obtain the precoding matrix for one symbol and impose scaling factors to ensure that the power is approximately constant throughout the transmission time. Finally, we map the precoding matrix of one symbol to multiple symbols and transmit multiple data frames, thus achieving frequency-division multiple access. Additionally, observing the interference between adjacent frames, we mitigate them by adding frequency Cyclic Prefixes (CP) and evaluating them with a signal-to-interference ratio. Note that PA-FDMA can be considered a CP-available FBMC technique because the underlying strategy is FBMC. Simulation results show that the proposed scheme has better performance compared to Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PA-FDMA" title="PA-FDMA">PA-FDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDMA" title=" SC-FDMA"> SC-FDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=FBMC" title=" FBMC"> FBMC</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20fast%20fourier%20transform" title=" non-uniform fast fourier transform"> non-uniform fast fourier transform</a> </p> <a href="https://publications.waset.org/abstracts/181922/precoding-assisted-frequency-division-multiple-access-transmission-scheme-a-cyclic-prefixes-available-modulation-based-filter-bank-multi-carrier-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3884</span> Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumiya%20Sugino">Fumiya Sugino</a>, <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura"> Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Miyazu"> Yuji Miyazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenfrequency" title="eigenfrequency">eigenfrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=ARX%20model" title=" ARX model"> ARX model</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20observation%20records" title=" earthquake observation records"> earthquake observation records</a> </p> <a href="https://publications.waset.org/abstracts/84888/estimation-of-dynamic-characteristics-of-a-middle-rise-steel-reinforced-concrete-building-using-long-term" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3883</span> Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Angeles">Rebecca Angeles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title="environmental sustainability">environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=technology-organization-environment%20framework" title=" technology-organization-environment framework"> technology-organization-environment framework</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID%20system%20implementation" title=" RFID system implementation"> RFID system implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20analysis" title=" content analysis"> content analysis</a> </p> <a href="https://publications.waset.org/abstracts/32723/green-sustainability-using-radio-frequency-identification-technology-organization-environment-perspective-using-two-case-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3882</span> Analysis of Scaling Effects on Analog/RF Performance of Nanowire Gate-All-Around MOSFET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheeraj%20Sharma">Dheeraj Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Vishvakarma"> Santosh Kumar Vishvakarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a detailed analysis of analog and radiofrequency (RF) performance with different gate lengths for nanowire cylindrical gate (CylG) gate-all-around (GAA) MOSFET. CylG GAA MOSFET not only suppresses the short channel effects (SCEs), it is also a good candidate for analog/RF device due to its high transconductance (gm) and high cutoff frequency (fT ). The presented work would be beneficial for a new generation of RF circuits and systems in a broad range of applications and operating frequency covering the RF spectrum. For this purpose, the analog/RF figures of merit for CylG GAA MOSFET is analyzed in terms of gate to source capacitance (Cgs), gate to drain capacitance (Cgd), transconductance generation factor gm = Id (where Id represents drain current), intrinsic gain, output resistance, fT, maximum frequency of oscillation (fmax) and gain bandwidth (GBW) product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gate-All-Around%20MOSFET" title="Gate-All-Around MOSFET">Gate-All-Around MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=GAA" title=" GAA"> GAA</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20resistance" title=" output resistance"> output resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=transconductance%20generation%20factor" title=" transconductance generation factor"> transconductance generation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20gain" title=" intrinsic gain"> intrinsic gain</a>, <a href="https://publications.waset.org/abstracts/search?q=cutoff%20frequency" title=" cutoff frequency"> cutoff frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=fT" title=" fT"> fT</a> </p> <a href="https://publications.waset.org/abstracts/28209/analysis-of-scaling-effects-on-analogrf-performance-of-nanowire-gate-all-around-mosfet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3881</span> Liquid Crystal Based Reconfigurable Reflectarray Antenna Design </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Ismail">M. Y. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Inam"> M. Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title="liquid crystal">liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20reflectarray" title=" tunable reflectarray"> tunable reflectarray</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20tunability" title=" frequency tunability"> frequency tunability</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20phase%20range" title=" dynamic phase range"> dynamic phase range</a> </p> <a href="https://publications.waset.org/abstracts/43440/liquid-crystal-based-reconfigurable-reflectarray-antenna-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3880</span> Using Coupled Oscillators for Implementing Frequency Diverse Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hasheminasab">Maryam Hasheminasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Cheldavi"> Ahmed Cheldavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Kishk"> Ahmed Kishk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle-changing%20rate" title="angle-changing rate">angle-changing rate</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20scanning%20beam" title=" auto scanning beam"> auto scanning beam</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-in%20range" title=" pull-in range"> pull-in range</a>, <a href="https://publications.waset.org/abstracts/search?q=hold-in%20range" title=" hold-in range"> hold-in range</a>, <a href="https://publications.waset.org/abstracts/search?q=locking%20range" title=" locking range"> locking range</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locked%20state" title=" mode locked state"> mode locked state</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20locked%20state" title=" frequency locked state"> frequency locked state</a> </p> <a href="https://publications.waset.org/abstracts/167866/using-coupled-oscillators-for-implementing-frequency-diverse-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3879</span> ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Jun%20Jo">Ho-Jun Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim"> Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sung%20Kim"> Yong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20grid" title="micro grid">micro grid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20systems" title=" energy storage systems"> energy storage systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20rate" title=" ramp rate"> ramp rate</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a> </p> <a href="https://publications.waset.org/abstracts/39143/ess-control-strategy-for-primary-frequency-response-in-microgrid-considering-ramp-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3878</span> Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ardalan%20Sabamehr">Ardalan Sabamehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibration" title="ambient vibration">ambient vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain%20decomposition" title=" frequency domain decomposition"> frequency domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20subspace%20identification" title=" stochastic subspace identification"> stochastic subspace identification</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/56951/frequency-domain-decomposition-stochastic-subspace-identification-and-continuous-wavelet-transform-for-operational-modal-analysis-of-three-story-steel-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3877</span> Global Optimization Techniques for Optimal Placement of HF Antennas on a Shipboard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ural">Mustafa Ural</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Bayseferogulari"> Can Bayseferogulari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, radio frequency (RF) coupling between two HF antennas on a shipboard platform is minimized by determining an optimal antenna placement. Unlike the other works, the coupling is minimized not only at single frequency but over the whole frequency band of operation. Similarly, GAO and PSO, are used in order to determine optimal antenna placement. Throughout this work, outputs of two optimization techniques are compared with each other in terms of antenna placements and coupling results. At the end of the work, far-field radiation pattern performances of the antennas at their optimal places are analyzed in terms of directivity and coverage in order to see that. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title="electromagnetic compatibility">electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna%20placement" title=" antenna placement"> antenna placement</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20optimization" title=" genetic algorithm optimization"> genetic algorithm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/108667/global-optimization-techniques-for-optimal-placement-of-hf-antennas-on-a-shipboard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3876</span> Parallel Operated Rotary Frequency Converters within a Ship Micro-Grid System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20Ahmed%20Ashour">Hamdy Ahmed Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the parallel operation of rotary frequency converters which can be used within a ship micro-grid system and also to supply ships and equipment in a harbour during off-sail and maintenance periods with their suitable voltage and frequency requirements in order to overcome the possible associated problems of overloading on a single converter. The paper theoretically and experimentally investigated the operation of 3-ph induction motor / 3-ph synchronous generator based rotary converters set. Concept of operation and merits of such converters has been discussed. Overall dynamic simulation model of two parallel operated rotary converters has been developed. Active and reactive load sharing of the two converters has been analyzed. Experimental setup has been implemented for proof of concept and practical validation. Simulation and experimental results have been obtained and well correlated; showing how the rotary converters based setup can be manipulated to achieve different requirements of operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-converters" title=" frequency-converters"> frequency-converters</a>, <a href="https://publications.waset.org/abstracts/search?q=load-sharing" title=" load-sharing"> load-sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=marine-applications" title=" marine-applications"> marine-applications</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/44199/parallel-operated-rotary-frequency-converters-within-a-ship-micro-grid-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3875</span> Multi-Focus Image Fusion Using SFM and Wavelet Packet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somkait%20Udomhunsakul">Somkait Udomhunsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-focus%20image%20fusion" title="multi-focus image fusion">multi-focus image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20packet" title=" wavelet packet"> wavelet packet</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20frequency%20measurement" title=" spatial frequency measurement"> spatial frequency measurement</a> </p> <a href="https://publications.waset.org/abstracts/4886/multi-focus-image-fusion-using-sfm-and-wavelet-packet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3874</span> Theoretical Investigation on the Dynamic Characteristics of One Degree of Freedom Vibration System Equipped with Inerter of Variable Inertance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Tsuji"> Yoshiki Tsuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theoretical investigation on the dynamic characteristics of one degree of freedom vibration system equipped with inerter of variable inertance, is presented. Differential equation of movement was solved under proper initial conditions in the case of free undamped/damped vibration, considered in the absence/presence of the inerter in the mechanical system. Influence of inertance on the amplitude of vibration, phase angle, natural frequency, damping ratio, and logarithmic decrement was clarified. It was mainly found that the inerter decreases the natural frequency of the undamped system and also of the damped system if the damping ratio is below 0.707. On the other hand, the inerter increases the natural frequency of the damped system if the damping ratio exceeds 0.707. Results obtained in this work are useful for the adequate design of inerters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping" title="damping">damping</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title=" frequency control"> frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=inerter" title=" inerter"> inerter</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20degree%20of%20freedom%20vibration%20system" title=" one degree of freedom vibration system"> one degree of freedom vibration system</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20connection" title=" parallel connection"> parallel connection</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20inertance" title=" variable inertance"> variable inertance</a> </p> <a href="https://publications.waset.org/abstracts/65507/theoretical-investigation-on-the-dynamic-characteristics-of-one-degree-of-freedom-vibration-system-equipped-with-inerter-of-variable-inertance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3873</span> Nowcasting Indonesian Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferry%20Kurniawan">Ferry Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nowcasting" title="nowcasting">nowcasting</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-frequency%20data" title=" mixed-frequency data"> mixed-frequency data</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20model" title=" factor model"> factor model</a>, <a href="https://publications.waset.org/abstracts/search?q=nowcasts%20combination" title=" nowcasts combination"> nowcasts combination</a> </p> <a href="https://publications.waset.org/abstracts/36144/nowcasting-indonesian-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3872</span> Frequency- and Content-Based Tag Cloud Font Distribution Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81gnes%20Bog%C3%A1rdi-M%C3%A9sz%C3%B6ly">Ágnes Bogárdi-Mészöly</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Hashimoto"> Takeshi Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Yokoyama"> Shohei Yokoyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Ishikawa"> Hiroshi Ishikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tag%20cloud" title="tag cloud">tag cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=font%20distribution%20algorithm" title=" font distribution algorithm"> font distribution algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-based" title=" frequency-based"> frequency-based</a>, <a href="https://publications.waset.org/abstracts/search?q=content-based" title=" content-based"> content-based</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20law" title=" power law"> power law</a> </p> <a href="https://publications.waset.org/abstracts/8529/frequency-and-content-based-tag-cloud-font-distribution-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3871</span> Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wittawat%20Wasusathien">Wittawat Wasusathien</a>, <a href="https://publications.waset.org/abstracts/search?q=Samran%20Santalunai"> Samran Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaset%20Thosdeekoraphat"> Thanaset Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchai%20Thongsopa"> Chanchai Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20absorption%20rate%20%28SAR%29" title="specific absorption rate (SAR)">specific absorption rate (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband%20%28UWB%29" title=" ultra wideband (UWB)"> ultra wideband (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates" title=" coordinates"> coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/10465/ultra-wideband-breast-cancer-detection-by-using-sar-for-indication-the-tumor-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3870</span> A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hwan%20Su%20Jung">Hwan Su Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahn%20Jun%20Gil"> Ahn Jun Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deadline" title="deadline">deadline</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20voltage%20frequency%20scaling" title=" dynamic voltage frequency scaling"> dynamic voltage frequency scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20state%20transition" title=" power state transition"> power state transition</a> </p> <a href="https://publications.waset.org/abstracts/41356/a-case-study-of-limited-dynamic-voltage-frequency-scaling-in-low-power-processors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3869</span> First and Second Order Gm-C Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Mahmoud">Rana Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study represents a systematic study of the Operational Transconductance Amplifiers capacitance (OTA-C) filters or as it is often called Gm-C filters. OTA-C filters have been paid a great attention for the last decades. As Gm-C filters operate in an open loop topology, this makes them flexible to perform in low and high frequencies. As such, Gm-C filters can be used in various wireless communication applications. Another property of Gm-C filters is its electronic tunability, thus different filter frequency characteristics can be obtained without changing the inductance and resistance values. This can be achieved by an OTA (Operational Transconductance Amplifier) and a capacitor. By tuning the OTA transconductance, the cut-off frequency will be tuned and different frequency responses are achieved. Different high-order analog filters can be design using Gm-C filters including low pass, high pass and band pass filters. 1st and 2nd order low pass, high pass and band pass filters are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gm-C" title="Gm-C">Gm-C</a>, <a href="https://publications.waset.org/abstracts/search?q=filters" title=" filters"> filters</a>, <a href="https://publications.waset.org/abstracts/search?q=low-pass" title=" low-pass"> low-pass</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pass" title=" high-pass"> high-pass</a>, <a href="https://publications.waset.org/abstracts/search?q=band-pass" title=" band-pass"> band-pass</a> </p> <a href="https://publications.waset.org/abstracts/158201/first-and-second-order-gm-c-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3868</span> Vibration of Gamma Graphyne with an Attached Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang">Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee"> Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atomic finite element simulation is applied to investigate the vibration frequency of a single-layer gamma graphyne with an attached mass for the CCCC, SSSS, CFCF, SFSF boundary conditions using the commercial code ANSYS. The fundamental frequencies of the graphyne sheet are compared with the results of the previous study. The results of the comparison are very good in all considered cases. The attached mass causes a shift in the resonant frequency of the graphyne. The frequencies of the single-layer gamma graphyne with an attached mass for different boundary conditions are obtained, and the order based on the boundary condition is CCCC >SSSS > CFCF> SFSF. The highest frequency shift is obtained when the attached mass is located at the center of the graphyne sheet. This is useful for the design of a highly sensitive graphyne-based mass sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphyne" title="graphyne">graphyne</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20shift" title=" frequency shift"> frequency shift</a> </p> <a href="https://publications.waset.org/abstracts/83663/vibration-of-gamma-graphyne-with-an-attached-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3867</span> Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wipassorn%20Vinicchayakul">Wipassorn Vinicchayakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichaya%20Supanakoon"> Pichaya Supanakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathaporn%20Promwong"> Sathaporn Promwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar%20cross%20section" title="radar cross section">radar cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint-based%20localization" title=" fingerprint-based localization"> fingerprint-based localization</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20root%20mean%20square%20%28RMS%29%20error%20matching%20algorithm" title=" minimum root mean square (RMS) error matching algorithm"> minimum root mean square (RMS) error matching algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=touchless%20keypad%20model" title=" touchless keypad model"> touchless keypad model</a> </p> <a href="https://publications.waset.org/abstracts/43429/improving-human-hand-localization-in-indoor-environment-by-using-frequency-domain-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3866</span> CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Helaimi">M. Helaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Taleb"> R. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benyoucef"> D. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Belmadani"> B. Belmadani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=AVC%20control" title=" AVC control"> AVC control</a>, <a href="https://publications.waset.org/abstracts/search?q=CDM" title=" CDM"> CDM</a>, <a href="https://publications.waset.org/abstracts/search?q=PLL" title=" PLL"> PLL</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20inverter" title=" resonant inverter "> resonant inverter </a> </p> <a href="https://publications.waset.org/abstracts/18666/cdm-based-controller-design-for-high-frequency-induction-heating-system-with-llc-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3865</span> Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vetrimurugan">R. Vetrimurugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Lim"> Terry Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Goodson"> M. J. Goodson</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nagarajan"> R. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the cleaning performance of high intensity 360 kHz frequency on the removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. In the second method, aluminium metal spacer components was placed at various locations of the cleaning tank (such as centre, top left corner, bottom left corner, top right corner, bottom right corner) and the resultant particles removed by 360 kHz frequency was measured. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20distribution" title="power distribution">power distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=megasonic%20sweeping" title=" megasonic sweeping"> megasonic sweeping</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20intensity" title=" cavitation intensity"> cavitation intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20removal" title=" particle removal"> particle removal</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20particle%20counting" title=" laser particle counting"> laser particle counting</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=submicron" title=" submicron"> submicron</a> </p> <a href="https://publications.waset.org/abstracts/23901/cleaning-performance-of-high-frequency-high-intensity-360-khz-frequency-operating-in-thickness-mode-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3864</span> Role of Self-Concept in the Relationship between Emotional Abuse and Mental Health of Employees in the North West Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Matlawe">L. Matlawe</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Idemudia"> E. S. Idemudia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modeling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they were designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotional%20abuse" title="emotional abuse">emotional abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=employees" title=" employees"> employees</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=self-concept" title=" self-concept"> self-concept</a> </p> <a href="https://publications.waset.org/abstracts/46608/role-of-self-concept-in-the-relationship-between-emotional-abuse-and-mental-health-of-employees-in-the-north-west-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3863</span> Haemoglobin Variants and Their Frequency Distribution in Human Population of Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akeem%20Akinboro">Akeem Akinboro</a>, <a href="https://publications.waset.org/abstracts/search?q=Bala%20Alhaj%20Kegun"> Bala Alhaj Kegun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Haemoglobinopathy is a genetic disorder that has the potentiality to cause death of individuals in whom both the alpha (α) and beta (β) globin chains of the haemoglobin molecule are defective due to mutations in their genes. The haemoglobin genotype variants among some residents of Niger state, Nigeria, were determined using the secondary data available at Bida, Minna and Kotangora general hospitals of the state. A total of 1,639 data, representing 434, 655 and 550, collected from the outside patients who visited the medical laboratory units of the three general hospitals, respectively, over five years period (2015-2020) were analyzed into gene frequency, sex and age to determine their haemoglobin genotypes status. More males (51.6 – 58.7%) than females (41.3 – 48.4%) visited the three hospitals during the period covered and most of the patients were between 11 - 20 years old. The frequency of HbA allele in the human population was 0.72, 0.65, 0.68 for Bida, Minna and Kotangora, respectively, while it was 0.25, 0.29 and 0.28 for HbS allele. The HbC allele was prevalent at 0.03, 0.06 and 0.05 among the human population in Bida, Minna and Kotangora cities of Niger state. In overall, the prevalence of HbA, HbS and HbC alleles in Niger state of Nigeria was 0.68, 0.28 and 0.05. Minna being the capital city of Niger state and the most populous among the three cities in the state seems to have influx of more people who are carriers of abnormal haemoglobin genotypes which has resulted to higher frequency of HbS and HbC than those of the other two cities in this study. These results show that the pattern of haemoglobin genotypes frequency of Kontagora could be a prediction for the whole of Niger state. It is therefore necessary and important to take screening of blood for haemoglobin genotype serious among intending couples to prevent and reduce the possibility of having increase in the number of people with abnormal haemoglobin genotypes in the state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=haemoglobin" title="haemoglobin">haemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=niger%20state" title=" niger state"> niger state</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20frequency" title=" gene frequency"> gene frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20hospitals" title=" general hospitals"> general hospitals</a> </p> <a href="https://publications.waset.org/abstracts/156969/haemoglobin-variants-and-their-frequency-distribution-in-human-population-of-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3862</span> Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subal%20Kar">Subal Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuja%20Ghosh"> Madhuja Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitesh%20Kumar"> Amitesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Majumder"> Arijit Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=split%20ring%20resonator" title="split ring resonator">split ring resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=CSRR%20loaded%20patch%20antenna" title=" CSRR loaded patch antenna"> CSRR loaded patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=LC%20resonator" title=" LC resonator"> LC resonator</a> </p> <a href="https://publications.waset.org/abstracts/52176/complementary-split-ring-resonator-loaded-microstrip-patch-antenna-useful-for-microwave-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3861</span> Anharmonic Behavior in BaTiO3: Investigation by Raman Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Fontana">M. D. Fontana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bejaoui%20Ouni"> I. Bejaoui Ouni</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chapron"> D. Chapron</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aroui"> H. Aroui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BaTiO3 (BT) is a well known ferroelectric material which has been thoroughly studied during several decades since it undergoes successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions on cooling. It has several ferroelectric properties that allow it to be a good material for electronic applications such as the design of ferroelectric memories and pyroelectric elements. In the present work, we report the analysis of temperature dependence of Raman frequency and damping of the A1 modes polarized along the FE c axis as well as the optical phonons E corresponding to the ionic motions in the plane normal to c. Measurements were carried out at different temperatures ranging from 298 to 408 K (tetragonal phase) within different scattering configurations. Spectroscopic parameters of BT have determined using a high resolution Raman spectrometer and a fitting program. All the first order frequency modes exhibit a quasi linear decrease as function of the temperature, except for the A1[TO1], E[TO2] and E[TO4] lines which reveal a parabolic dependence illustrating an anharmonic process. The phonon frequency downshifts and damping evolutions are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BaTiO3" title="BaTiO3">BaTiO3</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=anharmonic%20potential" title=" anharmonic potential"> anharmonic potential</a> </p> <a href="https://publications.waset.org/abstracts/38444/anharmonic-behavior-in-batio3-investigation-by-raman-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3860</span> High Frequency Rotary Transformer Used in Synchronous Motor/Generator of Flywheel Energy Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Lu">J. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Li"> H. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Cole"> F. Cole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a high-frequency rotary transformer (HFRT) for a separately excited synchronous machine (SESM) used in a flywheel energy storage system. The SESM can eliminate and reduce rare earth permanent magnet (REPM) usage and provide a better performance in renewable energy systems. However, the major drawback of such SESM is the necessity of brushes and slip rings to supply the field current, which increases the maintenance cost and operation reliability. To overcome these problems, an HFRT integrated with SiC semiconductor devices can replace brushes and slip rings in the SESM. The proposed HFRT features a high-frequency magnetic ferrite for both the stationary part as the transformer primary and the rotating part as the transformer secondary, as well as an air gap, allowing safe operation at high rotational speeds. Hence, this rotary transformer can enable the adoption of a wound rotor synchronous machine (WRSM). The HFRT, working at over 100kHz operating frequency, exhibits excellent performance of power efficiency and significant size reduction. The experimental validations to support the theoretical findings have been provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brushes%20and%20slip%20rings" title="brushes and slip rings">brushes and slip rings</a>, <a href="https://publications.waset.org/abstracts/search?q=flywheel%20energy%20storage" title=" flywheel energy storage"> flywheel energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20rotary%20transformer" title=" high frequency rotary transformer"> high frequency rotary transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=separately%20excited%20synchronous%20machine" title=" separately excited synchronous machine"> separately excited synchronous machine</a> </p> <a href="https://publications.waset.org/abstracts/188753/high-frequency-rotary-transformer-used-in-synchronous-motorgenerator-of-flywheel-energy-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3859</span> Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Kaya">Volkan Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Elbasi"> Ersin Elbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image" title=" medical image"> medical image</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20significant%20bits" title=" least significant bits"> least significant bits</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/75214/robust-medical-image-watermarking-using-frequency-domain-and-least-significant-bits-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3858</span> A Study on the Pulse Transformer Design Considering Inrush Current in the Welding Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim">In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong"> Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang"> Dong-Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Inverter type arc-welding machine is inclined to be designed for higher frequency in order to reduce the size and cost. The need of the core material reconsideration for high frequency pulse transformer is more important since core loss grows as the frequency rises. An arc welding machine’s pulse transformer is designed using an Area Product (Ap) method and is considered margin air gap core design in order to prevent the burning of the IGBT by the inrush current. Finally, the reduction of the core weight and the core size are compared according to different materials for 30kW inverter type arc welding machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20transformers" title="pulse transformers">pulse transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=inrush%20current" title=" inrush current"> inrush current</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20gaps" title=" air gaps"> air gaps</a> </p> <a href="https://publications.waset.org/abstracts/41051/a-study-on-the-pulse-transformer-design-considering-inrush-current-in-the-welding-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3857</span> Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harisudha%20Kuresan">Harisudha Kuresan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhanalakshmi%20Samiappan"> Dhanalakshmi Samiappan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rama%20Rao"> T. Rama Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SEDREAMS" title="SEDREAMS">SEDREAMS</a>, <a href="https://publications.waset.org/abstracts/search?q=GCI" title=" GCI"> GCI</a>, <a href="https://publications.waset.org/abstracts/search?q=SBC" title=" SBC"> SBC</a>, <a href="https://publications.waset.org/abstracts/search?q=GOI" title=" GOI"> GOI</a> </p> <a href="https://publications.waset.org/abstracts/56336/subband-coding-and-glottal-closure-instant-gci-using-sedreams-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3856</span> Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudha%20Hegde">Vasudha Hegde</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Chaulagain"> Narendra Chaulagain</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ravikumar"> H. M. Ravikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonu%20Mishra"> Sonu Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Yellampalli"> Siva Yellampalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor" title="acoustic sensor">acoustic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm%20based" title=" diaphragm based"> diaphragm based</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20element%20modeling%20%28LEM%29" title=" lumped element modeling (LEM)"> lumped element modeling (LEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/87746/modeling-of-microelectromechanical-systems-diaphragm-based-acoustic-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=134">134</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>